1 //===- Tiling.cpp - Implementation of tiling using TilingInterface -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the tiling using TilingInterface. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/SCF/Transforms/TileUsingInterface.h" 14 15 #include "mlir/Dialect/Affine/IR/AffineOps.h" 16 #include "mlir/Dialect/Arith/IR/Arith.h" 17 #include "mlir/Dialect/Arith/Utils/Utils.h" 18 #include "mlir/Dialect/Func/IR/FuncOps.h" 19 #include "mlir/Dialect/SCF/Utils/Utils.h" 20 #include "mlir/Dialect/Tensor/IR/Tensor.h" 21 #include "mlir/Dialect/Utils/IndexingUtils.h" 22 #include "mlir/IR/Matchers.h" 23 #include "mlir/IR/PatternMatch.h" 24 #include "mlir/Interfaces/DestinationStyleOpInterface.h" 25 #include "mlir/Interfaces/TilingInterface.h" 26 #include "llvm/Support/Debug.h" 27 #include <optional> 28 29 #define DEBUG_TYPE "tile-using-interface" 30 31 using namespace mlir; 32 33 scf::SCFTilingOptions & 34 scf::SCFTilingOptions::setTileSizes(ArrayRef<OpFoldResult> ts) { 35 assert(!tileSizeComputationFunction && "tile sizes already set"); 36 auto tileSizes = llvm::to_vector(ts); 37 tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) { 38 return tileSizes; 39 }; 40 return *this; 41 } 42 43 /// Helper method to adjust the interchange vector to match the iteration 44 /// domain. 45 static SmallVector<int64_t> 46 fillInterchangeVector(ArrayRef<int64_t> interchangeVector, 47 size_t iterationDomainSize) { 48 SmallVector<int64_t> filledVector = llvm::to_vector(interchangeVector); 49 if (filledVector.size() < iterationDomainSize) { 50 auto range = llvm::seq<int64_t>(filledVector.size(), iterationDomainSize); 51 filledVector.append(range.begin(), range.end()); 52 } 53 if (filledVector.size() > iterationDomainSize) 54 filledVector.resize(iterationDomainSize); 55 return filledVector; 56 } 57 58 /// Convert a list of ops of type `SrcOpTy` to list of `Operation *`. 59 template <typename SrcOpTy> 60 static SmallVector<Operation *> getAsOperations(ArrayRef<SrcOpTy> ops) { 61 return llvm::to_vector( 62 llvm::map_range(ops, [](auto op) -> Operation * { return op; })); 63 } 64 template <typename SrcOpTy> 65 static SmallVector<Operation *> 66 getAsOperations(const SmallVector<SrcOpTy> &ops) { 67 return getAsOperations(ArrayRef<SrcOpTy>(ops)); 68 } 69 70 /// Convert a list of `Operation *` to a list of `DstOpTy. 71 template <typename DstOpTy> 72 static SmallVector<DstOpTy> castToTypedOperations(ArrayRef<Operation *> ops) { 73 return llvm::to_vector( 74 llvm::map_range(ops, [](Operation *op) { return cast<DstOpTy>(op); })); 75 } 76 template <typename DstOpTy> 77 static SmallVector<DstOpTy> 78 castToTypedOperations(const SmallVector<Operation *> &ops) { 79 return castToTypedOperations<DstOpTy>(ArrayRef<Operation *>(ops)); 80 } 81 82 //===----------------------------------------------------------------------===// 83 // tileUsingSCFForOp implementation. 84 //===----------------------------------------------------------------------===// 85 86 // Check if `stride` evenly divides the trip count `size - offset`. 87 static bool tileDividesIterationDomain(Range loopRange) { 88 std::optional<int64_t> offsetAsInt = getConstantIntValue(loopRange.offset); 89 if (!offsetAsInt) 90 return false; 91 std::optional<int64_t> sizeAsInt = getConstantIntValue(loopRange.size); 92 if (!sizeAsInt) 93 return false; 94 std::optional<int64_t> strideAsInt = getConstantIntValue(loopRange.stride); 95 if (!strideAsInt) 96 return false; 97 return ((sizeAsInt.value() - offsetAsInt.value()) % strideAsInt.value() == 0); 98 } 99 100 /// Returns the bounded tile size given the current `iv`, `loopRange` and 101 /// `tileSize`, i.e., `min(tileSize, range.end() - iv)`. 102 static OpFoldResult getBoundedTileSize(OpBuilder &b, Location loc, 103 Range loopRange, Value iv, 104 OpFoldResult tileSize) { 105 std::optional<int64_t> ts = getConstantIntValue(tileSize); 106 if (ts && ts.value() == 1) 107 return tileSize; 108 109 if (tileDividesIterationDomain( 110 Range{loopRange.offset, loopRange.size, tileSize})) 111 return tileSize; 112 113 // The tile size to use (to avoid out of bounds access) is minimum of 114 // `tileSize` and `ub - iv`, where `iv` is the induction variable of the tiled 115 // loop. 116 AffineExpr s0, s1, d0; 117 bindDims(b.getContext(), d0); 118 bindSymbols(b.getContext(), s0, s1); 119 AffineMap minMap = AffineMap::get(1, 2, {s0, s1 - d0}, b.getContext()); 120 Value size = getValueOrCreateConstantIndexOp(b, loc, loopRange.size); 121 return affine::makeComposedFoldedAffineMin( 122 b, loc, minMap, SmallVector<OpFoldResult>{iv, tileSize, size}); 123 } 124 125 /// Clones the operation and updates the destination if the operation 126 /// implements the `DestinationStyleOpInterface`. 127 static Operation *cloneOpAndUpdateDestinationArgs(RewriterBase &rewriter, 128 Operation *op, 129 ValueRange newDestArgs) { 130 Operation *clonedOp = rewriter.clone(*op); 131 if (newDestArgs.empty()) 132 return clonedOp; 133 if (auto destinationStyleOp = dyn_cast<DestinationStyleOpInterface>(clonedOp)) 134 destinationStyleOp.getDpsInitsMutable().assign(newDestArgs); 135 return clonedOp; 136 } 137 138 /// Generate an empty loop nest that represents the tiled loop nest shell. 139 /// - `loopRanges` specifies the lb, ub and step of the untiled iteration space. 140 /// - `tileSizes` is the tile sizes to use. Zero represent untiled loops. 141 /// - In `offsets` and `sizes` return the multi-dimensional offset and size of 142 /// the tile processed within the inner most loop. 143 /// Note that this methods adds `scf.yield` operation for all but the innermost 144 /// loop. These yield the value returned by the immediately inner loop. The 145 /// caller is expected to add the scf.yield operation for the innermost loop. 146 static SmallVector<scf::ForOp> generateTileLoopNest( 147 OpBuilder &builder, Location loc, ArrayRef<Range> loopRanges, 148 ArrayRef<OpFoldResult> tileSizes, SmallVector<OpFoldResult> &offsets, 149 SmallVector<OpFoldResult> &sizes, ValueRange destinationTensors = {}) { 150 if (loopRanges.empty()) 151 return {}; 152 assert(loopRanges.size() == tileSizes.size() && 153 "expected as many tile sizes as loop ranges"); 154 OpBuilder::InsertionGuard guard(builder); 155 SmallVector<scf::ForOp> loops; 156 offsets.resize(loopRanges.size()); 157 sizes.resize(loopRanges.size()); 158 159 for (auto loopRange : llvm::enumerate(loopRanges)) { 160 Value offset = 161 getValueOrCreateConstantIndexOp(builder, loc, loopRange.value().offset); 162 Value size = 163 getValueOrCreateConstantIndexOp(builder, loc, loopRange.value().size); 164 Value tileSize = getValueOrCreateConstantIndexOp( 165 builder, loc, tileSizes[loopRange.index()]); 166 // No loops if tile size is zero. Set offset and size to the loop 167 // offset and size. 168 if (matchPattern(tileSize, m_Zero())) { 169 offsets[loopRange.index()] = offset; 170 sizes[loopRange.index()] = size; 171 continue; 172 } 173 174 auto loop = builder.create<scf::ForOp>( 175 loc, offset, size, tileSize, destinationTensors, 176 [&](OpBuilder &bodyBuilder, Location bodyLoc, Value iv, 177 ValueRange /*iterArgs*/) { 178 sizes[loopRange.index()] = 179 getBoundedTileSize(bodyBuilder, bodyLoc, loopRange.value(), iv, 180 getAsOpFoldResult(tileSize)); 181 }); 182 offsets[loopRange.index()] = loop.getInductionVar(); 183 loops.push_back(loop); 184 builder.setInsertionPointToEnd(loop.getBody()); 185 destinationTensors = loop.getRegionIterArgs(); 186 } 187 188 // Add the scf.yield operations for all the outer loops. 189 if (!loops.empty()) { 190 for (auto [outerLoop, innerLoop] : 191 llvm::zip_equal(MutableArrayRef(loops).drop_back(), 192 MutableArrayRef(loops).drop_front())) { 193 builder.setInsertionPointToEnd(outerLoop.getBody()); 194 builder.create<scf::YieldOp>(outerLoop.getLoc(), innerLoop.getResults()); 195 } 196 } 197 return loops; 198 } 199 200 /// Method to add new init values to a loop nest. Updates `loops` in-place with 201 /// new loops that use the `newInitValues`. 202 /// The outer-loops are updated to yield the new result values of the inner 203 /// loop. For the innermost loop, the call back `getNewYields` is invoked to get 204 /// the additional values to yield form the innermost loop. 205 static void addInitOperandsToLoopNest( 206 RewriterBase &rewriter, MutableArrayRef<scf::ForOp> loops, 207 ValueRange newInitValues, 208 llvm::function_ref<SmallVector<Value>(RewriterBase &rewriter, Value iv, 209 ValueRange newRegionIterArgs)> 210 getNewYieldValsFn) { 211 SmallVector<scf::ForOp> newLoops; 212 if (loops.empty()) 213 return; 214 OpBuilder::InsertionGuard g(rewriter); 215 rewriter.setInsertionPoint(loops.front()); 216 for (auto &loop : loops) { 217 rewriter.setInsertionPoint(loop); 218 219 // Create a new loop with the new init values for this loop. 220 SmallVector<Value> newInits = llvm::to_vector(loop.getInitArgs()); 221 newInits.append(newInitValues.begin(), newInitValues.end()); 222 auto newLoop = rewriter.create<scf::ForOp>( 223 loop.getLoc(), loop.getLowerBound(), loop.getUpperBound(), 224 loop.getStep(), newInits, 225 [&](OpBuilder &b, Location loc, Value iv, ValueRange iterArgs) {}); 226 227 // Merge the body of the new loop with the body of the old loops. 228 SmallVector<Value> sourceBlockArgs; 229 sourceBlockArgs.push_back(newLoop.getInductionVar()); 230 auto newRegionIterArgs = newLoop.getRegionIterArgs(); 231 sourceBlockArgs.append( 232 newRegionIterArgs.begin(), 233 std::next(newRegionIterArgs.begin(), loop.getNumResults())); 234 rewriter.mergeBlocks(loop.getBody(), newLoop.getBody(), sourceBlockArgs); 235 rewriter.replaceOp(loop, 236 newLoop.getResults().take_front(loop.getNumResults())); 237 loop = newLoop; 238 newInitValues = newLoop.getRegionIterArgs().take_back(newInitValues.size()); 239 } 240 241 // Update the loop body of the innermost loop to get new yield values. 242 scf::ForOp innerMostLoop = loops.back(); 243 auto innerMostYieldOp = 244 cast<scf::YieldOp>(innerMostLoop.getBody()->getTerminator()); 245 rewriter.setInsertionPoint(innerMostYieldOp); 246 SmallVector<Value> newYieldVals = 247 getNewYieldValsFn(rewriter, innerMostLoop.getInductionVar(), 248 innerMostLoop.getRegionIterArgs()); 249 SmallVector<Value> newYieldOperands = 250 llvm::to_vector(innerMostYieldOp->getOperands()); 251 newYieldOperands.append(newYieldVals); 252 rewriter.replaceOpWithNewOp<scf::YieldOp>(innerMostYieldOp, newYieldOperands); 253 254 // Make all other loops except the innermost loops yield the values returned 255 // by the inner loop. 256 for (auto [outerLoop, innerLoop] : 257 llvm::zip_equal(loops.drop_back(), loops.drop_front())) { 258 auto outerLoopYield = 259 cast<scf::YieldOp>(outerLoop.getBody()->getTerminator()); 260 SmallVector<Value> newYields = 261 llvm::to_vector(outerLoopYield.getOperands()); 262 ValueRange additionalYields = 263 innerLoop.getResults().take_back(newInitValues.size()); 264 newYields.append(additionalYields.begin(), additionalYields.end()); 265 rewriter.setInsertionPoint(outerLoopYield); 266 rewriter.replaceOpWithNewOp<scf::YieldOp>(outerLoopYield, newYields); 267 } 268 } 269 270 /// Implementation of tiling transformation of `op` that implements the 271 /// `TilingInterface` using `scf.for` to iterate over the tiles. 272 FailureOr<scf::SCFTilingResult> 273 mlir::scf::tileUsingSCFForOp(RewriterBase &rewriter, TilingInterface op, 274 const scf::SCFTilingOptions &options) { 275 OpBuilder::InsertionGuard guard(rewriter); 276 rewriter.setInsertionPointAfter(op); 277 278 if (!options.tileSizeComputationFunction) { 279 return rewriter.notifyMatchFailure( 280 op, "missing tile size computation function"); 281 } 282 283 // 1. Get the range of the loops that are represented by the operation. 284 SmallVector<Range> iterationDomain = op.getIterationDomain(rewriter); 285 size_t numLoops = iterationDomain.size(); 286 if (numLoops == 0) { 287 return rewriter.notifyMatchFailure( 288 op, "unable to tile op with no iteration domain"); 289 } 290 // 2. Materialize the tile sizes. Enforce the convention that "tiling by zero" 291 // skips tiling a particular dimension. This convention is significantly 292 // simpler to handle instead of adjusting affine maps to account for missing 293 // dimensions. 294 SmallVector<OpFoldResult> tileSizeVector = 295 options.tileSizeComputationFunction(rewriter, op); 296 if (tileSizeVector.size() < iterationDomain.size()) { 297 auto zero = rewriter.getIndexAttr(0); 298 tileSizeVector.append(numLoops - tileSizeVector.size(), zero); 299 } 300 301 // 3. Find the destination tensors to use for the operation. 302 SmallVector<Value> destinationTensors; 303 if (failed(tensor::getOrCreateDestinations(rewriter, op.getLoc(), op, 304 destinationTensors))) { 305 return rewriter.notifyMatchFailure(op, 306 "unable to create destination tensors"); 307 } 308 309 SmallVector<OpFoldResult> offsets, sizes; 310 SmallVector<scf::ForOp> forLoops; 311 { 312 // If there is an interchange specified, permute the iteration domain and 313 // the tile sizes. 314 SmallVector<int64_t> interchangeVector; 315 if (!options.interchangeVector.empty()) { 316 interchangeVector = fillInterchangeVector(options.interchangeVector, 317 iterationDomain.size()); 318 } 319 if (!interchangeVector.empty()) { 320 if (!isPermutationVector(interchangeVector)) { 321 return rewriter.notifyMatchFailure( 322 op, "invalid intechange vector, not a permutation of the entire " 323 "iteration space"); 324 } 325 326 applyPermutationToVector(iterationDomain, interchangeVector); 327 applyPermutationToVector(tileSizeVector, interchangeVector); 328 } 329 330 // 4. Materialize an empty loop nest that iterates over the tiles. These 331 // loops for now do not return any values even if the original operation has 332 // results. 333 forLoops = generateTileLoopNest(rewriter, op.getLoc(), iterationDomain, 334 tileSizeVector, offsets, sizes, 335 destinationTensors); 336 337 if (!interchangeVector.empty()) { 338 auto inversePermutation = invertPermutationVector(interchangeVector); 339 applyPermutationToVector(offsets, inversePermutation); 340 applyPermutationToVector(sizes, inversePermutation); 341 } 342 } 343 344 LLVM_DEBUG({ 345 if (!forLoops.empty()) { 346 llvm::dbgs() << "LoopNest shell :\n"; 347 forLoops.front().dump(); 348 llvm::dbgs() << "\n"; 349 } 350 }); 351 352 // 5. Generate the tiled implementation within the inner most loop. 353 SmallVector<Value> clonedOpDestination = destinationTensors; 354 if (!forLoops.empty()) { 355 rewriter.setInsertionPointToEnd(forLoops.back().getBody()); 356 clonedOpDestination = 357 llvm::map_to_vector(forLoops.back().getRegionIterArgs(), 358 [](BlockArgument b) -> Value { return b; }); 359 } 360 361 // 5a. Clone the operation within the loop body. 362 auto clonedOp = cast<TilingInterface>( 363 cloneOpAndUpdateDestinationArgs(rewriter, op, clonedOpDestination)); 364 365 // 5b. Tile the cloned operation. 366 FailureOr<TilingResult> tiledImplementation = 367 clonedOp.getTiledImplementation(rewriter, offsets, sizes); 368 if (failed(tiledImplementation)) { 369 return rewriter.notifyMatchFailure(op, "failed to tile operation"); 370 } 371 372 // 5c. Delete the cloned operation. 373 rewriter.eraseOp(clonedOp); 374 375 // If loops are empty, the tiled op is used as the replacement for the untiled 376 // op. 377 if (forLoops.empty()) { 378 return scf::SCFTilingResult{tiledImplementation->tiledOps, 379 getAsOperations(forLoops), 380 tiledImplementation->tiledValues}; 381 } 382 383 if (op->getNumResults() == 0) { 384 // The innermost loop does not have a `scf.yield` yet. There is nothing to 385 // return, so generate an empty `scf.yield` operation. 386 rewriter.setInsertionPointToEnd(forLoops.back().getBody()); 387 rewriter.create<scf::YieldOp>(op->getLoc()); 388 return scf::SCFTilingResult{ 389 tiledImplementation->tiledOps, getAsOperations(forLoops), {}}; 390 } 391 392 // 6. Yield all the results of the tiled operation. 393 int64_t numResults = op->getNumResults(); 394 SmallVector<SmallVector<OpFoldResult>> resultOffsetsList(numResults), 395 resultSizesList(numResults); 396 SmallVector<Value> yieldedValues; 397 for (auto [index, tiledValue] : 398 llvm::enumerate(tiledImplementation->tiledValues)) { 399 SmallVector<OpFoldResult> resultOffsets, resultSizes; 400 if (failed(op.getResultTilePosition(rewriter, index, offsets, sizes, 401 resultOffsets, resultSizes))) { 402 return rewriter.notifyMatchFailure( 403 op, "failed to get slice of result produced"); 404 } 405 SmallVector<OpFoldResult> resultStrides(resultOffsets.size(), 406 rewriter.getIndexAttr(1)); 407 auto insertSlice = rewriter.create<tensor::InsertSliceOp>( 408 op->getLoc(), tiledValue, clonedOpDestination[index], resultOffsets, 409 resultSizes, resultStrides); 410 yieldedValues.push_back(insertSlice); 411 } 412 rewriter.create<scf::YieldOp>(op->getLoc(), yieldedValues); 413 414 SmallVector<Value> replacements = llvm::map_to_vector( 415 forLoops.front().getResults(), [](OpResult r) -> Value { return r; }); 416 LLVM_DEBUG({ 417 if (!forLoops.empty()) { 418 llvm::dbgs() << "After tiled implementation :\n"; 419 forLoops.front().dump(); 420 llvm::dbgs() << "\n"; 421 } 422 }); 423 return scf::SCFTilingResult{tiledImplementation->tiledOps, 424 getAsOperations(forLoops), replacements}; 425 } 426 427 FailureOr<scf::SCFReductionTilingResult> 428 mlir::scf::tileReductionUsingScf(RewriterBase &b, 429 PartialReductionOpInterface op, 430 ArrayRef<OpFoldResult> tileSizes) { 431 Location loc = op.getLoc(); 432 // Ops implementing PartialReductionOpInterface are expected to implement 433 // TilingInterface. 434 auto tilingInterfaceOp = cast<TilingInterface>(op.getOperation()); 435 SmallVector<Range> iterationDomain = tilingInterfaceOp.getIterationDomain(b); 436 auto tileSizesVector = llvm::to_vector(tileSizes); 437 if (tileSizesVector.size() < iterationDomain.size()) { 438 auto zero = b.getIndexAttr(0); 439 tileSizesVector.append(iterationDomain.size() - tileSizesVector.size(), 440 zero); 441 } 442 if (op->getNumResults() != 1) 443 return b.notifyMatchFailure( 444 op, "don't support ops with multiple results for now"); 445 SmallVector<utils::IteratorType> iterators = 446 tilingInterfaceOp.getLoopIteratorTypes(); 447 448 SmallVector<int> reductionDims; 449 for (auto [idx, iteratorType] : 450 llvm::enumerate(tilingInterfaceOp.getLoopIteratorTypes())) { 451 if (iteratorType == utils::IteratorType::reduction) 452 reductionDims.push_back(idx); 453 } 454 455 // 2. create the inital tensor value. 456 FailureOr<Operation *> identityTensor = 457 op.generateInitialTensorForPartialReduction(b, loc, tileSizesVector, 458 reductionDims); 459 if (failed(identityTensor)) 460 return b.notifyMatchFailure(op, 461 "cannot create a tensor of identity value."); 462 // 3. Create the nested loops. 463 SmallVector<OpFoldResult> offsets, sizes; 464 SmallVector<scf::ForOp> loops = 465 generateTileLoopNest(b, loc, iterationDomain, tileSizesVector, offsets, 466 sizes, identityTensor.value()->getResults()); 467 468 // 4. Generate the tiled implementation within the inner most loop. 469 // 4a. Clone the operation within the loop body. 470 SmallVector<Value> clonedOpDestination = 471 llvm::map_to_vector(identityTensor.value()->getResults(), 472 [](OpResult res) -> Value { return res; }); 473 if (!loops.empty()) { 474 b.setInsertionPointToEnd(loops.back().getBody()); 475 clonedOpDestination = 476 llvm::map_to_vector(loops.back().getRegionIterArgs(), 477 [](BlockArgument b) -> Value { return b; }); 478 } 479 auto clonedOp = cast<PartialReductionOpInterface>( 480 cloneOpAndUpdateDestinationArgs(b, op, clonedOpDestination)); 481 482 // 4b. Tile the cloned operation. 483 Operation *parallelOp = clonedOp.tileToPartialReduction( 484 b, loc, clonedOpDestination, offsets, sizes, reductionDims); 485 // 4c. Delete the cloned operation. 486 b.eraseOp(clonedOp); 487 488 SmallVector<OpFoldResult> outSizes; 489 for (size_t i = 0; i < offsets.size(); i++) { 490 outSizes.push_back( 491 tensor::getMixedSize(b, loc, parallelOp->getResult(0), i)); 492 } 493 SmallVector<OpFoldResult> outOffsets(offsets.size(), b.getIndexAttr(0)); 494 SmallVector<OpFoldResult> outStrides(outOffsets.size(), b.getIndexAttr(1)); 495 SmallVector<Value> yieldedVals; 496 auto bbArgs = loops.back().getRegionIterArgs(); 497 for (auto [result, bbArg] : llvm::zip(parallelOp->getResults(), bbArgs)) { 498 Value insert = b.create<tensor::InsertSliceOp>( 499 loc, result, bbArg, outOffsets, outSizes, outStrides); 500 yieldedVals.push_back(insert); 501 } 502 b.create<scf::YieldOp>(loc, yieldedVals); 503 504 SmallVector<Value> replacements = llvm::map_to_vector( 505 loops.front().getResults(), [](OpResult r) -> Value { return r; }); 506 507 // 5. Apply the merge reduction to combine all the partial values. 508 b.setInsertionPointAfter(*loops.begin()); 509 Operation *mergeOp = op.mergeReductions(b, loc, replacements, reductionDims); 510 b.replaceOp(op, mergeOp->getResults()); 511 512 SCFReductionTilingResult results; 513 results.initialOp = *identityTensor; 514 results.loops = std::move(loops); 515 results.parallelTiledOp = parallelOp; 516 results.mergeOp = mergeOp; 517 return results; 518 } 519 520 //===----------------------------------------------------------------------===// 521 // tileConsumerAndFuseProducerGreedilyUsingSCFForOp implementation. 522 //===----------------------------------------------------------------------===// 523 524 /// Return the untiled producer whose slice is used in a tiled consumer. The 525 /// method traverses the tile loop nest (`loops`) if needed, and returns the 526 /// `iter_args` of the outer most that is encountered. Traversing the iter_args 527 /// indicates that this is a destination operand of the consumer. If there was 528 /// no loop traversal needed, the second value of the returned tuple is empty. 529 static std::tuple<OpResult, std::optional<OpOperand *>> 530 getUntiledProducerFromSliceSource(OpOperand *source, 531 ArrayRef<scf::ForOp> loops) { 532 std::optional<OpOperand *> destinationIterArg; 533 auto loopIt = loops.rbegin(); 534 while (auto iterArg = dyn_cast<BlockArgument>(source->get())) { 535 scf::ForOp loop = *loopIt; 536 if (iterArg.getOwner()->getParentOp() != loop) 537 break; 538 source = loop.getTiedLoopInit(iterArg); 539 loopIt++; 540 } 541 if (loopIt == loops.rend()) 542 destinationIterArg = source; 543 return {dyn_cast<OpResult>(source->get()), destinationIterArg}; 544 } 545 546 /// Implementation of fusing producer of a single slice by computing the 547 /// slice of the producer in-place. 548 std::optional<scf::SCFFuseProducerOfSliceResult> 549 mlir::scf::tileAndFuseProducerOfSlice(RewriterBase &rewriter, 550 tensor::ExtractSliceOp candidateSliceOp, 551 MutableArrayRef<scf::ForOp> loops) { 552 // 1. Get the producer of the source (potentially walking through 553 // `iter_args` of nested `scf.for`) 554 auto [fusableProducer, destinationInitArg] = 555 getUntiledProducerFromSliceSource(&candidateSliceOp.getSourceMutable(), 556 loops); 557 if (!fusableProducer) 558 return std::nullopt; 559 unsigned resultNumber = fusableProducer.getResultNumber(); 560 561 OpBuilder::InsertionGuard g(rewriter); 562 rewriter.setInsertionPoint(candidateSliceOp); 563 564 // 2. Clone the fused producer 565 // 2a. Compute the destination operands to use for the cloned operation. 566 SmallVector<Value> origDestinationTensors, clonedOpDestinationTensors; 567 Operation *fusableProducerOp = fusableProducer.getOwner(); 568 if (isa<DestinationStyleOpInterface>(fusableProducerOp) && 569 failed(tensor::getOrCreateDestinations( 570 rewriter, fusableProducerOp->getLoc(), fusableProducerOp, 571 origDestinationTensors))) 572 return std::nullopt; 573 574 clonedOpDestinationTensors = origDestinationTensors; 575 if (destinationInitArg && 576 isa<DestinationStyleOpInterface>(fusableProducerOp)) { 577 // 2b. If the producer is also destination style, then to maintain the 578 // destination passing style, update the destination of the producer to be 579 // the source of the slice. 580 clonedOpDestinationTensors[resultNumber] = candidateSliceOp.getSource(); 581 } 582 // 2c. Clone the fused producer. 583 Operation *clonedProducerOp = cloneOpAndUpdateDestinationArgs( 584 rewriter, fusableProducerOp, clonedOpDestinationTensors); 585 // 2d. Update the source of the candidateSlice to be the cloned producer. 586 // Easier to just clone the slice with different source since replacements 587 // and DCE of cloned ops becomes easier 588 SmallVector<Value> candidateSliceOpOperands = 589 llvm::to_vector(candidateSliceOp->getOperands()); 590 candidateSliceOpOperands[0] = clonedProducerOp->getResult(resultNumber); 591 tensor::ExtractSliceOp clonedCandidateSliceOp = 592 mlir::clone(rewriter, candidateSliceOp, 593 candidateSliceOp->getResultTypes(), candidateSliceOpOperands); 594 595 // 3. Generate the tiled implementation of the producer of the source 596 FailureOr<TilingResult> tileAndFuseResult = 597 tensor::replaceExtractSliceWithTiledProducer( 598 rewriter, clonedCandidateSliceOp, 599 clonedProducerOp->getResult(resultNumber)); 600 if (failed(tileAndFuseResult)) 601 return std::nullopt; 602 // Note: Do not delete the candidateSliceOp, since its passed in from the 603 // caller. 604 rewriter.replaceAllUsesWith(candidateSliceOp, 605 tileAndFuseResult->tiledValues[0]); 606 rewriter.eraseOp(clonedCandidateSliceOp); 607 rewriter.eraseOp(clonedProducerOp); 608 609 // 3. If the slice is for a destination operand, for example, 610 // 611 // ```mlir 612 // %0 = linalg.init 613 // %1 = linalg.fill .. outs(%0 : ) 614 // %2 = scf.for .. iter_args(%arg0 = %1) { 615 // %3 = scf.for .. iter_args(%arg1 = %arg0) { 616 // %4 = tensor.extract_slice %arg1 [..] 617 // .. = linalg.matmul .. outs(%4 : ) 618 // } 619 // } 620 // ``` 621 // 622 // the IR is currently 623 // 624 // ``` 625 // %0 = linalg.init 626 // %1 = linalg.fill 627 // %2 = scf.for .. iter_args(%arg0 = %1 /* incorrect value */ ) { 628 // %3 = scf.for .. iter_args(%arg1 = %arg0) { 629 // %4 = tensor.extract_slice %arg1[..] 630 // %5 = linalg.fill .. outs(%4 : ) 631 // .. = linalg.matmul .. outs(%5 : ) 632 // } 633 // } 634 // ``` 635 // 636 // The untiled `linalg.fill` is still used as the `init_value` since it 637 // was originally a destination operand of the untiled `linalg.matmul`. 638 // When fusing an operand that is a destination operand, the iter_arg of 639 // the outer most loop should be changed to use the destination of the 640 // fused operation. With this the IR will be. 641 // 642 // ``` 643 // %0 = linalg.init 644 // %1 = scf.for .. iter_args(%arg0 = %0 /* corrected value */ ) { 645 // %2 = scf.for .. iter_args(%arg1 = %arg0) { 646 // %3 = tensor.extract_slice %arg1[..] 647 // %4 = linalg.fill .. outs(%3 : ) 648 // .. = linalg.matmul .. outs(%4 : ) 649 // } 650 // } 651 // ``` 652 if (destinationInitArg && 653 isa<DestinationStyleOpInterface>(fusableProducerOp) && !loops.empty()) { 654 loops.front() 655 ->getOpOperands()[destinationInitArg.value()->getOperandNumber()] 656 .set(origDestinationTensors[resultNumber]); 657 } 658 return scf::SCFFuseProducerOfSliceResult{fusableProducer, 659 tileAndFuseResult->tiledValues[0], 660 tileAndFuseResult->tiledOps}; 661 } 662 663 /// Reconstruct the fused producer from within the tiled-and-fused code. 664 void mlir::scf::yieldReplacementForFusedProducer( 665 RewriterBase &rewriter, tensor::ExtractSliceOp sliceOp, 666 scf::SCFFuseProducerOfSliceResult fusedProducerInfo, 667 MutableArrayRef<scf::ForOp> loops) { 668 if (loops.empty()) 669 return; 670 671 OpResult fusableProducer = fusedProducerInfo.origProducer; 672 Value tiledAndFusedProducer = fusedProducerInfo.tiledAndFusedProducer; 673 FailureOr<Value> initValue = tensor::getOrCreateDestination( 674 rewriter, fusableProducer.getOwner()->getLoc(), fusableProducer); 675 if (succeeded(initValue)) { 676 677 auto newYieldValuesFn = 678 [&](RewriterBase &innerRewriter, Value iv, 679 ValueRange newRegionIterArgs) -> SmallVector<Value> { 680 OpBuilder::InsertionGuard g(innerRewriter); 681 if (auto tiledDestStyleOp = 682 tiledAndFusedProducer 683 .getDefiningOp<DestinationStyleOpInterface>()) { 684 rewriter.setInsertionPoint(tiledDestStyleOp); 685 BlockArgument newRegionArg = loops.back().getRegionIterArgs().back(); 686 auto destSlice = rewriter.create<tensor::ExtractSliceOp>( 687 sliceOp.getLoc(), newRegionArg, sliceOp.getMixedOffsets(), 688 sliceOp.getMixedSizes(), sliceOp.getMixedStrides()); 689 unsigned resultNumber = fusableProducer.getResultNumber(); 690 rewriter.updateRootInPlace(tiledDestStyleOp, [&]() { 691 tiledDestStyleOp.getDpsInitsMutable()[resultNumber].set(destSlice); 692 }); 693 694 Block *block = rewriter.getInsertionPoint()->getBlock(); 695 rewriter.setInsertionPoint(block->getTerminator()); 696 Value replacement = rewriter.create<tensor::InsertSliceOp>( 697 fusedProducerInfo.origProducer.getLoc(), 698 fusedProducerInfo.tiledAndFusedProducer, 699 loops.back().getRegionIterArgs().back(), sliceOp.getMixedOffsets(), 700 sliceOp.getMixedSizes(), sliceOp.getMixedStrides()); 701 return {replacement}; 702 } 703 }; 704 705 addInitOperandsToLoopNest(rewriter, loops, 706 SmallVector<Value>{initValue.value()}, 707 newYieldValuesFn); 708 } 709 } 710 711 /// Implementation of tile consumer and fuse producer greedily. 712 FailureOr<scf::SCFTileAndFuseResult> 713 mlir::scf::tileConsumerAndFuseProducerGreedilyUsingSCFForOp( 714 RewriterBase &rewriter, TilingInterface consumer, 715 const scf::SCFTileAndFuseOptions &options) { 716 // This transformation is only valid for ops that return values (i.e. not 717 // valid to use with operations that have memref operands). 718 if (!consumer->getNumResults()) { 719 return rewriter.notifyMatchFailure( 720 consumer, "invalid pattern for op with no results"); 721 } 722 723 // 1. First tile the consumer. 724 SmallVector<scf::ForOp> forLoops; 725 SetVector<Operation *> fusedProducers, tiledAndFusedOps; 726 DenseMap<Value, Value> replacements; 727 llvm::SmallDenseMap<Value, int64_t> yieldedValueToResultNumber; 728 { 729 FailureOr<scf::SCFTilingResult> tilingResult = 730 tileUsingSCFForOp(rewriter, consumer, options.tilingOptions); 731 if (failed(tilingResult)) 732 return rewriter.notifyMatchFailure(consumer, "failed to tile consumer"); 733 for (auto *tiledOp : tilingResult->tiledOps) 734 tiledAndFusedOps.insert(tiledOp); 735 forLoops = castToTypedOperations<scf::ForOp>(tilingResult->loops); 736 for (auto [index, origValue, replacement] : 737 llvm::enumerate(consumer->getResults(), tilingResult->replacements)) { 738 replacements[origValue] = replacement; 739 yieldedValueToResultNumber[tilingResult->tiledOps.back()->getResult( 740 index)] = index; 741 } 742 } 743 744 // If there are no loops generated, fusion is immaterial. 745 if (forLoops.empty()) { 746 return scf::SCFTileAndFuseResult{fusedProducers, tiledAndFusedOps, 747 getAsOperations(forLoops), replacements}; 748 } 749 750 // 2. Typically, the operands of the tiled operation are slices of the 751 // operands of the untiled operation. These are expressed in IR using 752 // `tensor.extract_slice` operations with source being the operands of the 753 // untiled operation. Create a worklist of these `tensor.extract_slice` 754 // operations. If the producers of the source of the `tensor.extract_slice` 755 // can be tiled such that the tiled value is generated in-place, that 756 // effectively tiles + fuses the operations. 757 auto addCandidateSlices = [](Operation *fusedOp, 758 std::deque<tensor::ExtractSliceOp> &candidates) { 759 for (Value operand : fusedOp->getOperands()) 760 if (auto sliceOp = operand.getDefiningOp<tensor::ExtractSliceOp>()) 761 candidates.push_back(sliceOp); 762 }; 763 764 std::deque<tensor::ExtractSliceOp> candidates; 765 addCandidateSlices(tiledAndFusedOps.back(), candidates); 766 OpBuilder::InsertionGuard g(rewriter); 767 while (!candidates.empty()) { 768 // Traverse the slices in BFS fashion. 769 tensor::ExtractSliceOp candidateSliceOp = candidates.front(); 770 candidates.pop_front(); 771 772 // The operands of the fused producer might themselved be slices of 773 // values produced by operations that implement the `TilingInterface`. 774 // Add these operations to the worklist. 775 std::optional<scf::SCFFuseProducerOfSliceResult> fusedResult = 776 tileAndFuseProducerOfSlice(rewriter, candidateSliceOp, forLoops); 777 if (!fusedResult) 778 continue; 779 780 if (Operation *tiledAndFusedOp = 781 fusedResult->tiledAndFusedProducer.getDefiningOp()) { 782 fusedProducers.insert(fusedResult->origProducer.getDefiningOp()); 783 tiledAndFusedOps.insert(tiledAndFusedOp); 784 addCandidateSlices(tiledAndFusedOp, candidates); 785 } 786 } 787 return scf::SCFTileAndFuseResult{fusedProducers, tiledAndFusedOps, 788 getAsOperations(forLoops), replacements}; 789 } 790 791 //===----------------------------------------------------------------------===// 792 // tileUsingSCFForAllOp implementation. 793 //===----------------------------------------------------------------------===// 794 795 FailureOr<scf::SCFTilingResult> 796 mlir::scf::tileUsingSCFForallOp(RewriterBase &rewriter, TilingInterface op, 797 const scf::SCFTilingOptions &options) { 798 Location loc = op->getLoc(); 799 OpBuilder::InsertionGuard g(rewriter); 800 801 // 1. Get the range of loops that are represented by the operation. 802 SmallVector<Range> loopRanges = op.getIterationDomain(rewriter); 803 if (loopRanges.empty()) 804 return op->emitOpError("expected non-empty loop ranges"); 805 auto hasStrideOne = [](Range r) { return !isConstantIntValue(r.stride, 1); }; 806 if (llvm::any_of(loopRanges, hasStrideOne)) 807 return op->emitOpError("only stride-1 supported atm"); 808 809 // 2. Get the tile sizes. If tile size is 0, it is not tiled and distributed. 810 // To make it easier, pad the tile sizes to loopRanges.size with value 0. 811 SmallVector<OpFoldResult> tileSizeVector = 812 options.tileSizeComputationFunction(rewriter, op); 813 tileSizeVector.resize(loopRanges.size(), rewriter.getIndexAttr(0)); 814 815 // 3. Build the offsets, sizes and steps for the tile and distributed loops. 816 SmallVector<OpFoldResult> lbs, ubs, steps; 817 for (auto [tileSize, loopRange] : llvm::zip(tileSizeVector, loopRanges)) { 818 if (isConstantIntValue(tileSize, 0)) 819 continue; 820 lbs.push_back(loopRange.offset); 821 ubs.push_back(loopRange.size); 822 steps.push_back(tileSize); 823 } 824 825 // 4. Gather destination tensors. 826 SmallVector<Value> dest; 827 if (failed(tensor::getOrCreateDestinations(rewriter, loc, op, dest))) 828 return op->emitOpError("failed to get destination tensors"); 829 830 // 5. Build the device mapping attribute. 831 std::optional<ArrayAttr> mappingAttr; 832 if (!options.mappingVector.empty()) { 833 mappingAttr = rewriter.getArrayAttr(ArrayRef(options.mappingVector)); 834 } 835 836 // 6. Create the ForallOp. We don't use the lambda body-builder 837 // version because we require the use of RewriterBase in the body, so we 838 // manually move the insertion point to the body below. 839 auto forallOp = 840 rewriter.create<scf::ForallOp>(loc, lbs, ubs, steps, dest, mappingAttr); 841 842 // 7. Get the tile offset and sizes. 843 rewriter.setInsertionPoint(forallOp.getTerminator()); 844 SmallVector<OpFoldResult> tiledOffsets, tiledSizes; 845 ValueRange ivs = forallOp.getInductionVars(); 846 { 847 int materializedLoopNum = 0; 848 for (auto [tileSize, loopRange] : llvm::zip(tileSizeVector, loopRanges)) { 849 if (isConstantIntValue(tileSize, 0)) { 850 tiledOffsets.push_back(loopRange.offset); 851 tiledSizes.push_back(loopRange.size); 852 continue; 853 } 854 Value iv = ivs[materializedLoopNum++]; 855 tiledOffsets.push_back(iv); 856 tiledSizes.push_back( 857 getBoundedTileSize(rewriter, loc, loopRange, iv, tileSize)); 858 } 859 } 860 861 // 8. Tile the operation. Clone the operation to allow fix up of destination 862 // operands. 863 ArrayRef<BlockArgument> destBbArgs = forallOp.getOutputBlockArguments(); 864 Operation *clonedOp = 865 cloneOpAndUpdateDestinationArgs(rewriter, op, destBbArgs); 866 FailureOr<TilingResult> tilingResult = 867 cast<TilingInterface>(clonedOp).getTiledImplementation( 868 rewriter, tiledOffsets, tiledSizes); 869 if (failed(tilingResult)) 870 return clonedOp->emitError("failed to tile op: "); 871 rewriter.eraseOp(clonedOp); 872 873 // 9. Parallel insert back into the result tensor. 874 for (auto [index, tiledValue, destBBArg] : 875 llvm::enumerate(tilingResult->tiledValues, destBbArgs)) { 876 // 9.a. Partial subset information is inserted just before the terminator. 877 rewriter.setInsertionPoint(forallOp.getTerminator()); 878 879 SmallVector<OpFoldResult> resultOffsets, resultSizes; 880 if (failed(op.getResultTilePosition(rewriter, index, tiledOffsets, 881 tiledSizes, resultOffsets, 882 resultSizes))) { 883 return op->emitOpError("output offsets couldn't be calculated"); 884 } 885 886 SmallVector<OpFoldResult> strides(resultSizes.size(), 887 rewriter.getIndexAttr(1)); 888 // 9.b. Parallel insertions are inserted at the end of the combining 889 // terminator. 890 rewriter.setInsertionPointToEnd(forallOp.getTerminator().getBody()); 891 rewriter.create<tensor::ParallelInsertSliceOp>( 892 loc, tiledValue, destBBArg, resultOffsets, resultSizes, strides); 893 } 894 895 // 10. Return the tiling result. 896 return scf::SCFTilingResult{ 897 tilingResult->tiledOps, 898 {forallOp.getOperation()}, 899 llvm::map_to_vector(forallOp.getResults(), 900 [](auto val) -> Value { return val; })}; 901 } 902 903 //===----------------------------------------------------------------------===// 904 // lowerToLoopsUsingSCFForOp implementation. 905 //===----------------------------------------------------------------------===// 906 907 FailureOr<SmallVector<scf::ForOp>> 908 mlir::scf::lowerToLoopsUsingSCFForOp(RewriterBase &rewriter, 909 TilingInterface op) { 910 // TODO: Handle cases where the op has results if needed. 911 if (op->getNumResults() > 0) { 912 return rewriter.notifyMatchFailure( 913 op, "unable to lower to loops operations with return values"); 914 } 915 916 SmallVector<Range> domain = op.getIterationDomain(rewriter); 917 SmallVector<Value> ivs; 918 SmallVector<scf::ForOp> loops; 919 Location loc = op.getLoc(); 920 for (auto loopRange : domain) { 921 Value offsetVal = 922 getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.offset); 923 Value sizeVal = 924 getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.size); 925 Value strideVal = 926 getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.stride); 927 auto loop = rewriter.create<scf::ForOp>(op.getLoc(), offsetVal, sizeVal, 928 strideVal, ValueRange{}); 929 loops.push_back(loop); 930 ivs.push_back(loop.getInductionVar()); 931 rewriter.setInsertionPoint(loop.getBody()->getTerminator()); 932 } 933 if (failed(op.generateScalarImplementation(rewriter, op.getLoc(), ivs))) { 934 return failure(); 935 } 936 return loops; 937 } 938