xref: /llvm-project/mlir/lib/Dialect/Math/Transforms/ExpandPatterns.cpp (revision f66e4bd67adf0b0aaecd94154c38f02253bf7190)
1 //===- ExpandTanh.cpp - Code to perform expanding tanh op -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements expansion of tanh op.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/Arith/IR/Arith.h"
14 #include "mlir/Dialect/Math/IR/Math.h"
15 #include "mlir/Dialect/Math/Transforms/Passes.h"
16 #include "mlir/Dialect/SCF/IR/SCF.h"
17 #include "mlir/Dialect/Vector/IR/VectorOps.h"
18 #include "mlir/IR/Builders.h"
19 #include "mlir/IR/ImplicitLocOpBuilder.h"
20 #include "mlir/IR/TypeUtilities.h"
21 #include "mlir/Transforms/DialectConversion.h"
22 
23 using namespace mlir;
24 
25 /// Create a float constant.
26 static Value createFloatConst(Location loc, Type type, double value,
27                               OpBuilder &b) {
28   auto attr = b.getFloatAttr(getElementTypeOrSelf(type), value);
29   if (auto shapedTy = dyn_cast<ShapedType>(type)) {
30     return b.create<arith::ConstantOp>(loc,
31                                        DenseElementsAttr::get(shapedTy, attr));
32   }
33 
34   return b.create<arith::ConstantOp>(loc, attr);
35 }
36 
37 /// Create a float constant.
38 static Value createIntConst(Location loc, Type type, int64_t value,
39                             OpBuilder &b) {
40   auto attr = b.getIntegerAttr(getElementTypeOrSelf(type), value);
41   if (auto shapedTy = dyn_cast<ShapedType>(type)) {
42     return b.create<arith::ConstantOp>(loc,
43                                        DenseElementsAttr::get(shapedTy, attr));
44   }
45 
46   return b.create<arith::ConstantOp>(loc, attr);
47 }
48 
49 static Value createTruncatedFPValue(Value operand, ImplicitLocOpBuilder &b) {
50   Type opType = operand.getType();
51   Type i64Ty = b.getI64Type();
52   if (auto shapedTy = dyn_cast<ShapedType>(opType))
53     i64Ty = shapedTy.clone(i64Ty);
54   Value fixedConvert = b.create<arith::FPToSIOp>(i64Ty, operand);
55   Value fpFixedConvert = b.create<arith::SIToFPOp>(opType, fixedConvert);
56   // The truncation does not preserve the sign when the truncated
57   // value is -0. So here the sign is copied again.
58   return b.create<math::CopySignOp>(fpFixedConvert, operand);
59 }
60 
61 /// Expands tanh op into
62 ///   1) 1-exp^{-2x} / 1+exp^{-2x}, if x => 0
63 ///   2) exp^{2x}-1 / exp^{2x}+1  , if x < 0
64 static LogicalResult convertTanhOp(math::TanhOp op, PatternRewriter &rewriter) {
65   auto floatType = op.getOperand().getType();
66   Location loc = op.getLoc();
67   Value one = createFloatConst(loc, floatType, 1.0, rewriter);
68   Value two = createFloatConst(loc, floatType, 2.0, rewriter);
69   Value doubledX = rewriter.create<arith::MulFOp>(loc, op.getOperand(), two);
70 
71   // Case 1: tanh(x) = 1-exp^{-2x} / 1+exp^{-2x}
72   Value negDoubledX = rewriter.create<arith::NegFOp>(loc, doubledX);
73   Value exp2x = rewriter.create<math::ExpOp>(loc, negDoubledX);
74   Value dividend = rewriter.create<arith::SubFOp>(loc, one, exp2x);
75   Value divisor = rewriter.create<arith::AddFOp>(loc, one, exp2x);
76   Value positiveRes = rewriter.create<arith::DivFOp>(loc, dividend, divisor);
77 
78   // Case 2: tanh(x) = exp^{2x}-1 / exp^{2x}+1
79   exp2x = rewriter.create<math::ExpOp>(loc, doubledX);
80   dividend = rewriter.create<arith::SubFOp>(loc, exp2x, one);
81   divisor = rewriter.create<arith::AddFOp>(loc, exp2x, one);
82   Value negativeRes = rewriter.create<arith::DivFOp>(loc, dividend, divisor);
83 
84   // tanh(x) = x >= 0 ? positiveRes : negativeRes
85   Value zero = createFloatConst(loc, floatType, 0.0, rewriter);
86   Value cmpRes = rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::OGE,
87                                                 op.getOperand(), zero);
88   rewriter.replaceOpWithNewOp<arith::SelectOp>(op, cmpRes, positiveRes,
89                                                negativeRes);
90   return success();
91 }
92 
93 // Converts math.tan to math.sin, math.cos, and arith.divf.
94 static LogicalResult convertTanOp(math::TanOp op, PatternRewriter &rewriter) {
95   ImplicitLocOpBuilder b(op->getLoc(), rewriter);
96   Value operand = op.getOperand();
97   Type type = operand.getType();
98   Value sin = b.create<math::SinOp>(type, operand);
99   Value cos = b.create<math::CosOp>(type, operand);
100   Value div = b.create<arith::DivFOp>(type, sin, cos);
101   rewriter.replaceOp(op, div);
102   return success();
103 }
104 
105 static LogicalResult convertFmaFOp(math::FmaOp op, PatternRewriter &rewriter) {
106   ImplicitLocOpBuilder b(op->getLoc(), rewriter);
107   Value operandA = op.getOperand(0);
108   Value operandB = op.getOperand(1);
109   Value operandC = op.getOperand(2);
110   Type type = op.getType();
111   Value mult = b.create<arith::MulFOp>(type, operandA, operandB);
112   Value add = b.create<arith::AddFOp>(type, mult, operandC);
113   rewriter.replaceOp(op, add);
114   return success();
115 }
116 
117 // Converts a floorf() function to the following:
118 // floorf(float x) ->
119 //     y = (float)(int) x
120 //     if (x < 0) then incr = -1 else incr = 0
121 //     y = y + incr    <= replace this op with the floorf op.
122 static LogicalResult convertFloorOp(math::FloorOp op,
123                                     PatternRewriter &rewriter) {
124   ImplicitLocOpBuilder b(op->getLoc(), rewriter);
125   Value operand = op.getOperand();
126   Type opType = operand.getType();
127   Value fpFixedConvert = createTruncatedFPValue(operand, b);
128 
129   // Creating constants for later use.
130   Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter);
131   Value negOne = createFloatConst(op->getLoc(), opType, -1.00, rewriter);
132 
133   Value negCheck =
134       b.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operand, zero);
135   Value incrValue =
136       b.create<arith::SelectOp>(op->getLoc(), negCheck, negOne, zero);
137   Value ret = b.create<arith::AddFOp>(opType, fpFixedConvert, incrValue);
138   rewriter.replaceOp(op, ret);
139   return success();
140 }
141 
142 // Converts a ceilf() function to the following:
143 // ceilf(float x) ->
144 //      y = (float)(int) x
145 //      if (x > y) then incr = 1 else incr = 0
146 //      y = y + incr   <= replace this op with the ceilf op.
147 static LogicalResult convertCeilOp(math::CeilOp op, PatternRewriter &rewriter) {
148   ImplicitLocOpBuilder b(op->getLoc(), rewriter);
149   Value operand = op.getOperand();
150   Type opType = operand.getType();
151   Value fpFixedConvert = createTruncatedFPValue(operand, b);
152 
153   // Creating constants for later use.
154   Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter);
155   Value one = createFloatConst(op->getLoc(), opType, 1.00, rewriter);
156 
157   Value gtCheck = b.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, operand,
158                                           fpFixedConvert);
159   Value incrValue = b.create<arith::SelectOp>(op->getLoc(), gtCheck, one, zero);
160 
161   Value ret = b.create<arith::AddFOp>(opType, fpFixedConvert, incrValue);
162   rewriter.replaceOp(op, ret);
163   return success();
164 }
165 // Converts  Powf(float a, float b) (meaning a^b) to exp^(b * ln(a))
166 static LogicalResult convertPowfOp(math::PowFOp op, PatternRewriter &rewriter) {
167   ImplicitLocOpBuilder b(op->getLoc(), rewriter);
168   Value operandA = op.getOperand(0);
169   Value operandB = op.getOperand(1);
170   Type opType = operandA.getType();
171   Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter);
172   Value two = createFloatConst(op->getLoc(), opType, 2.00, rewriter);
173   Value negOne = createFloatConst(op->getLoc(), opType, -1.00, rewriter);
174   Value opASquared = b.create<arith::MulFOp>(opType, operandA, operandA);
175   Value opBHalf = b.create<arith::DivFOp>(opType, operandB, two);
176 
177   Value logA = b.create<math::LogOp>(opType, opASquared);
178   Value mult = b.create<arith::MulFOp>(opType, opBHalf, logA);
179   Value expResult = b.create<math::ExpOp>(opType, mult);
180   Value negExpResult = b.create<arith::MulFOp>(opType, expResult, negOne);
181   Value remainder = b.create<arith::RemFOp>(opType, operandB, two);
182   Value negCheck =
183       b.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operandA, zero);
184   Value oddPower =
185       b.create<arith::CmpFOp>(arith::CmpFPredicate::ONE, remainder, zero);
186   Value oddAndNeg = b.create<arith::AndIOp>(op->getLoc(), oddPower, negCheck);
187 
188   Value res = b.create<arith::SelectOp>(op->getLoc(), oddAndNeg, negExpResult,
189                                         expResult);
190   rewriter.replaceOp(op, res);
191   return success();
192 }
193 
194 // exp2f(float x) -> exp(x * ln(2))
195 //   Proof: Let's say 2^x = y
196 //   ln(2^x) = ln(y)
197 //   x * ln(2) = ln(y) => e ^(x*ln(2)) = y
198 static LogicalResult convertExp2fOp(math::Exp2Op op,
199                                     PatternRewriter &rewriter) {
200   ImplicitLocOpBuilder b(op->getLoc(), rewriter);
201   Value operand = op.getOperand();
202   Type opType = operand.getType();
203   Value ln2 = createFloatConst(op->getLoc(), opType, llvm::numbers::ln2, b);
204   Value mult = b.create<arith::MulFOp>(opType, operand, ln2);
205   Value exp = b.create<math::ExpOp>(op->getLoc(), mult);
206   rewriter.replaceOp(op, exp);
207   return success();
208 }
209 
210 static LogicalResult convertRoundOp(math::RoundOp op,
211                                     PatternRewriter &rewriter) {
212   Location loc = op.getLoc();
213   ImplicitLocOpBuilder b(loc, rewriter);
214   Value operand = op.getOperand();
215   Type opType = operand.getType();
216   Type opEType = getElementTypeOrSelf(opType);
217 
218   if (!opEType.isF32()) {
219     return rewriter.notifyMatchFailure(op, "not a round of f32.");
220   }
221 
222   Type i32Ty = b.getI32Type();
223   if (auto shapedTy = dyn_cast<ShapedType>(opType))
224     i32Ty = shapedTy.clone(i32Ty);
225 
226   Value half = createFloatConst(loc, opType, 0.5, b);
227   Value c23 = createIntConst(loc, i32Ty, 23, b);
228   Value c127 = createIntConst(loc, i32Ty, 127, b);
229   Value expMask = createIntConst(loc, i32Ty, (1 << 8) - 1, b);
230 
231   Value incrValue = b.create<math::CopySignOp>(half, operand);
232   Value add = b.create<arith::AddFOp>(opType, operand, incrValue);
233   Value fpFixedConvert = createTruncatedFPValue(add, b);
234 
235   // There are three cases where adding 0.5 to the value and truncating by
236   // converting to an i64 does not result in the correct behavior:
237   //
238   // 1. Special values: +-inf and +-nan
239   //     Casting these special values to i64 has undefined behavior. To identify
240   //     these values, we use the fact that these values are the only float
241   //     values with the maximum possible biased exponent.
242   //
243   // 2. Large values: 2^23 <= |x| <= INT_64_MAX
244   //     Adding 0.5 to a float larger than or equal to 2^23 results in precision
245   //     errors that sometimes round the value up and sometimes round the value
246   //     down. For example:
247   //         8388608.0 + 0.5 = 8388608.0
248   //         8388609.0 + 0.5 = 8388610.0
249   //
250   // 3. Very large values: |x| > INT_64_MAX
251   //     Casting to i64 a value greater than the max i64 value will overflow the
252   //     i64 leading to wrong outputs.
253   //
254   // All three cases satisfy the property `biasedExp >= 23`.
255   Value operandBitcast = b.create<arith::BitcastOp>(i32Ty, operand);
256   Value operandExp = b.create<arith::AndIOp>(
257       b.create<arith::ShRUIOp>(operandBitcast, c23), expMask);
258   Value operandBiasedExp = b.create<arith::SubIOp>(operandExp, c127);
259   Value isSpecialValOrLargeVal =
260       b.create<arith::CmpIOp>(arith::CmpIPredicate::sge, operandBiasedExp, c23);
261 
262   Value result = b.create<arith::SelectOp>(isSpecialValOrLargeVal, operand,
263                                            fpFixedConvert);
264   rewriter.replaceOp(op, result);
265   return success();
266 }
267 
268 // Converts math.ctlz to scf and arith operations. This is done
269 // by performing a binary search on the bits.
270 static LogicalResult convertCtlzOp(math::CountLeadingZerosOp op,
271                                    PatternRewriter &rewriter) {
272   auto operand = op.getOperand();
273   auto operandTy = operand.getType();
274   auto eTy = getElementTypeOrSelf(operandTy);
275   Location loc = op.getLoc();
276 
277   int32_t bitwidth = eTy.getIntOrFloatBitWidth();
278   if (bitwidth > 64)
279     return failure();
280 
281   uint64_t allbits = -1;
282   if (bitwidth < 64) {
283     allbits = allbits >> (64 - bitwidth);
284   }
285 
286   Value x = operand;
287   Value count = createIntConst(loc, operandTy, 0, rewriter);
288   for (int32_t bw = bitwidth; bw > 1; bw = bw / 2) {
289     auto half = bw / 2;
290     auto bits = createIntConst(loc, operandTy, half, rewriter);
291     auto mask = createIntConst(loc, operandTy, allbits >> half, rewriter);
292 
293     Value pred =
294         rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ule, x, mask);
295     Value add = rewriter.create<arith::AddIOp>(loc, count, bits);
296     Value shift = rewriter.create<arith::ShLIOp>(loc, x, bits);
297 
298     x = rewriter.create<arith::SelectOp>(loc, pred, shift, x);
299     count = rewriter.create<arith::SelectOp>(loc, pred, add, count);
300   }
301 
302   Value zero = createIntConst(loc, operandTy, 0, rewriter);
303   Value pred = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
304                                               operand, zero);
305 
306   Value bwval = createIntConst(loc, operandTy, bitwidth, rewriter);
307   Value sel = rewriter.create<arith::SelectOp>(loc, pred, bwval, count);
308   rewriter.replaceOp(op, sel);
309   return success();
310 }
311 
312 // Convert `math.roundeven` into `math.round` + arith ops
313 static LogicalResult convertRoundEvenOp(math::RoundEvenOp op,
314                                         PatternRewriter &rewriter) {
315   Location loc = op.getLoc();
316   ImplicitLocOpBuilder b(loc, rewriter);
317   auto operand = op.getOperand();
318   Type operandTy = operand.getType();
319   Type resultTy = op.getType();
320   Type operandETy = getElementTypeOrSelf(operandTy);
321   Type resultETy = getElementTypeOrSelf(resultTy);
322 
323   if (!isa<FloatType>(operandETy) || !isa<FloatType>(resultETy)) {
324     return rewriter.notifyMatchFailure(op, "not a roundeven of f16 or f32.");
325   }
326 
327   Type fTy = operandTy;
328   Type iTy = rewriter.getIntegerType(operandETy.getIntOrFloatBitWidth());
329   if (auto shapedTy = dyn_cast<ShapedType>(fTy)) {
330     iTy = shapedTy.clone(iTy);
331   }
332 
333   unsigned bitWidth = operandETy.getIntOrFloatBitWidth();
334   // The width returned by getFPMantissaWidth includes the integer bit.
335   unsigned mantissaWidth =
336       llvm::cast<FloatType>(operandETy).getFPMantissaWidth() - 1;
337   unsigned exponentWidth = bitWidth - mantissaWidth - 1;
338 
339   // The names of the variables correspond to f32.
340   // f64: 1 bit sign | 11 bits exponent | 52 bits mantissa.
341   // f32: 1 bit sign | 8 bits exponent  | 23 bits mantissa.
342   // f16: 1 bit sign | 5 bits exponent  | 10 bits mantissa.
343   Value c1Float = createFloatConst(loc, fTy, 1.0, b);
344   Value c0 = createIntConst(loc, iTy, 0, b);
345   Value c1 = createIntConst(loc, iTy, 1, b);
346   Value cNeg1 = createIntConst(loc, iTy, -1, b);
347   Value c23 = createIntConst(loc, iTy, mantissaWidth, b);
348   Value c31 = createIntConst(loc, iTy, bitWidth - 1, b);
349   Value c127 = createIntConst(loc, iTy, (1ull << (exponentWidth - 1)) - 1, b);
350   Value c2To22 = createIntConst(loc, iTy, 1ull << (mantissaWidth - 1), b);
351   Value c23Mask = createIntConst(loc, iTy, (1ull << mantissaWidth) - 1, b);
352   Value expMask = createIntConst(loc, iTy, (1ull << exponentWidth) - 1, b);
353 
354   Value operandBitcast = b.create<arith::BitcastOp>(iTy, operand);
355   Value round = b.create<math::RoundOp>(operand);
356   Value roundBitcast = b.create<arith::BitcastOp>(iTy, round);
357 
358   // Get biased exponents for operand and round(operand)
359   Value operandExp = b.create<arith::AndIOp>(
360       b.create<arith::ShRUIOp>(operandBitcast, c23), expMask);
361   Value operandBiasedExp = b.create<arith::SubIOp>(operandExp, c127);
362   Value roundExp = b.create<arith::AndIOp>(
363       b.create<arith::ShRUIOp>(roundBitcast, c23), expMask);
364   Value roundBiasedExp = b.create<arith::SubIOp>(roundExp, c127);
365 
366   auto safeShiftRight = [&](Value x, Value shift) -> Value {
367     // Clamp shift to valid range [0, bitwidth - 1] to avoid undefined behavior
368     Value clampedShift = b.create<arith::MaxSIOp>(shift, c0);
369     clampedShift = b.create<arith::MinSIOp>(clampedShift, c31);
370     return b.create<arith::ShRUIOp>(x, clampedShift);
371   };
372 
373   auto maskMantissa = [&](Value mantissa,
374                           Value mantissaMaskRightShift) -> Value {
375     Value shiftedMantissaMask = safeShiftRight(c23Mask, mantissaMaskRightShift);
376     return b.create<arith::AndIOp>(mantissa, shiftedMantissaMask);
377   };
378 
379   // A whole number `x`, such that `|x| != 1`, is even if the mantissa, ignoring
380   // the leftmost `clamp(biasedExp - 1, 0, 23)` bits, is zero. Large numbers
381   // with `biasedExp > 23` (numbers where there is not enough precision to store
382   // decimals) are always even, and they satisfy the even condition trivially
383   // since the mantissa without all its bits is zero. The even condition
384   // is also true for +-0, since they have `biasedExp = -127` and the entire
385   // mantissa is zero. The case of +-1 has to be handled separately. Here
386   // we identify these values by noting that +-1 are the only whole numbers with
387   // `biasedExp == 0`.
388   //
389   // The special values +-inf and +-nan also satisfy the same property that
390   // whole non-unit even numbers satisfy. In particular, the special values have
391   // `biasedExp > 23`, so they get treated as large numbers with no room for
392   // decimals, which are always even.
393   Value roundBiasedExpEq0 =
394       b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, roundBiasedExp, c0);
395   Value roundBiasedExpMinus1 = b.create<arith::SubIOp>(roundBiasedExp, c1);
396   Value roundMaskedMantissa = maskMantissa(roundBitcast, roundBiasedExpMinus1);
397   Value roundIsNotEvenOrSpecialVal = b.create<arith::CmpIOp>(
398       arith::CmpIPredicate::ne, roundMaskedMantissa, c0);
399   roundIsNotEvenOrSpecialVal =
400       b.create<arith::OrIOp>(roundIsNotEvenOrSpecialVal, roundBiasedExpEq0);
401 
402   // A value `x` with `0 <= biasedExp < 23`, is halfway between two consecutive
403   // integers if the bit at index `biasedExp` starting from the left in the
404   // mantissa is 1 and all the bits to the right are zero. Values with
405   // `biasedExp >= 23` don't have decimals, so they are never halfway. The
406   // values +-0.5 are the only halfway values that have `biasedExp == -1 < 0`,
407   // so these are handled separately. In particular, if `biasedExp == -1`, the
408   // value is halfway if the entire mantissa is zero.
409   Value operandBiasedExpEqNeg1 = b.create<arith::CmpIOp>(
410       arith::CmpIPredicate::eq, operandBiasedExp, cNeg1);
411   Value expectedOperandMaskedMantissa = b.create<arith::SelectOp>(
412       operandBiasedExpEqNeg1, c0, safeShiftRight(c2To22, operandBiasedExp));
413   Value operandMaskedMantissa = maskMantissa(operandBitcast, operandBiasedExp);
414   Value operandIsHalfway =
415       b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, operandMaskedMantissa,
416                               expectedOperandMaskedMantissa);
417   // Ensure `biasedExp` is in the valid range for half values.
418   Value operandBiasedExpGeNeg1 = b.create<arith::CmpIOp>(
419       arith::CmpIPredicate::sge, operandBiasedExp, cNeg1);
420   Value operandBiasedExpLt23 =
421       b.create<arith::CmpIOp>(arith::CmpIPredicate::slt, operandBiasedExp, c23);
422   operandIsHalfway =
423       b.create<arith::AndIOp>(operandIsHalfway, operandBiasedExpLt23);
424   operandIsHalfway =
425       b.create<arith::AndIOp>(operandIsHalfway, operandBiasedExpGeNeg1);
426 
427   // Adjust rounded operand with `round(operand) - sign(operand)` to correct the
428   // case where `round` rounded in the opposite direction of `roundeven`.
429   Value sign = b.create<math::CopySignOp>(c1Float, operand);
430   Value roundShifted = b.create<arith::SubFOp>(round, sign);
431   // If the rounded value is even or a special value, we default to the behavior
432   // of `math.round`.
433   Value needsShift =
434       b.create<arith::AndIOp>(roundIsNotEvenOrSpecialVal, operandIsHalfway);
435   Value result = b.create<arith::SelectOp>(needsShift, roundShifted, round);
436   // The `x - sign` adjustment does not preserve the sign when we are adjusting
437   // the value -1 to -0. So here the sign is copied again to ensure that -0.5 is
438   // rounded to -0.0.
439   result = b.create<math::CopySignOp>(result, operand);
440   rewriter.replaceOp(op, result);
441   return success();
442 }
443 
444 void mlir::populateExpandCtlzPattern(RewritePatternSet &patterns) {
445   patterns.add(convertCtlzOp);
446 }
447 
448 void mlir::populateExpandTanPattern(RewritePatternSet &patterns) {
449   patterns.add(convertTanOp);
450 }
451 
452 void mlir::populateExpandTanhPattern(RewritePatternSet &patterns) {
453   patterns.add(convertTanhOp);
454 }
455 
456 void mlir::populateExpandFmaFPattern(RewritePatternSet &patterns) {
457   patterns.add(convertFmaFOp);
458 }
459 
460 void mlir::populateExpandCeilFPattern(RewritePatternSet &patterns) {
461   patterns.add(convertCeilOp);
462 }
463 
464 void mlir::populateExpandExp2FPattern(RewritePatternSet &patterns) {
465   patterns.add(convertExp2fOp);
466 }
467 
468 void mlir::populateExpandPowFPattern(RewritePatternSet &patterns) {
469   patterns.add(convertPowfOp);
470 }
471 
472 void mlir::populateExpandRoundFPattern(RewritePatternSet &patterns) {
473   patterns.add(convertRoundOp);
474 }
475 
476 void mlir::populateExpandFloorFPattern(RewritePatternSet &patterns) {
477   patterns.add(convertFloorOp);
478 }
479 
480 void mlir::populateExpandRoundEvenPattern(RewritePatternSet &patterns) {
481   patterns.add(convertRoundEvenOp);
482 }
483