1 //===- ExpandPatterns.cpp - Code to expand various math operations. -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements expansion of various math operations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Arith/IR/Arith.h" 14 #include "mlir/Dialect/Math/IR/Math.h" 15 #include "mlir/Dialect/Math/Transforms/Passes.h" 16 #include "mlir/Dialect/SCF/IR/SCF.h" 17 #include "mlir/Dialect/Vector/IR/VectorOps.h" 18 #include "mlir/IR/Builders.h" 19 #include "mlir/IR/ImplicitLocOpBuilder.h" 20 #include "mlir/IR/TypeUtilities.h" 21 #include "mlir/Transforms/DialectConversion.h" 22 23 using namespace mlir; 24 25 /// Create a float constant. 26 static Value createFloatConst(Location loc, Type type, APFloat value, 27 OpBuilder &b) { 28 bool losesInfo = false; 29 auto eltType = getElementTypeOrSelf(type); 30 // Convert double to the given `FloatType` with round-to-nearest-ties-to-even. 31 value.convert(cast<FloatType>(eltType).getFloatSemantics(), 32 APFloat::rmNearestTiesToEven, &losesInfo); 33 auto attr = b.getFloatAttr(eltType, value); 34 if (auto shapedTy = dyn_cast<ShapedType>(type)) { 35 return b.create<arith::ConstantOp>(loc, 36 DenseElementsAttr::get(shapedTy, attr)); 37 } 38 39 return b.create<arith::ConstantOp>(loc, attr); 40 } 41 42 static Value createFloatConst(Location loc, Type type, double value, 43 OpBuilder &b) { 44 return createFloatConst(loc, type, APFloat(value), b); 45 } 46 47 /// Create an integer constant. 48 static Value createIntConst(Location loc, Type type, int64_t value, 49 OpBuilder &b) { 50 auto attr = b.getIntegerAttr(getElementTypeOrSelf(type), value); 51 if (auto shapedTy = dyn_cast<ShapedType>(type)) { 52 return b.create<arith::ConstantOp>(loc, 53 DenseElementsAttr::get(shapedTy, attr)); 54 } 55 56 return b.create<arith::ConstantOp>(loc, attr); 57 } 58 59 static Value createTruncatedFPValue(Value operand, ImplicitLocOpBuilder &b) { 60 Type opType = operand.getType(); 61 Type i64Ty = b.getI64Type(); 62 if (auto shapedTy = dyn_cast<ShapedType>(opType)) 63 i64Ty = shapedTy.clone(i64Ty); 64 Value fixedConvert = b.create<arith::FPToSIOp>(i64Ty, operand); 65 Value fpFixedConvert = b.create<arith::SIToFPOp>(opType, fixedConvert); 66 // The truncation does not preserve the sign when the truncated 67 // value is -0. So here the sign is copied again. 68 return b.create<math::CopySignOp>(fpFixedConvert, operand); 69 } 70 71 // sinhf(float x) -> (exp(x) - exp(-x)) / 2 72 static LogicalResult convertSinhOp(math::SinhOp op, PatternRewriter &rewriter) { 73 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 74 Value operand = op.getOperand(); 75 Type opType = operand.getType(); 76 Value exp = b.create<math::ExpOp>(operand); 77 78 Value one = createFloatConst(op->getLoc(), opType, 1.0, rewriter); 79 Value nexp = b.create<arith::DivFOp>(one, exp); 80 Value sub = b.create<arith::SubFOp>(exp, nexp); 81 Value two = createFloatConst(op->getLoc(), opType, 2.0, rewriter); 82 Value div = b.create<arith::DivFOp>(sub, two); 83 rewriter.replaceOp(op, div); 84 return success(); 85 } 86 87 // coshf(float x) -> (exp(x) + exp(-x)) / 2 88 static LogicalResult convertCoshOp(math::CoshOp op, PatternRewriter &rewriter) { 89 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 90 Value operand = op.getOperand(); 91 Type opType = operand.getType(); 92 Value exp = b.create<math::ExpOp>(operand); 93 94 Value one = createFloatConst(op->getLoc(), opType, 1.0, rewriter); 95 Value nexp = b.create<arith::DivFOp>(one, exp); 96 Value add = b.create<arith::AddFOp>(exp, nexp); 97 Value two = createFloatConst(op->getLoc(), opType, 2.0, rewriter); 98 Value div = b.create<arith::DivFOp>(add, two); 99 rewriter.replaceOp(op, div); 100 return success(); 101 } 102 103 /// Expands tanh op into 104 /// 1-exp^{-2x} / 1+exp^{-2x} 105 /// To avoid overflow we exploit the reflection symmetry `tanh(-x) = -tanh(x)`. 106 /// We compute a "signs" value which is -1 if input is negative and +1 if input 107 /// is positive. Then multiply the input by this value, guaranteeing that the 108 /// result is positive, which also guarantees `exp^{-2x * sign(x)}` is in (0, 109 /// 1]. Expand the computation on the input `x * sign(x)`, then multiply the 110 /// result by `sign(x)` to retain sign of the real result. 111 static LogicalResult convertTanhOp(math::TanhOp op, PatternRewriter &rewriter) { 112 auto floatType = op.getOperand().getType(); 113 Location loc = op.getLoc(); 114 Value zero = createFloatConst(loc, floatType, 0.0, rewriter); 115 Value one = createFloatConst(loc, floatType, 1.0, rewriter); 116 Value negTwo = createFloatConst(loc, floatType, -2.0, rewriter); 117 118 // Compute sign(x) = cast<float_type>(x < 0) * (-2) + 1 119 Value isNegative = rewriter.create<arith::CmpFOp>( 120 loc, arith::CmpFPredicate::OLT, op.getOperand(), zero); 121 Value isNegativeFloat = 122 rewriter.create<arith::UIToFPOp>(loc, floatType, isNegative); 123 Value isNegativeTimesNegTwo = 124 rewriter.create<arith::MulFOp>(loc, isNegativeFloat, negTwo); 125 Value sign = rewriter.create<arith::AddFOp>(loc, isNegativeTimesNegTwo, one); 126 127 // Normalize input to positive value: y = sign(x) * x 128 Value positiveX = rewriter.create<arith::MulFOp>(loc, sign, op.getOperand()); 129 130 // Decompose on normalized input 131 Value negDoubledX = rewriter.create<arith::MulFOp>(loc, negTwo, positiveX); 132 Value exp2x = rewriter.create<math::ExpOp>(loc, negDoubledX); 133 Value dividend = rewriter.create<arith::SubFOp>(loc, one, exp2x); 134 Value divisor = rewriter.create<arith::AddFOp>(loc, one, exp2x); 135 Value positiveRes = rewriter.create<arith::DivFOp>(loc, dividend, divisor); 136 137 // Multiply result by sign(x) to retain signs from negative inputs 138 rewriter.replaceOpWithNewOp<arith::MulFOp>(op, sign, positiveRes); 139 140 return success(); 141 } 142 143 // Converts math.tan to math.sin, math.cos, and arith.divf. 144 static LogicalResult convertTanOp(math::TanOp op, PatternRewriter &rewriter) { 145 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 146 Value operand = op.getOperand(); 147 Type type = operand.getType(); 148 Value sin = b.create<math::SinOp>(type, operand); 149 Value cos = b.create<math::CosOp>(type, operand); 150 Value div = b.create<arith::DivFOp>(type, sin, cos); 151 rewriter.replaceOp(op, div); 152 return success(); 153 } 154 155 static LogicalResult convertFmaFOp(math::FmaOp op, PatternRewriter &rewriter) { 156 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 157 Value operandA = op.getOperand(0); 158 Value operandB = op.getOperand(1); 159 Value operandC = op.getOperand(2); 160 Type type = op.getType(); 161 Value mult = b.create<arith::MulFOp>(type, operandA, operandB); 162 Value add = b.create<arith::AddFOp>(type, mult, operandC); 163 rewriter.replaceOp(op, add); 164 return success(); 165 } 166 167 // Converts a floorf() function to the following: 168 // floorf(float x) -> 169 // y = (float)(int) x 170 // if (x < 0) then incr = -1 else incr = 0 171 // y = y + incr <= replace this op with the floorf op. 172 static LogicalResult convertFloorOp(math::FloorOp op, 173 PatternRewriter &rewriter) { 174 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 175 Value operand = op.getOperand(); 176 Type opType = operand.getType(); 177 Value fpFixedConvert = createTruncatedFPValue(operand, b); 178 179 // Creating constants for later use. 180 Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter); 181 Value negOne = createFloatConst(op->getLoc(), opType, -1.00, rewriter); 182 183 Value negCheck = 184 b.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operand, zero); 185 Value incrValue = 186 b.create<arith::SelectOp>(op->getLoc(), negCheck, negOne, zero); 187 Value ret = b.create<arith::AddFOp>(opType, fpFixedConvert, incrValue); 188 rewriter.replaceOp(op, ret); 189 return success(); 190 } 191 192 // Converts a ceilf() function to the following: 193 // ceilf(float x) -> 194 // y = (float)(int) x 195 // if (x > y) then incr = 1 else incr = 0 196 // y = y + incr <= replace this op with the ceilf op. 197 static LogicalResult convertCeilOp(math::CeilOp op, PatternRewriter &rewriter) { 198 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 199 Value operand = op.getOperand(); 200 Type opType = operand.getType(); 201 Value fpFixedConvert = createTruncatedFPValue(operand, b); 202 203 // Creating constants for later use. 204 Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter); 205 Value one = createFloatConst(op->getLoc(), opType, 1.00, rewriter); 206 207 Value gtCheck = b.create<arith::CmpFOp>(arith::CmpFPredicate::OGT, operand, 208 fpFixedConvert); 209 Value incrValue = b.create<arith::SelectOp>(op->getLoc(), gtCheck, one, zero); 210 211 Value ret = b.create<arith::AddFOp>(opType, fpFixedConvert, incrValue); 212 rewriter.replaceOp(op, ret); 213 return success(); 214 } 215 216 // Convert `math.fpowi` to a series of `arith.mulf` operations. 217 // If the power is negative, we divide one by the result. 218 // If both the base and power are zero, the result is 1. 219 static LogicalResult convertFPowICstOp(math::FPowIOp op, 220 PatternRewriter &rewriter) { 221 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 222 Value base = op.getOperand(0); 223 Value power = op.getOperand(1); 224 Type baseType = base.getType(); 225 226 Attribute cstAttr; 227 if (!matchPattern(power, m_Constant(&cstAttr))) 228 return failure(); 229 230 APInt value; 231 if (!matchPattern(cstAttr, m_ConstantInt(&value))) 232 return failure(); 233 234 int64_t powerInt = value.getSExtValue(); 235 bool isNegative = powerInt < 0; 236 int64_t absPower = std::abs(powerInt); 237 Value one = createFloatConst(op->getLoc(), baseType, 1.00, rewriter); 238 Value res = createFloatConst(op->getLoc(), baseType, 1.00, rewriter); 239 240 while (absPower > 0) { 241 if (absPower & 1) 242 res = b.create<arith::MulFOp>(baseType, base, res); 243 absPower >>= 1; 244 base = b.create<arith::MulFOp>(baseType, base, base); 245 } 246 247 // Make sure not to introduce UB in case of negative power. 248 if (isNegative) { 249 auto &sem = dyn_cast<mlir::FloatType>(getElementTypeOrSelf(baseType)) 250 .getFloatSemantics(); 251 Value zero = 252 createFloatConst(op->getLoc(), baseType, 253 APFloat::getZero(sem, /*Negative=*/false), rewriter); 254 Value negZero = 255 createFloatConst(op->getLoc(), baseType, 256 APFloat::getZero(sem, /*Negative=*/true), rewriter); 257 Value posInfinity = 258 createFloatConst(op->getLoc(), baseType, 259 APFloat::getInf(sem, /*Negative=*/false), rewriter); 260 Value negInfinity = 261 createFloatConst(op->getLoc(), baseType, 262 APFloat::getInf(sem, /*Negative=*/true), rewriter); 263 Value zeroEqCheck = 264 b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, res, zero); 265 Value negZeroEqCheck = 266 b.create<arith::CmpFOp>(arith::CmpFPredicate::OEQ, res, negZero); 267 res = b.create<arith::DivFOp>(baseType, one, res); 268 res = 269 b.create<arith::SelectOp>(op->getLoc(), zeroEqCheck, posInfinity, res); 270 res = b.create<arith::SelectOp>(op->getLoc(), negZeroEqCheck, negInfinity, 271 res); 272 } 273 274 rewriter.replaceOp(op, res); 275 return success(); 276 } 277 278 // Converts Powf(float a, float b) (meaning a^b) to exp^(b * ln(a)) 279 static LogicalResult convertPowfOp(math::PowFOp op, PatternRewriter &rewriter) { 280 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 281 Value operandA = op.getOperand(0); 282 Value operandB = op.getOperand(1); 283 Type opType = operandA.getType(); 284 Value zero = createFloatConst(op->getLoc(), opType, 0.00, rewriter); 285 Value two = createFloatConst(op->getLoc(), opType, 2.00, rewriter); 286 Value negOne = createFloatConst(op->getLoc(), opType, -1.00, rewriter); 287 Value opASquared = b.create<arith::MulFOp>(opType, operandA, operandA); 288 Value opBHalf = b.create<arith::DivFOp>(opType, operandB, two); 289 290 Value logA = b.create<math::LogOp>(opType, opASquared); 291 Value mult = b.create<arith::MulFOp>(opType, opBHalf, logA); 292 Value expResult = b.create<math::ExpOp>(opType, mult); 293 Value negExpResult = b.create<arith::MulFOp>(opType, expResult, negOne); 294 Value remainder = b.create<arith::RemFOp>(opType, operandB, two); 295 Value negCheck = 296 b.create<arith::CmpFOp>(arith::CmpFPredicate::OLT, operandA, zero); 297 Value oddPower = 298 b.create<arith::CmpFOp>(arith::CmpFPredicate::ONE, remainder, zero); 299 Value oddAndNeg = b.create<arith::AndIOp>(op->getLoc(), oddPower, negCheck); 300 301 Value res = b.create<arith::SelectOp>(op->getLoc(), oddAndNeg, negExpResult, 302 expResult); 303 rewriter.replaceOp(op, res); 304 return success(); 305 } 306 307 // exp2f(float x) -> exp(x * ln(2)) 308 // Proof: Let's say 2^x = y 309 // ln(2^x) = ln(y) 310 // x * ln(2) = ln(y) => e ^(x*ln(2)) = y 311 static LogicalResult convertExp2fOp(math::Exp2Op op, 312 PatternRewriter &rewriter) { 313 ImplicitLocOpBuilder b(op->getLoc(), rewriter); 314 Value operand = op.getOperand(); 315 Type opType = operand.getType(); 316 Value ln2 = createFloatConst(op->getLoc(), opType, llvm::numbers::ln2, b); 317 Value mult = b.create<arith::MulFOp>(opType, operand, ln2); 318 Value exp = b.create<math::ExpOp>(op->getLoc(), mult); 319 rewriter.replaceOp(op, exp); 320 return success(); 321 } 322 323 static LogicalResult convertRoundOp(math::RoundOp op, 324 PatternRewriter &rewriter) { 325 Location loc = op.getLoc(); 326 ImplicitLocOpBuilder b(loc, rewriter); 327 Value operand = op.getOperand(); 328 Type opType = operand.getType(); 329 Type opEType = getElementTypeOrSelf(opType); 330 331 if (!opEType.isF32()) { 332 return rewriter.notifyMatchFailure(op, "not a round of f32."); 333 } 334 335 Type i32Ty = b.getI32Type(); 336 if (auto shapedTy = dyn_cast<ShapedType>(opType)) 337 i32Ty = shapedTy.clone(i32Ty); 338 339 Value half = createFloatConst(loc, opType, 0.5, b); 340 Value c23 = createIntConst(loc, i32Ty, 23, b); 341 Value c127 = createIntConst(loc, i32Ty, 127, b); 342 Value expMask = createIntConst(loc, i32Ty, (1 << 8) - 1, b); 343 344 Value incrValue = b.create<math::CopySignOp>(half, operand); 345 Value add = b.create<arith::AddFOp>(opType, operand, incrValue); 346 Value fpFixedConvert = createTruncatedFPValue(add, b); 347 348 // There are three cases where adding 0.5 to the value and truncating by 349 // converting to an i64 does not result in the correct behavior: 350 // 351 // 1. Special values: +-inf and +-nan 352 // Casting these special values to i64 has undefined behavior. To identify 353 // these values, we use the fact that these values are the only float 354 // values with the maximum possible biased exponent. 355 // 356 // 2. Large values: 2^23 <= |x| <= INT_64_MAX 357 // Adding 0.5 to a float larger than or equal to 2^23 results in precision 358 // errors that sometimes round the value up and sometimes round the value 359 // down. For example: 360 // 8388608.0 + 0.5 = 8388608.0 361 // 8388609.0 + 0.5 = 8388610.0 362 // 363 // 3. Very large values: |x| > INT_64_MAX 364 // Casting to i64 a value greater than the max i64 value will overflow the 365 // i64 leading to wrong outputs. 366 // 367 // All three cases satisfy the property `biasedExp >= 23`. 368 Value operandBitcast = b.create<arith::BitcastOp>(i32Ty, operand); 369 Value operandExp = b.create<arith::AndIOp>( 370 b.create<arith::ShRUIOp>(operandBitcast, c23), expMask); 371 Value operandBiasedExp = b.create<arith::SubIOp>(operandExp, c127); 372 Value isSpecialValOrLargeVal = 373 b.create<arith::CmpIOp>(arith::CmpIPredicate::sge, operandBiasedExp, c23); 374 375 Value result = b.create<arith::SelectOp>(isSpecialValOrLargeVal, operand, 376 fpFixedConvert); 377 rewriter.replaceOp(op, result); 378 return success(); 379 } 380 381 // Converts math.ctlz to scf and arith operations. This is done 382 // by performing a binary search on the bits. 383 static LogicalResult convertCtlzOp(math::CountLeadingZerosOp op, 384 PatternRewriter &rewriter) { 385 auto operand = op.getOperand(); 386 auto operandTy = operand.getType(); 387 auto eTy = getElementTypeOrSelf(operandTy); 388 Location loc = op.getLoc(); 389 390 int32_t bitwidth = eTy.getIntOrFloatBitWidth(); 391 if (bitwidth > 64) 392 return failure(); 393 394 uint64_t allbits = -1; 395 if (bitwidth < 64) { 396 allbits = allbits >> (64 - bitwidth); 397 } 398 399 Value x = operand; 400 Value count = createIntConst(loc, operandTy, 0, rewriter); 401 for (int32_t bw = bitwidth; bw > 1; bw = bw / 2) { 402 auto half = bw / 2; 403 auto bits = createIntConst(loc, operandTy, half, rewriter); 404 auto mask = createIntConst(loc, operandTy, allbits >> half, rewriter); 405 406 Value pred = 407 rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::ule, x, mask); 408 Value add = rewriter.create<arith::AddIOp>(loc, count, bits); 409 Value shift = rewriter.create<arith::ShLIOp>(loc, x, bits); 410 411 x = rewriter.create<arith::SelectOp>(loc, pred, shift, x); 412 count = rewriter.create<arith::SelectOp>(loc, pred, add, count); 413 } 414 415 Value zero = createIntConst(loc, operandTy, 0, rewriter); 416 Value pred = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::eq, 417 operand, zero); 418 419 Value bwval = createIntConst(loc, operandTy, bitwidth, rewriter); 420 Value sel = rewriter.create<arith::SelectOp>(loc, pred, bwval, count); 421 rewriter.replaceOp(op, sel); 422 return success(); 423 } 424 425 // Convert `math.roundeven` into `math.round` + arith ops 426 static LogicalResult convertRoundEvenOp(math::RoundEvenOp op, 427 PatternRewriter &rewriter) { 428 Location loc = op.getLoc(); 429 ImplicitLocOpBuilder b(loc, rewriter); 430 auto operand = op.getOperand(); 431 Type operandTy = operand.getType(); 432 Type resultTy = op.getType(); 433 Type operandETy = getElementTypeOrSelf(operandTy); 434 Type resultETy = getElementTypeOrSelf(resultTy); 435 436 if (!isa<FloatType>(operandETy) || !isa<FloatType>(resultETy)) { 437 return rewriter.notifyMatchFailure(op, "not a roundeven of f16 or f32."); 438 } 439 440 Type fTy = operandTy; 441 Type iTy = rewriter.getIntegerType(operandETy.getIntOrFloatBitWidth()); 442 if (auto shapedTy = dyn_cast<ShapedType>(fTy)) { 443 iTy = shapedTy.clone(iTy); 444 } 445 446 unsigned bitWidth = operandETy.getIntOrFloatBitWidth(); 447 // The width returned by getFPMantissaWidth includes the integer bit. 448 unsigned mantissaWidth = 449 llvm::cast<FloatType>(operandETy).getFPMantissaWidth() - 1; 450 unsigned exponentWidth = bitWidth - mantissaWidth - 1; 451 452 // The names of the variables correspond to f32. 453 // f64: 1 bit sign | 11 bits exponent | 52 bits mantissa. 454 // f32: 1 bit sign | 8 bits exponent | 23 bits mantissa. 455 // f16: 1 bit sign | 5 bits exponent | 10 bits mantissa. 456 Value c1Float = createFloatConst(loc, fTy, 1.0, b); 457 Value c0 = createIntConst(loc, iTy, 0, b); 458 Value c1 = createIntConst(loc, iTy, 1, b); 459 Value cNeg1 = createIntConst(loc, iTy, -1, b); 460 Value c23 = createIntConst(loc, iTy, mantissaWidth, b); 461 Value c31 = createIntConst(loc, iTy, bitWidth - 1, b); 462 Value c127 = createIntConst(loc, iTy, (1ull << (exponentWidth - 1)) - 1, b); 463 Value c2To22 = createIntConst(loc, iTy, 1ull << (mantissaWidth - 1), b); 464 Value c23Mask = createIntConst(loc, iTy, (1ull << mantissaWidth) - 1, b); 465 Value expMask = createIntConst(loc, iTy, (1ull << exponentWidth) - 1, b); 466 467 Value operandBitcast = b.create<arith::BitcastOp>(iTy, operand); 468 Value round = b.create<math::RoundOp>(operand); 469 Value roundBitcast = b.create<arith::BitcastOp>(iTy, round); 470 471 // Get biased exponents for operand and round(operand) 472 Value operandExp = b.create<arith::AndIOp>( 473 b.create<arith::ShRUIOp>(operandBitcast, c23), expMask); 474 Value operandBiasedExp = b.create<arith::SubIOp>(operandExp, c127); 475 Value roundExp = b.create<arith::AndIOp>( 476 b.create<arith::ShRUIOp>(roundBitcast, c23), expMask); 477 Value roundBiasedExp = b.create<arith::SubIOp>(roundExp, c127); 478 479 auto safeShiftRight = [&](Value x, Value shift) -> Value { 480 // Clamp shift to valid range [0, bitwidth - 1] to avoid undefined behavior 481 Value clampedShift = b.create<arith::MaxSIOp>(shift, c0); 482 clampedShift = b.create<arith::MinSIOp>(clampedShift, c31); 483 return b.create<arith::ShRUIOp>(x, clampedShift); 484 }; 485 486 auto maskMantissa = [&](Value mantissa, 487 Value mantissaMaskRightShift) -> Value { 488 Value shiftedMantissaMask = safeShiftRight(c23Mask, mantissaMaskRightShift); 489 return b.create<arith::AndIOp>(mantissa, shiftedMantissaMask); 490 }; 491 492 // A whole number `x`, such that `|x| != 1`, is even if the mantissa, ignoring 493 // the leftmost `clamp(biasedExp - 1, 0, 23)` bits, is zero. Large numbers 494 // with `biasedExp > 23` (numbers where there is not enough precision to store 495 // decimals) are always even, and they satisfy the even condition trivially 496 // since the mantissa without all its bits is zero. The even condition 497 // is also true for +-0, since they have `biasedExp = -127` and the entire 498 // mantissa is zero. The case of +-1 has to be handled separately. Here 499 // we identify these values by noting that +-1 are the only whole numbers with 500 // `biasedExp == 0`. 501 // 502 // The special values +-inf and +-nan also satisfy the same property that 503 // whole non-unit even numbers satisfy. In particular, the special values have 504 // `biasedExp > 23`, so they get treated as large numbers with no room for 505 // decimals, which are always even. 506 Value roundBiasedExpEq0 = 507 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, roundBiasedExp, c0); 508 Value roundBiasedExpMinus1 = b.create<arith::SubIOp>(roundBiasedExp, c1); 509 Value roundMaskedMantissa = maskMantissa(roundBitcast, roundBiasedExpMinus1); 510 Value roundIsNotEvenOrSpecialVal = b.create<arith::CmpIOp>( 511 arith::CmpIPredicate::ne, roundMaskedMantissa, c0); 512 roundIsNotEvenOrSpecialVal = 513 b.create<arith::OrIOp>(roundIsNotEvenOrSpecialVal, roundBiasedExpEq0); 514 515 // A value `x` with `0 <= biasedExp < 23`, is halfway between two consecutive 516 // integers if the bit at index `biasedExp` starting from the left in the 517 // mantissa is 1 and all the bits to the right are zero. Values with 518 // `biasedExp >= 23` don't have decimals, so they are never halfway. The 519 // values +-0.5 are the only halfway values that have `biasedExp == -1 < 0`, 520 // so these are handled separately. In particular, if `biasedExp == -1`, the 521 // value is halfway if the entire mantissa is zero. 522 Value operandBiasedExpEqNeg1 = b.create<arith::CmpIOp>( 523 arith::CmpIPredicate::eq, operandBiasedExp, cNeg1); 524 Value expectedOperandMaskedMantissa = b.create<arith::SelectOp>( 525 operandBiasedExpEqNeg1, c0, safeShiftRight(c2To22, operandBiasedExp)); 526 Value operandMaskedMantissa = maskMantissa(operandBitcast, operandBiasedExp); 527 Value operandIsHalfway = 528 b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, operandMaskedMantissa, 529 expectedOperandMaskedMantissa); 530 // Ensure `biasedExp` is in the valid range for half values. 531 Value operandBiasedExpGeNeg1 = b.create<arith::CmpIOp>( 532 arith::CmpIPredicate::sge, operandBiasedExp, cNeg1); 533 Value operandBiasedExpLt23 = 534 b.create<arith::CmpIOp>(arith::CmpIPredicate::slt, operandBiasedExp, c23); 535 operandIsHalfway = 536 b.create<arith::AndIOp>(operandIsHalfway, operandBiasedExpLt23); 537 operandIsHalfway = 538 b.create<arith::AndIOp>(operandIsHalfway, operandBiasedExpGeNeg1); 539 540 // Adjust rounded operand with `round(operand) - sign(operand)` to correct the 541 // case where `round` rounded in the opposite direction of `roundeven`. 542 Value sign = b.create<math::CopySignOp>(c1Float, operand); 543 Value roundShifted = b.create<arith::SubFOp>(round, sign); 544 // If the rounded value is even or a special value, we default to the behavior 545 // of `math.round`. 546 Value needsShift = 547 b.create<arith::AndIOp>(roundIsNotEvenOrSpecialVal, operandIsHalfway); 548 Value result = b.create<arith::SelectOp>(needsShift, roundShifted, round); 549 // The `x - sign` adjustment does not preserve the sign when we are adjusting 550 // the value -1 to -0. So here the sign is copied again to ensure that -0.5 is 551 // rounded to -0.0. 552 result = b.create<math::CopySignOp>(result, operand); 553 rewriter.replaceOp(op, result); 554 return success(); 555 } 556 557 void mlir::populateExpandCtlzPattern(RewritePatternSet &patterns) { 558 patterns.add(convertCtlzOp); 559 } 560 561 void mlir::populateExpandSinhPattern(RewritePatternSet &patterns) { 562 patterns.add(convertSinhOp); 563 } 564 565 void mlir::populateExpandCoshPattern(RewritePatternSet &patterns) { 566 patterns.add(convertCoshOp); 567 } 568 569 void mlir::populateExpandTanPattern(RewritePatternSet &patterns) { 570 patterns.add(convertTanOp); 571 } 572 573 void mlir::populateExpandTanhPattern(RewritePatternSet &patterns) { 574 patterns.add(convertTanhOp); 575 } 576 577 void mlir::populateExpandFmaFPattern(RewritePatternSet &patterns) { 578 patterns.add(convertFmaFOp); 579 } 580 581 void mlir::populateExpandCeilFPattern(RewritePatternSet &patterns) { 582 patterns.add(convertCeilOp); 583 } 584 585 void mlir::populateExpandExp2FPattern(RewritePatternSet &patterns) { 586 patterns.add(convertExp2fOp); 587 } 588 589 void mlir::populateExpandPowFPattern(RewritePatternSet &patterns) { 590 patterns.add(convertPowfOp); 591 } 592 593 void mlir::populateExpandFPowIPattern(RewritePatternSet &patterns) { 594 patterns.add(convertFPowICstOp); 595 } 596 597 void mlir::populateExpandRoundFPattern(RewritePatternSet &patterns) { 598 patterns.add(convertRoundOp); 599 } 600 601 void mlir::populateExpandFloorFPattern(RewritePatternSet &patterns) { 602 patterns.add(convertFloorOp); 603 } 604 605 void mlir::populateExpandRoundEvenPattern(RewritePatternSet &patterns) { 606 patterns.add(convertRoundEvenOp); 607 } 608