xref: /llvm-project/mlir/lib/Dialect/Math/Transforms/ExpandPatterns.cpp (revision 40bf36319e383b7b5f2ffbee9abc18d93e1e07b4)
1 //===- ExpandTanh.cpp - Code to perform expanding tanh op -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements expansion of tanh op.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/Arith/IR/Arith.h"
14 #include "mlir/Dialect/Math/IR/Math.h"
15 #include "mlir/Dialect/Math/Transforms/Passes.h"
16 #include "mlir/Dialect/SCF/IR/SCF.h"
17 #include "mlir/Dialect/Vector/IR/VectorOps.h"
18 #include "mlir/IR/Builders.h"
19 #include "mlir/IR/ImplicitLocOpBuilder.h"
20 #include "mlir/IR/TypeUtilities.h"
21 #include "mlir/Transforms/DialectConversion.h"
22 
23 using namespace mlir;
24 
25 /// Create a float constant.
26 static Value createFloatConst(Location loc, Type type, double value,
27                               OpBuilder &b) {
28   auto attr = b.getFloatAttr(getElementTypeOrSelf(type), value);
29   if (auto shapedTy = dyn_cast<ShapedType>(type)) {
30     return b.create<arith::ConstantOp>(loc,
31                                        DenseElementsAttr::get(shapedTy, attr));
32   }
33 
34   return b.create<arith::ConstantOp>(loc, attr);
35 }
36 
37 /// Create a float constant.
38 static Value createIntConst(Location loc, Type type, int64_t value,
39                             OpBuilder &b) {
40   auto attr = b.getIntegerAttr(getElementTypeOrSelf(type), value);
41   if (auto shapedTy = dyn_cast<ShapedType>(type)) {
42     return b.create<arith::ConstantOp>(loc,
43                                        DenseElementsAttr::get(shapedTy, attr));
44   }
45 
46   return b.create<arith::ConstantOp>(loc, attr);
47 }
48 
49 static Value createTruncatedFPValue(Value operand, ImplicitLocOpBuilder &b) {
50   Type opType = operand.getType();
51   Type i64Ty = b.getI64Type();
52   if (auto shapedTy = dyn_cast<ShapedType>(opType))
53     i64Ty = shapedTy.clone(i64Ty);
54   Value fixedConvert = b.create<arith::FPToSIOp>(i64Ty, operand);
55   Value fpFixedConvert = b.create<arith::SIToFPOp>(opType, fixedConvert);
56   // The truncation does not preserve the sign when the truncated
57   // value is -0. So here the sign is copied again.
58   return b.create<math::CopySignOp>(fpFixedConvert, operand);
59 }
60 
61 /// Expands tanh op into
62 ///   1) 1-exp^{-2x} / 1+exp^{-2x}, if x => 0
63 ///   2) exp^{2x}-1 / exp^{2x}+1  , if x < 0
64 static LogicalResult convertTanhOp(math::TanhOp op, PatternRewriter &rewriter) {
65   auto floatType = op.getOperand().getType();
66   Location loc = op.getLoc();
67   Value one = createFloatConst(loc, floatType, 1.0, rewriter);
68   Value two = createFloatConst(loc, floatType, 2.0, rewriter);
69   Value doubledX = rewriter.create<arith::MulFOp>(loc, op.getOperand(), two);
70 
71   // Case 1: tanh(x) = 1-exp^{-2x} / 1+exp^{-2x}
72   Value negDoubledX = rewriter.create<arith::NegFOp>(loc, doubledX);
73   Value exp2x = rewriter.create<math::ExpOp>(loc, negDoubledX);
74   Value dividend = rewriter.create<arith::SubFOp>(loc, one, exp2x);
75   Value divisor = rewriter.create<arith::AddFOp>(loc, one, exp2x);
76   Value positiveRes = rewriter.create<arith::DivFOp>(loc, dividend, divisor);
77 
78   // Case 2: tanh(x) = exp^{2x}-1 / exp^{2x}+1
79   exp2x = rewriter.create<math::ExpOp>(loc, doubledX);
80   dividend = rewriter.create<arith::SubFOp>(loc, exp2x, one);
81   divisor = rewriter.create<arith::AddFOp>(loc, exp2x, one);
82   Value negativeRes = rewriter.create<arith::DivFOp>(loc, dividend, divisor);
83 
84   // tanh(x) = x >= 0 ? positiveRes : negativeRes
85   Value zero = createFloatConst(loc, floatType, 0.0, rewriter);
86   Value cmpRes = rewriter.create<arith::CmpFOp>(loc, arith::CmpFPredicate::OGE,
87                                                 op.getOperand(), zero);
88   rewriter.replaceOpWithNewOp<arith::SelectOp>(op, cmpRes, positiveRes,
89                                                negativeRes);
90   return success();
91 }
92 
93 // Converts math.tan to math.sin, math.cos, and arith.divf.
94 static LogicalResult convertTanOp(math::TanOp op, PatternRewriter &rewriter) {
95   ImplicitLocOpBuilder b(op->getLoc(), rewriter);
96   Value operand = op.getOperand();
97   Type type = operand.getType();
98   Value sin = b.create<math::SinOp>(type, operand);
99   Value cos = b.create<math::CosOp>(type, operand);
100   Value div = b.create<arith::DivFOp>(type, sin, cos);
101   rewriter.replaceOp(op, div);
102   return success();
103 }
104 
105 static LogicalResult convertFmaFOp(math::FmaOp op, PatternRewriter &rewriter) {
106   ImplicitLocOpBuilder b(op->getLoc(), rewriter);
107   Value operandA = op.getOperand(0);
108   Value operandB = op.getOperand(1);
109   Value operandC = op.getOperand(2);
110   Type type = op.getType();
111   Value mult = b.create<arith::MulFOp>(type, operandA, operandB);
112   Value add = b.create<arith::AddFOp>(type, mult, operandC);
113   rewriter.replaceOp(op, add);
114   return success();
115 }
116 
117 // Converts a floorf() function to the following:
118 // floorf(float x) ->
119 //     y = (float)(int) x
120 //     if (x < 0) then incr = -1 else incr = 0
121 //     y = y + incr    <= replace this op with the floorf op.
122 static LogicalResult convertFloorOp(math::FloorOp op,
123                                     PatternRewriter &rewriter) {
124   ImplicitLocOpBuilder b(op->getLoc(), rewriter);
125   Value operand = op.getOperand();
126   Type opType = operand.getType();
127   Value fpFixedConvert = createTruncatedFPValue(operand, b);
128 
129   // Creating constants for later use.
130   Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter);
131   Value negOne = createFloatConst(op->getLoc(), opType, -1.00, rewriter);
132 
133   Value negCheck =
134       b.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operand, zero);
135   Value incrValue =
136       b.create<arith::SelectOp>(op->getLoc(), negCheck, negOne, zero);
137   Value ret = b.create<arith::AddFOp>(opType, fpFixedConvert, incrValue);
138   rewriter.replaceOp(op, ret);
139   return success();
140 }
141 
142 // Converts a ceilf() function to the following:
143 // ceilf(float x) ->
144 //      y = (float)(int) x
145 //      if (x > y) then incr = 1 else incr = 0
146 //      y = y + incr   <= replace this op with the ceilf op.
147 static LogicalResult convertCeilOp(math::CeilOp op, PatternRewriter &rewriter) {
148   ImplicitLocOpBuilder b(op->getLoc(), rewriter);
149   Value operand = op.getOperand();
150   Type opType = operand.getType();
151   Value fpFixedConvert = createTruncatedFPValue(operand, b);
152 
153   // Creating constants for later use.
154   Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter);
155   Value one = createFloatConst(op->getLoc(), opType, 1.00, rewriter);
156 
157   Value gtCheck = b.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, operand,
158                                           fpFixedConvert);
159   Value incrValue = b.create<arith::SelectOp>(op->getLoc(), gtCheck, one, zero);
160 
161   Value ret = b.create<arith::AddFOp>(opType, fpFixedConvert, incrValue);
162   rewriter.replaceOp(op, ret);
163   return success();
164 }
165 // Converts  Powf(float a, float b) (meaning a^b) to exp^(b * ln(a))
166 static LogicalResult convertPowfOp(math::PowFOp op, PatternRewriter &rewriter) {
167   ImplicitLocOpBuilder b(op->getLoc(), rewriter);
168   Value operandA = op.getOperand(0);
169   Value operandB = op.getOperand(1);
170   Type opType = operandA.getType();
171 
172   Value logA = b.create<math::LogOp>(opType, operandA);
173   Value mult = b.create<arith::MulFOp>(opType, logA, operandB);
174   Value expResult = b.create<math::ExpOp>(opType, mult);
175   rewriter.replaceOp(op, expResult);
176   return success();
177 }
178 
179 // exp2f(float x) -> exp(x * ln(2))
180 //   Proof: Let's say 2^x = y
181 //   ln(2^x) = ln(y)
182 //   x * ln(2) = ln(y) => e ^(x*ln(2)) = y
183 static LogicalResult convertExp2fOp(math::Exp2Op op,
184                                     PatternRewriter &rewriter) {
185   ImplicitLocOpBuilder b(op->getLoc(), rewriter);
186   Value operand = op.getOperand();
187   Type opType = operand.getType();
188   Value ln2 = createFloatConst(op->getLoc(), opType, llvm::numbers::ln2, b);
189   Value mult = b.create<arith::MulFOp>(opType, operand, ln2);
190   Value exp = b.create<math::ExpOp>(op->getLoc(), mult);
191   rewriter.replaceOp(op, exp);
192   return success();
193 }
194 
195 static LogicalResult convertRoundOp(math::RoundOp op,
196                                     PatternRewriter &rewriter) {
197   Location loc = op.getLoc();
198   ImplicitLocOpBuilder b(loc, rewriter);
199   Value operand = op.getOperand();
200   Type opType = operand.getType();
201   Type opEType = getElementTypeOrSelf(opType);
202 
203   if (!opEType.isF32()) {
204     return rewriter.notifyMatchFailure(op, "not a round of f32.");
205   }
206 
207   Type i32Ty = b.getI32Type();
208   if (auto shapedTy = dyn_cast<ShapedType>(opType))
209     i32Ty = shapedTy.clone(i32Ty);
210 
211   Value half = createFloatConst(loc, opType, 0.5, b);
212   Value c23 = createIntConst(loc, i32Ty, 23, b);
213   Value c127 = createIntConst(loc, i32Ty, 127, b);
214   Value expMask = createIntConst(loc, i32Ty, (1 << 8) - 1, b);
215 
216   Value incrValue = b.create<math::CopySignOp>(half, operand);
217   Value add = b.create<arith::AddFOp>(opType, operand, incrValue);
218   Value fpFixedConvert = createTruncatedFPValue(add, b);
219 
220   // There are three cases where adding 0.5 to the value and truncating by
221   // converting to an i64 does not result in the correct behavior:
222   //
223   // 1. Special values: +-inf and +-nan
224   //     Casting these special values to i64 has undefined behavior. To identify
225   //     these values, we use the fact that these values are the only float
226   //     values with the maximum possible biased exponent.
227   //
228   // 2. Large values: 2^23 <= |x| <= INT_64_MAX
229   //     Adding 0.5 to a float larger than or equal to 2^23 results in precision
230   //     errors that sometimes round the value up and sometimes round the value
231   //     down. For example:
232   //         8388608.0 + 0.5 = 8388608.0
233   //         8388609.0 + 0.5 = 8388610.0
234   //
235   // 3. Very large values: |x| > INT_64_MAX
236   //     Casting to i64 a value greater than the max i64 value will overflow the
237   //     i64 leading to wrong outputs.
238   //
239   // All three cases satisfy the property `biasedExp >= 23`.
240   Value operandBitcast = b.create<arith::BitcastOp>(i32Ty, operand);
241   Value operandExp = b.create<arith::AndIOp>(
242       b.create<arith::ShRUIOp>(operandBitcast, c23), expMask);
243   Value operandBiasedExp = b.create<arith::SubIOp>(operandExp, c127);
244   Value isSpecialValOrLargeVal =
245       b.create<arith::CmpIOp>(arith::CmpIPredicate::sge, operandBiasedExp, c23);
246 
247   Value result = b.create<arith::SelectOp>(isSpecialValOrLargeVal, operand,
248                                            fpFixedConvert);
249   rewriter.replaceOp(op, result);
250   return success();
251 }
252 
253 // Converts math.ctlz to scf and arith operations. This is done
254 // by performing a binary search on the bits.
255 static LogicalResult convertCtlzOp(math::CountLeadingZerosOp op,
256                                    PatternRewriter &rewriter) {
257   auto operand = op.getOperand();
258   auto operandTy = operand.getType();
259   auto eTy = getElementTypeOrSelf(operandTy);
260   Location loc = op.getLoc();
261 
262   int32_t bitwidth = eTy.getIntOrFloatBitWidth();
263   if (bitwidth > 64)
264     return failure();
265 
266   uint64_t allbits = -1;
267   if (bitwidth < 64) {
268     allbits = allbits >> (64 - bitwidth);
269   }
270 
271   Value x = operand;
272   Value count = createIntConst(loc, operandTy, 0, rewriter);
273   for (int32_t bw = bitwidth; bw > 1; bw = bw / 2) {
274     auto half = bw / 2;
275     auto bits = createIntConst(loc, operandTy, half, rewriter);
276     auto mask = createIntConst(loc, operandTy, allbits >> half, rewriter);
277 
278     Value pred =
279         rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ule, x, mask);
280     Value add = rewriter.create<arith::AddIOp>(loc, count, bits);
281     Value shift = rewriter.create<arith::ShLIOp>(loc, x, bits);
282 
283     x = rewriter.create<arith::SelectOp>(loc, pred, shift, x);
284     count = rewriter.create<arith::SelectOp>(loc, pred, add, count);
285   }
286 
287   Value zero = createIntConst(loc, operandTy, 0, rewriter);
288   Value pred = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq,
289                                               operand, zero);
290 
291   Value bwval = createIntConst(loc, operandTy, bitwidth, rewriter);
292   Value sel = rewriter.create<arith::SelectOp>(loc, pred, bwval, count);
293   rewriter.replaceOp(op, sel);
294   return success();
295 }
296 
297 // Convert `math.roundeven` into `math.round` + arith ops
298 static LogicalResult convertRoundEvenOp(math::RoundEvenOp op,
299                                         PatternRewriter &rewriter) {
300   Location loc = op.getLoc();
301   ImplicitLocOpBuilder b(loc, rewriter);
302   auto operand = op.getOperand();
303   Type operandTy = operand.getType();
304   Type resultTy = op.getType();
305   Type operandETy = getElementTypeOrSelf(operandTy);
306   Type resultETy = getElementTypeOrSelf(resultTy);
307 
308   if (!isa<FloatType>(operandETy) || !isa<FloatType>(resultETy)) {
309     return rewriter.notifyMatchFailure(op, "not a roundeven of f16 or f32.");
310   }
311 
312   Type fTy = operandTy;
313   Type iTy = rewriter.getIntegerType(operandETy.getIntOrFloatBitWidth());
314   if (auto shapedTy = dyn_cast<ShapedType>(fTy)) {
315     iTy = shapedTy.clone(iTy);
316   }
317 
318   unsigned bitWidth = operandETy.getIntOrFloatBitWidth();
319   // The width returned by getFPMantissaWidth includes the integer bit.
320   unsigned mantissaWidth =
321       llvm::cast<FloatType>(operandETy).getFPMantissaWidth() - 1;
322   unsigned exponentWidth = bitWidth - mantissaWidth - 1;
323 
324   // The names of the variables correspond to f32.
325   // f32: 1 bit sign | 8 bits exponent | 23 bits mantissa.
326   // f16: 1 bit sign | 5 bits exponent | 10 bits mantissa.
327   Value c1Float = createFloatConst(loc, fTy, 1.0, b);
328   Value c0 = createIntConst(loc, iTy, 0, b);
329   Value c1 = createIntConst(loc, iTy, 1, b);
330   Value cNeg1 = createIntConst(loc, iTy, -1, b);
331   Value c23 = createIntConst(loc, iTy, mantissaWidth, b);
332   Value c31 = createIntConst(loc, iTy, bitWidth - 1, b);
333   Value c127 = createIntConst(loc, iTy, (1 << (exponentWidth - 1)) - 1, b);
334   Value c2To22 = createIntConst(loc, iTy, 1 << (mantissaWidth - 1), b);
335   Value c23Mask = createIntConst(loc, iTy, (1 << mantissaWidth) - 1, b);
336   Value expMask = createIntConst(loc, iTy, (1 << exponentWidth) - 1, b);
337 
338   Value operandBitcast = b.create<arith::BitcastOp>(iTy, operand);
339   Value round = b.create<math::RoundOp>(operand);
340   Value roundBitcast = b.create<arith::BitcastOp>(iTy, round);
341 
342   // Get biased exponents for operand and round(operand)
343   Value operandExp = b.create<arith::AndIOp>(
344       b.create<arith::ShRUIOp>(operandBitcast, c23), expMask);
345   Value operandBiasedExp = b.create<arith::SubIOp>(operandExp, c127);
346   Value roundExp = b.create<arith::AndIOp>(
347       b.create<arith::ShRUIOp>(roundBitcast, c23), expMask);
348   Value roundBiasedExp = b.create<arith::SubIOp>(roundExp, c127);
349 
350   auto safeShiftRight = [&](Value x, Value shift) -> Value {
351     // Clamp shift to valid range [0, bitwidth - 1] to avoid undefined behavior
352     Value clampedShift = b.create<arith::MaxSIOp>(shift, c0);
353     clampedShift = b.create<arith::MinSIOp>(clampedShift, c31);
354     return b.create<arith::ShRUIOp>(x, clampedShift);
355   };
356 
357   auto maskMantissa = [&](Value mantissa,
358                           Value mantissaMaskRightShift) -> Value {
359     Value shiftedMantissaMask = safeShiftRight(c23Mask, mantissaMaskRightShift);
360     return b.create<arith::AndIOp>(mantissa, shiftedMantissaMask);
361   };
362 
363   // A whole number `x`, such that `|x| != 1`, is even if the mantissa, ignoring
364   // the leftmost `clamp(biasedExp - 1, 0, 23)` bits, is zero. Large numbers
365   // with `biasedExp > 23` (numbers where there is not enough precision to store
366   // decimals) are always even, and they satisfy the even condition trivially
367   // since the mantissa without all its bits is zero. The even condition
368   // is also true for +-0, since they have `biasedExp = -127` and the entire
369   // mantissa is zero. The case of +-1 has to be handled separately. Here
370   // we identify these values by noting that +-1 are the only whole numbers with
371   // `biasedExp == 0`.
372   //
373   // The special values +-inf and +-nan also satisfy the same property that
374   // whole non-unit even numbers satisfy. In particular, the special values have
375   // `biasedExp > 23`, so they get treated as large numbers with no room for
376   // decimals, which are always even.
377   Value roundBiasedExpEq0 =
378       b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, roundBiasedExp, c0);
379   Value roundBiasedExpMinus1 = b.create<arith::SubIOp>(roundBiasedExp, c1);
380   Value roundMaskedMantissa = maskMantissa(roundBitcast, roundBiasedExpMinus1);
381   Value roundIsNotEvenOrSpecialVal = b.create<arith::CmpIOp>(
382       arith::CmpIPredicate::ne, roundMaskedMantissa, c0);
383   roundIsNotEvenOrSpecialVal =
384       b.create<arith::OrIOp>(roundIsNotEvenOrSpecialVal, roundBiasedExpEq0);
385 
386   // A value `x` with `0 <= biasedExp < 23`, is halfway between two consecutive
387   // integers if the bit at index `biasedExp` starting from the left in the
388   // mantissa is 1 and all the bits to the right are zero. Values with
389   // `biasedExp >= 23` don't have decimals, so they are never halfway. The
390   // values +-0.5 are the only halfway values that have `biasedExp == -1 < 0`,
391   // so these are handled separately. In particular, if `biasedExp == -1`, the
392   // value is halfway if the entire mantissa is zero.
393   Value operandBiasedExpEqNeg1 = b.create<arith::CmpIOp>(
394       arith::CmpIPredicate::eq, operandBiasedExp, cNeg1);
395   Value expectedOperandMaskedMantissa = b.create<arith::SelectOp>(
396       operandBiasedExpEqNeg1, c0, safeShiftRight(c2To22, operandBiasedExp));
397   Value operandMaskedMantissa = maskMantissa(operandBitcast, operandBiasedExp);
398   Value operandIsHalfway =
399       b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, operandMaskedMantissa,
400                               expectedOperandMaskedMantissa);
401   // Ensure `biasedExp` is in the valid range for half values.
402   Value operandBiasedExpGeNeg1 = b.create<arith::CmpIOp>(
403       arith::CmpIPredicate::sge, operandBiasedExp, cNeg1);
404   Value operandBiasedExpLt23 =
405       b.create<arith::CmpIOp>(arith::CmpIPredicate::slt, operandBiasedExp, c23);
406   operandIsHalfway =
407       b.create<arith::AndIOp>(operandIsHalfway, operandBiasedExpLt23);
408   operandIsHalfway =
409       b.create<arith::AndIOp>(operandIsHalfway, operandBiasedExpGeNeg1);
410 
411   // Adjust rounded operand with `round(operand) - sign(operand)` to correct the
412   // case where `round` rounded in the opposite direction of `roundeven`.
413   Value sign = b.create<math::CopySignOp>(c1Float, operand);
414   Value roundShifted = b.create<arith::SubFOp>(round, sign);
415   // If the rounded value is even or a special value, we default to the behavior
416   // of `math.round`.
417   Value needsShift =
418       b.create<arith::AndIOp>(roundIsNotEvenOrSpecialVal, operandIsHalfway);
419   Value result = b.create<arith::SelectOp>(needsShift, roundShifted, round);
420   // The `x - sign` adjustment does not preserve the sign when we are adjusting
421   // the value -1 to -0. So here the sign is copied again to ensure that -0.5 is
422   // rounded to -0.0.
423   result = b.create<math::CopySignOp>(result, operand);
424   rewriter.replaceOp(op, result);
425   return success();
426 }
427 
428 void mlir::populateExpandCtlzPattern(RewritePatternSet &patterns) {
429   patterns.add(convertCtlzOp);
430 }
431 
432 void mlir::populateExpandTanPattern(RewritePatternSet &patterns) {
433   patterns.add(convertTanOp);
434 }
435 
436 void mlir::populateExpandTanhPattern(RewritePatternSet &patterns) {
437   patterns.add(convertTanhOp);
438 }
439 
440 void mlir::populateExpandFmaFPattern(RewritePatternSet &patterns) {
441   patterns.add(convertFmaFOp);
442 }
443 
444 void mlir::populateExpandCeilFPattern(RewritePatternSet &patterns) {
445   patterns.add(convertCeilOp);
446 }
447 
448 void mlir::populateExpandExp2FPattern(RewritePatternSet &patterns) {
449   patterns.add(convertExp2fOp);
450 }
451 
452 void mlir::populateExpandPowFPattern(RewritePatternSet &patterns) {
453   patterns.add(convertPowfOp);
454 }
455 
456 void mlir::populateExpandRoundFPattern(RewritePatternSet &patterns) {
457   patterns.add(convertRoundOp);
458 }
459 
460 void mlir::populateExpandFloorFPattern(RewritePatternSet &patterns) {
461   patterns.add(convertFloorOp);
462 }
463 
464 void mlir::populateExpandRoundEvenPattern(RewritePatternSet &patterns) {
465   patterns.add(convertRoundEvenOp);
466 }
467