1 //===- ExpandPatterns.cpp - Code to expand various math operations. -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements expansion of various math operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Arith/IR/Arith.h" 14 #include "mlir/Dialect/Math/IR/Math.h" 15 #include "mlir/Dialect/Math/Transforms/Passes.h" 16 #include "mlir/Dialect/SCF/IR/SCF.h" 17 #include "mlir/Dialect/Vector/IR/VectorOps.h" 18 #include "mlir/IR/Builders.h" 19 #include "mlir/IR/ImplicitLocOpBuilder.h" 20 #include "mlir/IR/TypeUtilities.h" 21 #include "mlir/Transforms/DialectConversion.h" 22 23 using namespace mlir; 24 25 /// Create a float constant. 26 static Value createFloatConst(Location loc, Type type, APFloat value, 27 OpBuilder &b) { 28 bool losesInfo = false; 29 auto eltType = getElementTypeOrSelf(type); 30 // Convert double to the given `FloatType` with round-to-nearest-ties-to-even. 31 value.convert(cast<FloatType>(eltType).getFloatSemantics(), 32 APFloat::rmNearestTiesToEven, &losesInfo); 33 auto attr = b.getFloatAttr(eltType, value); 34 if (auto shapedTy = dyn_cast<ShapedType>(type)) { 35 return b.create<arith::ConstantOp>(loc, 36 DenseElementsAttr::get(shapedTy, attr)); 37 } 38 39 return b.create<arith::ConstantOp>(loc, attr); 40 } 41 42 static Value createFloatConst(Location loc, Type type, double value, 43 OpBuilder &b) { 44 return createFloatConst(loc, type, APFloat(value), b); 45 } 46 47 /// Create an integer constant. 48 static Value createIntConst(Location loc, Type type, int64_t value, 49 OpBuilder &b) { 50 auto attr = b.getIntegerAttr(getElementTypeOrSelf(type), value); 51 if (auto shapedTy = dyn_cast<ShapedType>(type)) { 52 return b.create<arith::ConstantOp>(loc, 53 DenseElementsAttr::get(shapedTy, attr)); 54 } 55 56 return b.create<arith::ConstantOp>(loc, attr); 57 } 58 59 static Value createTruncatedFPValue(Value operand, ImplicitLocOpBuilder &b) { 60 Type opType = operand.getType(); 61 Type i64Ty = b.getI64Type(); 62 if (auto shapedTy = dyn_cast<ShapedType>(opType)) 63 i64Ty = shapedTy.clone(i64Ty); 64 Value fixedConvert = b.create<arith::FPToSIOp>(i64Ty, operand); 65 Value fpFixedConvert = b.create<arith::SIToFPOp>(opType, fixedConvert); 66 // The truncation does not preserve the sign when the truncated 67 // value is -0. So here the sign is copied again. 68 return b.create<math::CopySignOp>(fpFixedConvert, operand); 69 } 70 71 // sinhf(float x) -> (exp(x) - exp(-x)) / 2 72 static LogicalResult convertSinhOp(math::SinhOp op, PatternRewriter &rewriter) { 73 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 74 Value operand = op.getOperand(); 75 Type opType = operand.getType(); 76 77 Value exp = b.create<math::ExpOp>(operand); 78 Value neg = b.create<arith::NegFOp>(operand); 79 Value nexp = b.create<math::ExpOp>(neg); 80 Value sub = b.create<arith::SubFOp>(exp, nexp); 81 Value half = createFloatConst(op->getLoc(), opType, 0.5, rewriter); 82 Value res = b.create<arith::MulFOp>(sub, half); 83 rewriter.replaceOp(op, res); 84 return success(); 85 } 86 87 // coshf(float x) -> (exp(x) + exp(-x)) / 2 88 static LogicalResult convertCoshOp(math::CoshOp op, PatternRewriter &rewriter) { 89 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 90 Value operand = op.getOperand(); 91 Type opType = operand.getType(); 92 93 Value exp = b.create<math::ExpOp>(operand); 94 Value neg = b.create<arith::NegFOp>(operand); 95 Value nexp = b.create<math::ExpOp>(neg); 96 Value add = b.create<arith::AddFOp>(exp, nexp); 97 Value half = createFloatConst(op->getLoc(), opType, 0.5, rewriter); 98 Value res = b.create<arith::MulFOp>(add, half); 99 rewriter.replaceOp(op, res); 100 return success(); 101 } 102 103 /// Expands tanh op into 104 /// 1-exp^{-2x} / 1+exp^{-2x} 105 /// To avoid overflow we exploit the reflection symmetry `tanh(-x) = -tanh(x)`. 106 /// We compute a "signs" value which is -1 if input is negative and +1 if input 107 /// is positive. Then multiply the input by this value, guaranteeing that the 108 /// result is positive, which also guarantees `exp^{-2x * sign(x)}` is in (0, 109 /// 1]. Expand the computation on the input `x * sign(x)`, then multiply the 110 /// result by `sign(x)` to retain sign of the real result. 111 static LogicalResult convertTanhOp(math::TanhOp op, PatternRewriter &rewriter) { 112 auto floatType = op.getOperand().getType(); 113 Location loc = op.getLoc(); 114 Value zero = createFloatConst(loc, floatType, 0.0, rewriter); 115 Value one = createFloatConst(loc, floatType, 1.0, rewriter); 116 Value negTwo = createFloatConst(loc, floatType, -2.0, rewriter); 117 118 // Compute sign(x) = cast<float_type>(x < 0) * (-2) + 1 119 Value isNegative = rewriter.create<arith::CmpFOp>( 120 loc, arith::CmpFPredicate::OLT, op.getOperand(), zero); 121 Value isNegativeFloat = 122 rewriter.create<arith::UIToFPOp>(loc, floatType, isNegative); 123 Value isNegativeTimesNegTwo = 124 rewriter.create<arith::MulFOp>(loc, isNegativeFloat, negTwo); 125 Value sign = rewriter.create<arith::AddFOp>(loc, isNegativeTimesNegTwo, one); 126 127 // Normalize input to positive value: y = sign(x) * x 128 Value positiveX = rewriter.create<arith::MulFOp>(loc, sign, op.getOperand()); 129 130 // Decompose on normalized input 131 Value negDoubledX = rewriter.create<arith::MulFOp>(loc, negTwo, positiveX); 132 Value exp2x = rewriter.create<math::ExpOp>(loc, negDoubledX); 133 Value dividend = rewriter.create<arith::SubFOp>(loc, one, exp2x); 134 Value divisor = rewriter.create<arith::AddFOp>(loc, one, exp2x); 135 Value positiveRes = rewriter.create<arith::DivFOp>(loc, dividend, divisor); 136 137 // Multiply result by sign(x) to retain signs from negative inputs 138 rewriter.replaceOpWithNewOp<arith::MulFOp>(op, sign, positiveRes); 139 140 return success(); 141 } 142 143 // Converts math.tan to math.sin, math.cos, and arith.divf. 144 static LogicalResult convertTanOp(math::TanOp op, PatternRewriter &rewriter) { 145 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 146 Value operand = op.getOperand(); 147 Type type = operand.getType(); 148 Value sin = b.create<math::SinOp>(type, operand); 149 Value cos = b.create<math::CosOp>(type, operand); 150 Value div = b.create<arith::DivFOp>(type, sin, cos); 151 rewriter.replaceOp(op, div); 152 return success(); 153 } 154 155 // asinh(float x) -> log(x + sqrt(x**2 + 1)) 156 static LogicalResult convertAsinhOp(math::AsinhOp op, 157 PatternRewriter &rewriter) { 158 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 159 Value operand = op.getOperand(); 160 Type opType = operand.getType(); 161 162 Value one = createFloatConst(op->getLoc(), opType, 1.0, rewriter); 163 Value fma = b.create<math::FmaOp>(operand, operand, one); 164 Value sqrt = b.create<math::SqrtOp>(fma); 165 Value add = b.create<arith::AddFOp>(operand, sqrt); 166 Value res = b.create<math::LogOp>(add); 167 rewriter.replaceOp(op, res); 168 return success(); 169 } 170 171 // acosh(float x) -> log(x + sqrt(x**2 - 1)) 172 static LogicalResult convertAcoshOp(math::AcoshOp op, 173 PatternRewriter &rewriter) { 174 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 175 Value operand = op.getOperand(); 176 Type opType = operand.getType(); 177 178 Value negOne = createFloatConst(op->getLoc(), opType, -1.0, rewriter); 179 Value fma = b.create<math::FmaOp>(operand, operand, negOne); 180 Value sqrt = b.create<math::SqrtOp>(fma); 181 Value add = b.create<arith::AddFOp>(operand, sqrt); 182 Value res = b.create<math::LogOp>(add); 183 rewriter.replaceOp(op, res); 184 return success(); 185 } 186 187 // atanh(float x) -> log((1 + x) / (1 - x)) / 2 188 static LogicalResult convertAtanhOp(math::AtanhOp op, 189 PatternRewriter &rewriter) { 190 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 191 Value operand = op.getOperand(); 192 Type opType = operand.getType(); 193 194 Value one = createFloatConst(op->getLoc(), opType, 1.0, rewriter); 195 Value add = b.create<arith::AddFOp>(operand, one); 196 Value neg = b.create<arith::NegFOp>(operand); 197 Value sub = b.create<arith::AddFOp>(neg, one); 198 Value div = b.create<arith::DivFOp>(add, sub); 199 Value log = b.create<math::LogOp>(div); 200 Value half = createFloatConst(op->getLoc(), opType, 0.5, rewriter); 201 Value res = b.create<arith::MulFOp>(log, half); 202 rewriter.replaceOp(op, res); 203 return success(); 204 } 205 206 static LogicalResult convertFmaFOp(math::FmaOp op, PatternRewriter &rewriter) { 207 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 208 Value operandA = op.getOperand(0); 209 Value operandB = op.getOperand(1); 210 Value operandC = op.getOperand(2); 211 Type type = op.getType(); 212 Value mult = b.create<arith::MulFOp>(type, operandA, operandB); 213 Value add = b.create<arith::AddFOp>(type, mult, operandC); 214 rewriter.replaceOp(op, add); 215 return success(); 216 } 217 218 // Converts a floorf() function to the following: 219 // floorf(float x) -> 220 // y = (float)(int) x 221 // if (x < 0) then incr = -1 else incr = 0 222 // y = y + incr <= replace this op with the floorf op. 223 static LogicalResult convertFloorOp(math::FloorOp op, 224 PatternRewriter &rewriter) { 225 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 226 Value operand = op.getOperand(); 227 Type opType = operand.getType(); 228 Value fpFixedConvert = createTruncatedFPValue(operand, b); 229 230 // Creating constants for later use. 231 Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter); 232 Value negOne = createFloatConst(op->getLoc(), opType, -1.00, rewriter); 233 234 Value negCheck = 235 b.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operand, zero); 236 Value incrValue = 237 b.create<arith::SelectOp>(op->getLoc(), negCheck, negOne, zero); 238 Value ret = b.create<arith::AddFOp>(opType, fpFixedConvert, incrValue); 239 rewriter.replaceOp(op, ret); 240 return success(); 241 } 242 243 // Converts a ceilf() function to the following: 244 // ceilf(float x) -> 245 // y = (float)(int) x 246 // if (x > y) then incr = 1 else incr = 0 247 // y = y + incr <= replace this op with the ceilf op. 248 static LogicalResult convertCeilOp(math::CeilOp op, PatternRewriter &rewriter) { 249 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 250 Value operand = op.getOperand(); 251 Type opType = operand.getType(); 252 Value fpFixedConvert = createTruncatedFPValue(operand, b); 253 254 // Creating constants for later use. 255 Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter); 256 Value one = createFloatConst(op->getLoc(), opType, 1.00, rewriter); 257 258 Value gtCheck = b.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, operand, 259 fpFixedConvert); 260 Value incrValue = b.create<arith::SelectOp>(op->getLoc(), gtCheck, one, zero); 261 262 Value ret = b.create<arith::AddFOp>(opType, fpFixedConvert, incrValue); 263 rewriter.replaceOp(op, ret); 264 return success(); 265 } 266 267 // Convert `math.fpowi` to a series of `arith.mulf` operations. 268 // If the power is negative, we divide one by the result. 269 // If both the base and power are zero, the result is 1. 270 // In the case of non constant power, we convert the operation to `math.powf`. 271 static LogicalResult convertFPowIOp(math::FPowIOp op, 272 PatternRewriter &rewriter) { 273 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 274 Value base = op.getOperand(0); 275 Value power = op.getOperand(1); 276 Type baseType = base.getType(); 277 278 auto convertFPowItoPowf = [&]() -> LogicalResult { 279 Value castPowerToFp = 280 rewriter.create<arith::SIToFPOp>(op.getLoc(), baseType, power); 281 Value res = rewriter.create<math::PowFOp>(op.getLoc(), baseType, base, 282 castPowerToFp); 283 rewriter.replaceOp(op, res); 284 return success(); 285 }; 286 287 Attribute cstAttr; 288 if (!matchPattern(power, m_Constant(&cstAttr))) 289 return convertFPowItoPowf(); 290 291 APInt value; 292 if (!matchPattern(cstAttr, m_ConstantInt(&value))) 293 return convertFPowItoPowf(); 294 295 int64_t powerInt = value.getSExtValue(); 296 bool isNegative = powerInt < 0; 297 int64_t absPower = std::abs(powerInt); 298 Value one = createFloatConst(op->getLoc(), baseType, 1.00, rewriter); 299 Value res = createFloatConst(op->getLoc(), baseType, 1.00, rewriter); 300 301 while (absPower > 0) { 302 if (absPower & 1) 303 res = b.create<arith::MulFOp>(baseType, base, res); 304 absPower >>= 1; 305 base = b.create<arith::MulFOp>(baseType, base, base); 306 } 307 308 // Make sure not to introduce UB in case of negative power. 309 if (isNegative) { 310 auto &sem = dyn_cast<mlir::FloatType>(getElementTypeOrSelf(baseType)) 311 .getFloatSemantics(); 312 Value zero = 313 createFloatConst(op->getLoc(), baseType, 314 APFloat::getZero(sem, /*Negative=*/false), rewriter); 315 Value negZero = 316 createFloatConst(op->getLoc(), baseType, 317 APFloat::getZero(sem, /*Negative=*/true), rewriter); 318 Value posInfinity = 319 createFloatConst(op->getLoc(), baseType, 320 APFloat::getInf(sem, /*Negative=*/false), rewriter); 321 Value negInfinity = 322 createFloatConst(op->getLoc(), baseType, 323 APFloat::getInf(sem, /*Negative=*/true), rewriter); 324 Value zeroEqCheck = 325 b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, res, zero); 326 Value negZeroEqCheck = 327 b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, res, negZero); 328 res = b.create<arith::DivFOp>(baseType, one, res); 329 res = 330 b.create<arith::SelectOp>(op->getLoc(), zeroEqCheck, posInfinity, res); 331 res = b.create<arith::SelectOp>(op->getLoc(), negZeroEqCheck, negInfinity, 332 res); 333 } 334 335 rewriter.replaceOp(op, res); 336 return success(); 337 } 338 339 // Converts Powf(float a, float b) (meaning a^b) to exp^(b * ln(a)) 340 static LogicalResult convertPowfOp(math::PowFOp op, PatternRewriter &rewriter) { 341 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 342 Value operandA = op.getOperand(0); 343 Value operandB = op.getOperand(1); 344 Type opType = operandA.getType(); 345 Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter); 346 Value two = createFloatConst(op->getLoc(), opType, 2.00, rewriter); 347 Value negOne = createFloatConst(op->getLoc(), opType, -1.00, rewriter); 348 Value opASquared = b.create<arith::MulFOp>(opType, operandA, operandA); 349 Value opBHalf = b.create<arith::DivFOp>(opType, operandB, two); 350 351 Value logA = b.create<math::LogOp>(opType, opASquared); 352 Value mult = b.create<arith::MulFOp>(opType, opBHalf, logA); 353 Value expResult = b.create<math::ExpOp>(opType, mult); 354 Value negExpResult = b.create<arith::MulFOp>(opType, expResult, negOne); 355 Value remainder = b.create<arith::RemFOp>(opType, operandB, two); 356 Value negCheck = 357 b.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operandA, zero); 358 Value oddPower = 359 b.create<arith::CmpFOp>(arith::CmpFPredicate::ONE, remainder, zero); 360 Value oddAndNeg = b.create<arith::AndIOp>(op->getLoc(), oddPower, negCheck); 361 362 Value res = b.create<arith::SelectOp>(op->getLoc(), oddAndNeg, negExpResult, 363 expResult); 364 rewriter.replaceOp(op, res); 365 return success(); 366 } 367 368 // exp2f(float x) -> exp(x * ln(2)) 369 // Proof: Let's say 2^x = y 370 // ln(2^x) = ln(y) 371 // x * ln(2) = ln(y) => e ^(x*ln(2)) = y 372 static LogicalResult convertExp2fOp(math::Exp2Op op, 373 PatternRewriter &rewriter) { 374 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 375 Value operand = op.getOperand(); 376 Type opType = operand.getType(); 377 Value ln2 = createFloatConst(op->getLoc(), opType, llvm::numbers::ln2, b); 378 Value mult = b.create<arith::MulFOp>(opType, operand, ln2); 379 Value exp = b.create<math::ExpOp>(op->getLoc(), mult); 380 rewriter.replaceOp(op, exp); 381 return success(); 382 } 383 384 static LogicalResult convertRoundOp(math::RoundOp op, 385 PatternRewriter &rewriter) { 386 Location loc = op.getLoc(); 387 ImplicitLocOpBuilder b(loc, rewriter); 388 Value operand = op.getOperand(); 389 Type opType = operand.getType(); 390 Type opEType = getElementTypeOrSelf(opType); 391 392 if (!opEType.isF32()) { 393 return rewriter.notifyMatchFailure(op, "not a round of f32."); 394 } 395 396 Type i32Ty = b.getI32Type(); 397 if (auto shapedTy = dyn_cast<ShapedType>(opType)) 398 i32Ty = shapedTy.clone(i32Ty); 399 400 Value half = createFloatConst(loc, opType, 0.5, b); 401 Value c23 = createIntConst(loc, i32Ty, 23, b); 402 Value c127 = createIntConst(loc, i32Ty, 127, b); 403 Value expMask = createIntConst(loc, i32Ty, (1 << 8) - 1, b); 404 405 Value incrValue = b.create<math::CopySignOp>(half, operand); 406 Value add = b.create<arith::AddFOp>(opType, operand, incrValue); 407 Value fpFixedConvert = createTruncatedFPValue(add, b); 408 409 // There are three cases where adding 0.5 to the value and truncating by 410 // converting to an i64 does not result in the correct behavior: 411 // 412 // 1. Special values: +-inf and +-nan 413 // Casting these special values to i64 has undefined behavior. To identify 414 // these values, we use the fact that these values are the only float 415 // values with the maximum possible biased exponent. 416 // 417 // 2. Large values: 2^23 <= |x| <= INT_64_MAX 418 // Adding 0.5 to a float larger than or equal to 2^23 results in precision 419 // errors that sometimes round the value up and sometimes round the value 420 // down. For example: 421 // 8388608.0 + 0.5 = 8388608.0 422 // 8388609.0 + 0.5 = 8388610.0 423 // 424 // 3. Very large values: |x| > INT_64_MAX 425 // Casting to i64 a value greater than the max i64 value will overflow the 426 // i64 leading to wrong outputs. 427 // 428 // All three cases satisfy the property `biasedExp >= 23`. 429 Value operandBitcast = b.create<arith::BitcastOp>(i32Ty, operand); 430 Value operandExp = b.create<arith::AndIOp>( 431 b.create<arith::ShRUIOp>(operandBitcast, c23), expMask); 432 Value operandBiasedExp = b.create<arith::SubIOp>(operandExp, c127); 433 Value isSpecialValOrLargeVal = 434 b.create<arith::CmpIOp>(arith::CmpIPredicate::sge, operandBiasedExp, c23); 435 436 Value result = b.create<arith::SelectOp>(isSpecialValOrLargeVal, operand, 437 fpFixedConvert); 438 rewriter.replaceOp(op, result); 439 return success(); 440 } 441 442 // Converts math.ctlz to scf and arith operations. This is done 443 // by performing a binary search on the bits. 444 static LogicalResult convertCtlzOp(math::CountLeadingZerosOp op, 445 PatternRewriter &rewriter) { 446 auto operand = op.getOperand(); 447 auto operandTy = operand.getType(); 448 auto eTy = getElementTypeOrSelf(operandTy); 449 Location loc = op.getLoc(); 450 451 int32_t bitwidth = eTy.getIntOrFloatBitWidth(); 452 if (bitwidth > 64) 453 return failure(); 454 455 uint64_t allbits = -1; 456 if (bitwidth < 64) { 457 allbits = allbits >> (64 - bitwidth); 458 } 459 460 Value x = operand; 461 Value count = createIntConst(loc, operandTy, 0, rewriter); 462 for (int32_t bw = bitwidth; bw > 1; bw = bw / 2) { 463 auto half = bw / 2; 464 auto bits = createIntConst(loc, operandTy, half, rewriter); 465 auto mask = createIntConst(loc, operandTy, allbits >> half, rewriter); 466 467 Value pred = 468 rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ule, x, mask); 469 Value add = rewriter.create<arith::AddIOp>(loc, count, bits); 470 Value shift = rewriter.create<arith::ShLIOp>(loc, x, bits); 471 472 x = rewriter.create<arith::SelectOp>(loc, pred, shift, x); 473 count = rewriter.create<arith::SelectOp>(loc, pred, add, count); 474 } 475 476 Value zero = createIntConst(loc, operandTy, 0, rewriter); 477 Value pred = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, 478 operand, zero); 479 480 Value bwval = createIntConst(loc, operandTy, bitwidth, rewriter); 481 Value sel = rewriter.create<arith::SelectOp>(loc, pred, bwval, count); 482 rewriter.replaceOp(op, sel); 483 return success(); 484 } 485 486 // Convert `math.roundeven` into `math.round` + arith ops 487 static LogicalResult convertRoundEvenOp(math::RoundEvenOp op, 488 PatternRewriter &rewriter) { 489 Location loc = op.getLoc(); 490 ImplicitLocOpBuilder b(loc, rewriter); 491 auto operand = op.getOperand(); 492 Type operandTy = operand.getType(); 493 Type resultTy = op.getType(); 494 Type operandETy = getElementTypeOrSelf(operandTy); 495 Type resultETy = getElementTypeOrSelf(resultTy); 496 497 if (!isa<FloatType>(operandETy) || !isa<FloatType>(resultETy)) { 498 return rewriter.notifyMatchFailure(op, "not a roundeven of f16 or f32."); 499 } 500 501 Type fTy = operandTy; 502 Type iTy = rewriter.getIntegerType(operandETy.getIntOrFloatBitWidth()); 503 if (auto shapedTy = dyn_cast<ShapedType>(fTy)) { 504 iTy = shapedTy.clone(iTy); 505 } 506 507 unsigned bitWidth = operandETy.getIntOrFloatBitWidth(); 508 // The width returned by getFPMantissaWidth includes the integer bit. 509 unsigned mantissaWidth = 510 llvm::cast<FloatType>(operandETy).getFPMantissaWidth() - 1; 511 unsigned exponentWidth = bitWidth - mantissaWidth - 1; 512 513 // The names of the variables correspond to f32. 514 // f64: 1 bit sign | 11 bits exponent | 52 bits mantissa. 515 // f32: 1 bit sign | 8 bits exponent | 23 bits mantissa. 516 // f16: 1 bit sign | 5 bits exponent | 10 bits mantissa. 517 Value c1Float = createFloatConst(loc, fTy, 1.0, b); 518 Value c0 = createIntConst(loc, iTy, 0, b); 519 Value c1 = createIntConst(loc, iTy, 1, b); 520 Value cNeg1 = createIntConst(loc, iTy, -1, b); 521 Value c23 = createIntConst(loc, iTy, mantissaWidth, b); 522 Value c31 = createIntConst(loc, iTy, bitWidth - 1, b); 523 Value c127 = createIntConst(loc, iTy, (1ull << (exponentWidth - 1)) - 1, b); 524 Value c2To22 = createIntConst(loc, iTy, 1ull << (mantissaWidth - 1), b); 525 Value c23Mask = createIntConst(loc, iTy, (1ull << mantissaWidth) - 1, b); 526 Value expMask = createIntConst(loc, iTy, (1ull << exponentWidth) - 1, b); 527 528 Value operandBitcast = b.create<arith::BitcastOp>(iTy, operand); 529 Value round = b.create<math::RoundOp>(operand); 530 Value roundBitcast = b.create<arith::BitcastOp>(iTy, round); 531 532 // Get biased exponents for operand and round(operand) 533 Value operandExp = b.create<arith::AndIOp>( 534 b.create<arith::ShRUIOp>(operandBitcast, c23), expMask); 535 Value operandBiasedExp = b.create<arith::SubIOp>(operandExp, c127); 536 Value roundExp = b.create<arith::AndIOp>( 537 b.create<arith::ShRUIOp>(roundBitcast, c23), expMask); 538 Value roundBiasedExp = b.create<arith::SubIOp>(roundExp, c127); 539 540 auto safeShiftRight = [&](Value x, Value shift) -> Value { 541 // Clamp shift to valid range [0, bitwidth - 1] to avoid undefined behavior 542 Value clampedShift = b.create<arith::MaxSIOp>(shift, c0); 543 clampedShift = b.create<arith::MinSIOp>(clampedShift, c31); 544 return b.create<arith::ShRUIOp>(x, clampedShift); 545 }; 546 547 auto maskMantissa = [&](Value mantissa, 548 Value mantissaMaskRightShift) -> Value { 549 Value shiftedMantissaMask = safeShiftRight(c23Mask, mantissaMaskRightShift); 550 return b.create<arith::AndIOp>(mantissa, shiftedMantissaMask); 551 }; 552 553 // A whole number `x`, such that `|x| != 1`, is even if the mantissa, ignoring 554 // the leftmost `clamp(biasedExp - 1, 0, 23)` bits, is zero. Large numbers 555 // with `biasedExp > 23` (numbers where there is not enough precision to store 556 // decimals) are always even, and they satisfy the even condition trivially 557 // since the mantissa without all its bits is zero. The even condition 558 // is also true for +-0, since they have `biasedExp = -127` and the entire 559 // mantissa is zero. The case of +-1 has to be handled separately. Here 560 // we identify these values by noting that +-1 are the only whole numbers with 561 // `biasedExp == 0`. 562 // 563 // The special values +-inf and +-nan also satisfy the same property that 564 // whole non-unit even numbers satisfy. In particular, the special values have 565 // `biasedExp > 23`, so they get treated as large numbers with no room for 566 // decimals, which are always even. 567 Value roundBiasedExpEq0 = 568 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, roundBiasedExp, c0); 569 Value roundBiasedExpMinus1 = b.create<arith::SubIOp>(roundBiasedExp, c1); 570 Value roundMaskedMantissa = maskMantissa(roundBitcast, roundBiasedExpMinus1); 571 Value roundIsNotEvenOrSpecialVal = b.create<arith::CmpIOp>( 572 arith::CmpIPredicate::ne, roundMaskedMantissa, c0); 573 roundIsNotEvenOrSpecialVal = 574 b.create<arith::OrIOp>(roundIsNotEvenOrSpecialVal, roundBiasedExpEq0); 575 576 // A value `x` with `0 <= biasedExp < 23`, is halfway between two consecutive 577 // integers if the bit at index `biasedExp` starting from the left in the 578 // mantissa is 1 and all the bits to the right are zero. Values with 579 // `biasedExp >= 23` don't have decimals, so they are never halfway. The 580 // values +-0.5 are the only halfway values that have `biasedExp == -1 < 0`, 581 // so these are handled separately. In particular, if `biasedExp == -1`, the 582 // value is halfway if the entire mantissa is zero. 583 Value operandBiasedExpEqNeg1 = b.create<arith::CmpIOp>( 584 arith::CmpIPredicate::eq, operandBiasedExp, cNeg1); 585 Value expectedOperandMaskedMantissa = b.create<arith::SelectOp>( 586 operandBiasedExpEqNeg1, c0, safeShiftRight(c2To22, operandBiasedExp)); 587 Value operandMaskedMantissa = maskMantissa(operandBitcast, operandBiasedExp); 588 Value operandIsHalfway = 589 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, operandMaskedMantissa, 590 expectedOperandMaskedMantissa); 591 // Ensure `biasedExp` is in the valid range for half values. 592 Value operandBiasedExpGeNeg1 = b.create<arith::CmpIOp>( 593 arith::CmpIPredicate::sge, operandBiasedExp, cNeg1); 594 Value operandBiasedExpLt23 = 595 b.create<arith::CmpIOp>(arith::CmpIPredicate::slt, operandBiasedExp, c23); 596 operandIsHalfway = 597 b.create<arith::AndIOp>(operandIsHalfway, operandBiasedExpLt23); 598 operandIsHalfway = 599 b.create<arith::AndIOp>(operandIsHalfway, operandBiasedExpGeNeg1); 600 601 // Adjust rounded operand with `round(operand) - sign(operand)` to correct the 602 // case where `round` rounded in the opposite direction of `roundeven`. 603 Value sign = b.create<math::CopySignOp>(c1Float, operand); 604 Value roundShifted = b.create<arith::SubFOp>(round, sign); 605 // If the rounded value is even or a special value, we default to the behavior 606 // of `math.round`. 607 Value needsShift = 608 b.create<arith::AndIOp>(roundIsNotEvenOrSpecialVal, operandIsHalfway); 609 Value result = b.create<arith::SelectOp>(needsShift, roundShifted, round); 610 // The `x - sign` adjustment does not preserve the sign when we are adjusting 611 // the value -1 to -0. So here the sign is copied again to ensure that -0.5 is 612 // rounded to -0.0. 613 result = b.create<math::CopySignOp>(result, operand); 614 rewriter.replaceOp(op, result); 615 return success(); 616 } 617 618 void mlir::populateExpandCtlzPattern(RewritePatternSet &patterns) { 619 patterns.add(convertCtlzOp); 620 } 621 622 void mlir::populateExpandSinhPattern(RewritePatternSet &patterns) { 623 patterns.add(convertSinhOp); 624 } 625 626 void mlir::populateExpandCoshPattern(RewritePatternSet &patterns) { 627 patterns.add(convertCoshOp); 628 } 629 630 void mlir::populateExpandTanPattern(RewritePatternSet &patterns) { 631 patterns.add(convertTanOp); 632 } 633 634 void mlir::populateExpandTanhPattern(RewritePatternSet &patterns) { 635 patterns.add(convertTanhOp); 636 } 637 638 void mlir::populateExpandAsinhPattern(RewritePatternSet &patterns) { 639 patterns.add(convertAsinhOp); 640 } 641 642 void mlir::populateExpandAcoshPattern(RewritePatternSet &patterns) { 643 patterns.add(convertAcoshOp); 644 } 645 646 void mlir::populateExpandAtanhPattern(RewritePatternSet &patterns) { 647 patterns.add(convertAtanhOp); 648 } 649 650 void mlir::populateExpandFmaFPattern(RewritePatternSet &patterns) { 651 patterns.add(convertFmaFOp); 652 } 653 654 void mlir::populateExpandCeilFPattern(RewritePatternSet &patterns) { 655 patterns.add(convertCeilOp); 656 } 657 658 void mlir::populateExpandExp2FPattern(RewritePatternSet &patterns) { 659 patterns.add(convertExp2fOp); 660 } 661 662 void mlir::populateExpandPowFPattern(RewritePatternSet &patterns) { 663 patterns.add(convertPowfOp); 664 } 665 666 void mlir::populateExpandFPowIPattern(RewritePatternSet &patterns) { 667 patterns.add(convertFPowIOp); 668 } 669 670 void mlir::populateExpandRoundFPattern(RewritePatternSet &patterns) { 671 patterns.add(convertRoundOp); 672 } 673 674 void mlir::populateExpandFloorFPattern(RewritePatternSet &patterns) { 675 patterns.add(convertFloorOp); 676 } 677 678 void mlir::populateExpandRoundEvenPattern(RewritePatternSet &patterns) { 679 patterns.add(convertRoundEvenOp); 680 } 681