1 //===- Utils.cpp - Utilities to support the Linalg dialect ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements utilities for the Linalg dialect. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Linalg/Utils/Utils.h" 14 15 #include "mlir/Analysis/SliceAnalysis.h" 16 #include "mlir/Dialect/Affine/Analysis/AffineStructures.h" 17 #include "mlir/Dialect/Affine/IR/AffineOps.h" 18 #include "mlir/Dialect/Affine/IR/AffineValueMap.h" 19 #include "mlir/Dialect/Affine/LoopUtils.h" 20 #include "mlir/Dialect/Arith/IR/Arith.h" 21 #include "mlir/Dialect/Arith/Utils/Utils.h" 22 #include "mlir/Dialect/Func/IR/FuncOps.h" 23 #include "mlir/Dialect/Linalg/IR/Linalg.h" 24 #include "mlir/Dialect/MemRef/IR/MemRef.h" 25 #include "mlir/Dialect/SCF/IR/SCF.h" 26 #include "mlir/Dialect/Tensor/IR/Tensor.h" 27 #include "mlir/Dialect/Tensor/Utils/Utils.h" 28 #include "mlir/Dialect/Utils/IndexingUtils.h" 29 #include "mlir/Dialect/Utils/StaticValueUtils.h" 30 #include "mlir/IR/AffineExpr.h" 31 #include "mlir/IR/AffineExprVisitor.h" 32 #include "mlir/IR/AffineMap.h" 33 #include "mlir/IR/Matchers.h" 34 #include "mlir/IR/OpImplementation.h" 35 #include "mlir/Pass/Pass.h" 36 #include "llvm/ADT/TypeSwitch.h" 37 #include "llvm/Support/Debug.h" 38 #include <optional> 39 40 #define DEBUG_TYPE "linalg-utils" 41 42 using namespace mlir; 43 using namespace presburger; 44 using namespace mlir::affine; 45 using namespace mlir::linalg; 46 using namespace mlir::scf; 47 48 namespace { 49 50 // Helper visitor to determine whether an AffineExpr is tiled. 51 // This is achieved by traversing every AffineDimExpr with position `pos` and 52 // checking whether the corresponding `tileSizes[pos]` is non-zero. 53 // This also enforces only positive coefficients occur in multiplications. 54 // 55 // Example: 56 // `d0 + 2 * d1 + d3` is tiled by [0, 0, 0, 2] but not by [0, 0, 2, 0] 57 // 58 struct TileCheck : public AffineExprVisitor<TileCheck> { 59 TileCheck(ArrayRef<OpFoldResult> tileSizes) : tileSizes(tileSizes) {} 60 61 void visitDimExpr(AffineDimExpr expr) { 62 isTiled |= !isZeroIndex(tileSizes[expr.getPosition()]); 63 } 64 void visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { 65 visit(expr.getLHS()); 66 visit(expr.getRHS()); 67 if (expr.getKind() == mlir::AffineExprKind::Mul) 68 assert(expr.getRHS().cast<AffineConstantExpr>().getValue() > 0 && 69 "nonpositive multiplying coefficient"); 70 } 71 bool isTiled = false; 72 ArrayRef<OpFoldResult> tileSizes; 73 }; 74 75 } // namespace 76 77 static bool isTiled(AffineExpr expr, ArrayRef<OpFoldResult> tileSizes) { 78 if (!expr) 79 return false; 80 TileCheck t(tileSizes); 81 t.visit(expr); 82 return t.isTiled; 83 } 84 85 // Checks whether the `map varies with respect to a non-zero `tileSize`. 86 static bool isTiled(AffineMap map, ArrayRef<OpFoldResult> tileSizes) { 87 if (!map) 88 return false; 89 for (unsigned r = 0; r < map.getNumResults(); ++r) 90 if (isTiled(map.getResult(r), tileSizes)) 91 return true; 92 return false; 93 } 94 95 std::optional<RegionMatcher::BinaryOpKind> 96 RegionMatcher::matchAsScalarBinaryOp(GenericOp op) { 97 auto ®ion = op.getRegion(); 98 if (!llvm::hasSingleElement(region)) 99 return std::nullopt; 100 101 Block &block = region.front(); 102 if (block.getNumArguments() != 2 || 103 !block.getArgument(0).getType().isSignlessIntOrFloat() || 104 !block.getArgument(1).getType().isSignlessIntOrFloat()) 105 return std::nullopt; 106 107 auto &ops = block.getOperations(); 108 if (!llvm::hasSingleElement(block.without_terminator())) 109 return std::nullopt; 110 111 using mlir::matchers::m_Val; 112 auto a = m_Val(block.getArgument(0)); 113 auto b = m_Val(block.getArgument(1)); 114 115 auto addPattern = m_Op<linalg::YieldOp>(m_Op<arith::AddIOp>(a, b)); 116 if (addPattern.match(&ops.back())) 117 return BinaryOpKind::IAdd; 118 119 return std::nullopt; 120 } 121 122 /// Explicit instantiation of loop nest generator for different loop types. 123 template struct mlir::linalg::GenerateLoopNest<scf::ForOp>; 124 template struct mlir::linalg::GenerateLoopNest<scf::ParallelOp>; 125 template struct mlir::linalg::GenerateLoopNest<AffineForOp>; 126 127 /// Given a list of subview ranges, extract individual values for lower, upper 128 /// bounds and steps and put them into the corresponding vectors. 129 static void unpackRanges(OpBuilder &builder, Location loc, 130 ArrayRef<Range> ranges, SmallVectorImpl<Value> &lbs, 131 SmallVectorImpl<Value> &ubs, 132 SmallVectorImpl<Value> &steps) { 133 for (Range range : ranges) { 134 lbs.emplace_back( 135 getValueOrCreateConstantIndexOp(builder, loc, range.offset)); 136 ubs.emplace_back(getValueOrCreateConstantIndexOp(builder, loc, range.size)); 137 steps.emplace_back( 138 getValueOrCreateConstantIndexOp(builder, loc, range.stride)); 139 } 140 } 141 142 //===----------------------------------------------------------------------===// 143 // General utilities 144 //===----------------------------------------------------------------------===// 145 146 namespace mlir { 147 namespace linalg { 148 149 bool allIndexingsAreProjectedPermutation(LinalgOp op) { 150 return llvm::all_of(op.getIndexingMapsArray(), [](AffineMap m) { 151 return m.isProjectedPermutation(/*allowZeroInResults=*/true); 152 }); 153 } 154 155 bool hasOnlyScalarElementwiseOp(Region &r) { 156 if (!llvm::hasSingleElement(r)) 157 return false; 158 for (Operation &op : r.front()) { 159 if (!(isa<arith::ConstantOp, func::ConstantOp, tensor::ExtractOp, 160 linalg::YieldOp, linalg::IndexOp, AffineApplyOp>(op) || 161 OpTrait::hasElementwiseMappableTraits(&op)) || 162 llvm::any_of(op.getResultTypes(), 163 [](Type type) { return !type.isIntOrIndexOrFloat(); })) 164 return false; 165 } 166 return true; 167 } 168 169 bool isElementwise(LinalgOp op) { 170 if (op.getNumLoops() != op.getNumParallelLoops()) 171 return false; 172 173 if (!allIndexingsAreProjectedPermutation(op)) 174 return false; 175 176 // TODO: relax the restrictions on indexing map. 177 for (OpOperand *opOperand : op.getDpsInitOperands()) { 178 if (!op.getMatchingIndexingMap(opOperand).isPermutation()) 179 return false; 180 } 181 return hasOnlyScalarElementwiseOp(op->getRegion(0)); 182 } 183 184 bool isParallelIterator(utils::IteratorType iteratorType) { 185 return iteratorType == utils::IteratorType::parallel; 186 } 187 188 bool isReductionIterator(utils::IteratorType iteratorType) { 189 return iteratorType == utils::IteratorType::reduction; 190 } 191 192 Value makeComposedPadHighOp(OpBuilder &b, Location loc, RankedTensorType type, 193 Value source, Value pad, bool nofold) { 194 // Exit if `source` is not defined by an ExtractSliceOp. 195 auto sliceOp = source.getDefiningOp<tensor::ExtractSliceOp>(); 196 if (!sliceOp) 197 return tensor::createPadHighOp(type, source, pad, nofold, loc, b); 198 199 // Search the `source` use-def chain for padded LinalgOps. 200 Value current = sliceOp.getSource(); 201 while (current) { 202 auto linalgOp = current.getDefiningOp<LinalgOp>(); 203 if (!linalgOp) 204 break; 205 OpResult opResult = cast<OpResult>(current); 206 current = linalgOp.getDpsInitOperand(opResult.getResultNumber())->get(); 207 } 208 auto padOp = current ? current.getDefiningOp<tensor::PadOp>() : nullptr; 209 210 // Exit if the search fails to match a tensor::PadOp at the end of the matched 211 // LinalgOp sequence. 212 if (!padOp) 213 return tensor::createPadHighOp(type, source, pad, nofold, loc, b); 214 215 // Exit if the padded result type does not match. 216 if (sliceOp.getSource().getType() != type) 217 return tensor::createPadHighOp(type, source, pad, nofold, loc, b); 218 219 // Exit if the LinalgOps are not high padded. 220 if (llvm::any_of(padOp.getMixedLowPad(), [](OpFoldResult ofr) { 221 return getConstantIntValue(ofr) != static_cast<int64_t>(0); 222 })) 223 return tensor::createPadHighOp(type, source, pad, nofold, loc, b); 224 225 // Exit if `padOpSliceOp`, which defines the slice used by 226 // `padOp`, is rank-reducing. 227 auto padOpSliceOp = padOp.getSource().getDefiningOp<tensor::ExtractSliceOp>(); 228 if (!padOpSliceOp || 229 sliceOp.getMixedSizes().size() != padOpSliceOp.getMixedSizes().size()) 230 return tensor::createPadHighOp(type, source, pad, nofold, loc, b); 231 232 // Exit if the sizes of the dynamic sizes of `sliceOp` do not match the size 233 // of the slice padded by `padOp`. 234 if (llvm::any_of( 235 llvm::zip(sliceOp.getMixedSizes(), padOpSliceOp.getMixedSizes()), 236 [](std::tuple<OpFoldResult, OpFoldResult> it) { 237 return !isEqualConstantIntOrValue(std::get<0>(it), std::get<1>(it)); 238 })) 239 return tensor::createPadHighOp(type, source, pad, nofold, loc, b); 240 241 // Exit if the padding values do not match. 242 Attribute padOpPadAttr, padAttr; 243 Value padOpPad = padOp.getConstantPaddingValue(); 244 if (!padOpPad || !matchPattern(padOpPad, m_Constant(&padOpPadAttr)) || 245 !matchPattern(pad, m_Constant(&padAttr)) || padOpPadAttr != padAttr) 246 return tensor::createPadHighOp(type, source, pad, nofold, loc, b); 247 248 // Return the padded result if the padding values and sizes match. 249 return sliceOp.getSource(); 250 } 251 252 GenericOp makeTransposeOp(OpBuilder &b, Location loc, Value inputTensor, 253 Value outputTensor, 254 ArrayRef<int64_t> transposeVector) { 255 auto resultTensorType = cast<RankedTensorType>(outputTensor.getType()); 256 Type elementType = resultTensorType.getElementType(); 257 258 assert(isPermutationVector(transposeVector) && 259 "expect transpose vector to be a permutation"); 260 assert(transposeVector.size() == 261 static_cast<size_t>(resultTensorType.getRank()) && 262 "expect transpose vector size to match result tensor rank"); 263 264 // Compute the transpose and the indentity indexing maps. 265 SmallVector<AffineMap> indexingMaps = { 266 inversePermutation(AffineMap::getPermutationMap( 267 SmallVector<unsigned>(transposeVector.begin(), transposeVector.end()), 268 b.getContext())), 269 AffineMap::getMultiDimIdentityMap(transposeVector.size(), 270 b.getContext())}; 271 SmallVector<utils::IteratorType> iteratorTypes(transposeVector.size(), 272 utils::IteratorType::parallel); 273 274 // Create a GenericOp to transpose `inputTensor` into `outputTensor`. 275 auto transposeOp = 276 b.create<GenericOp>(loc, resultTensorType, inputTensor, outputTensor, 277 indexingMaps, iteratorTypes); 278 Region &body = transposeOp.getRegion(); 279 body.push_back(new Block()); 280 body.front().addArguments({elementType, elementType}, {loc, loc}); 281 282 // Create the body of the transpose operation. 283 OpBuilder::InsertionGuard g(b); 284 b.setInsertionPointToEnd(&body.front()); 285 b.create<YieldOp>(loc, transposeOp.getRegion().front().getArgument(0)); 286 return transposeOp; 287 } 288 289 GenericOp makeMemRefCopyOp(OpBuilder &b, Location loc, Value from, Value to) { 290 auto memrefTypeTo = cast<MemRefType>(to.getType()); 291 #ifndef NDEBUG 292 auto memrefTypeFrom = cast<MemRefType>(from.getType()); 293 assert(memrefTypeFrom.getRank() == memrefTypeTo.getRank() && 294 "`from` and `to` memref must have the same rank"); 295 #endif // NDEBUG 296 297 AffineMap id = 298 AffineMap::getMultiDimIdentityMap(memrefTypeTo.getRank(), b.getContext()); 299 SmallVector<utils::IteratorType> iteratorTypes(memrefTypeTo.getRank(), 300 utils::IteratorType::parallel); 301 return b.create<linalg::GenericOp>( 302 loc, 303 /*inputs=*/from, 304 /*outputs=*/to, 305 /*indexingMaps=*/llvm::ArrayRef({id, id}), 306 /*iteratorTypes=*/iteratorTypes, 307 [](OpBuilder &b, Location loc, ValueRange args) { 308 b.create<linalg::YieldOp>(loc, args.front()); 309 }); 310 } 311 312 /// Specialization to build an scf "for" nest. 313 template <> 314 void GenerateLoopNest<scf::ForOp>::doit( 315 OpBuilder &b, Location loc, ArrayRef<Range> loopRanges, LinalgOp linalgOp, 316 ArrayRef<utils::IteratorType> iteratorTypes, 317 function_ref<scf::ValueVector(OpBuilder &, Location, ValueRange, 318 ValueRange)> 319 bodyBuilderFn, 320 ArrayRef<linalg::ProcInfo> procInfo) { 321 assert((procInfo.empty() || (procInfo.size() == loopRanges.size())) && 322 "expected as many entries for proc info as number of loops, even if " 323 "they are null entries"); 324 SmallVector<Value> iterArgInitValues = linalgOp.hasBufferSemantics() 325 ? SmallVector<Value>{} 326 : linalgOp.getDpsInitOperands(); 327 328 SmallVector<Value, 4> lbs, ubs, steps; 329 unpackRanges(b, loc, loopRanges, lbs, ubs, steps); 330 LoopNest loopNest = mlir::scf::buildLoopNest( 331 b, loc, lbs, ubs, steps, iterArgInitValues, 332 [&](OpBuilder &b, Location loc, ValueRange ivs, ValueRange iterArgs) { 333 assert(iterArgs.size() == iterArgInitValues.size() && 334 "expect the number of output tensors and iter args to match"); 335 SmallVector<Value> operandValuesToUse = linalgOp->getOperands(); 336 if (!iterArgs.empty()) { 337 operandValuesToUse = linalgOp.getDpsInputOperands(); 338 operandValuesToUse.append(iterArgs.begin(), iterArgs.end()); 339 } 340 return bodyBuilderFn(b, loc, ivs, operandValuesToUse); 341 }); 342 343 if (loopNest.loops.empty() || procInfo.empty()) 344 return; 345 346 // Filter out scf.for loops that were created out of parallel dimensions. 347 for (const auto &loop : llvm::enumerate(loopNest.loops)) { 348 if (procInfo[loop.index()].distributionMethod == 349 DistributionMethod::Cyclic) { 350 mapLoopToProcessorIds(loop.value(), procInfo[loop.index()].procId, 351 procInfo[loop.index()].nprocs); 352 } 353 } 354 } 355 356 /// Specialization to build affine "for" nest. 357 template <> 358 void GenerateLoopNest<AffineForOp>::doit( 359 OpBuilder &b, Location loc, ArrayRef<Range> loopRanges, LinalgOp linalgOp, 360 ArrayRef<utils::IteratorType> iteratorTypes, 361 function_ref<scf::ValueVector(OpBuilder &, Location, ValueRange, 362 ValueRange)> 363 bodyBuilderFn, 364 ArrayRef<linalg::ProcInfo> /*procInfo*/) { 365 SmallVector<Value> iterArgInitValues = linalgOp.hasBufferSemantics() 366 ? SmallVector<Value>{} 367 : linalgOp.getDpsInitOperands(); 368 assert(iterArgInitValues.empty() && "unexpected AffineForOp init values"); 369 SmallVector<Value, 4> lbs, ubs, steps; 370 unpackRanges(b, loc, loopRanges, lbs, ubs, steps); 371 372 // Affine loops require constant steps. 373 SmallVector<int64_t, 4> constantSteps; 374 constantSteps.reserve(steps.size()); 375 for (Value v : steps) { 376 auto constVal = getConstantIntValue(v); 377 assert(constVal.has_value() && "Affine loops require constant steps"); 378 constantSteps.push_back(constVal.value()); 379 } 380 381 affine::buildAffineLoopNest(b, loc, lbs, ubs, constantSteps, 382 [&](OpBuilder &b, Location loc, ValueRange ivs) { 383 bodyBuilderFn(b, loc, ivs, 384 linalgOp->getOperands()); 385 }); 386 } 387 388 /// Update the `lb`, `ub` and `step` to get per processor `lb`, `ub` and `step`. 389 void updateBoundsForCyclicDistribution(OpBuilder &b, Location loc, Value procId, 390 Value nprocs, Value &lb, Value &ub, 391 Value &step) { 392 AffineExpr d0, d1; 393 bindDims(b.getContext(), d0, d1); 394 AffineExpr s0 = getAffineSymbolExpr(0, b.getContext()); 395 lb = 396 affine::makeComposedAffineApply(b, loc, d0 + d1 * s0, {lb, procId, step}); 397 step = affine::makeComposedAffineApply(b, loc, d0 * s0, {nprocs, step}); 398 } 399 400 /// Generates a loop nest consisting of scf.parallel and scf.for, depending 401 /// on the `iteratorTypes.` Consecutive parallel loops create a single 402 /// scf.parallel operation; each sequential loop creates a new scf.for 403 /// operation. The body of the innermost loop is populated by 404 /// `bodyBuilderFn` that accepts a range of induction variables for all 405 /// loops. `ivStorage` is used to store the partial list of induction 406 /// variables. 407 // TODO: this function can be made iterative instead. However, it 408 // will have at most as many recursive calls as nested loops, which rarely 409 // exceeds 10. 410 static void generateParallelLoopNest( 411 OpBuilder &b, Location loc, ValueRange lbs, ValueRange ubs, 412 ValueRange steps, ArrayRef<utils::IteratorType> iteratorTypes, 413 ArrayRef<linalg::ProcInfo> procInfo, 414 function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn, 415 SmallVectorImpl<Value> &ivStorage) { 416 assert(lbs.size() == ubs.size()); 417 assert(lbs.size() == steps.size()); 418 assert(lbs.size() == iteratorTypes.size()); 419 assert(procInfo.empty() || (lbs.size() == procInfo.size())); 420 421 // If there are no (more) loops to be generated, generate the body and be 422 // done with it. 423 if (iteratorTypes.empty()) { 424 bodyBuilderFn(b, loc, ivStorage); 425 return; 426 } 427 428 // If there are no outer parallel loops, generate one sequential loop and 429 // recurse. 430 if (!isParallelIterator(iteratorTypes.front())) { 431 LoopNest singleLoop = buildLoopNest( 432 b, loc, lbs.take_front(), ubs.take_front(), steps.take_front(), 433 [&](OpBuilder &b, Location loc, ValueRange ivs) { 434 ivStorage.append(ivs.begin(), ivs.end()); 435 generateParallelLoopNest( 436 b, loc, lbs.drop_front(), ubs.drop_front(), steps.drop_front(), 437 iteratorTypes.drop_front(), 438 procInfo.empty() ? procInfo : procInfo.drop_front(), 439 bodyBuilderFn, ivStorage); 440 }); 441 return; 442 } 443 444 unsigned nLoops = iteratorTypes.size(); 445 unsigned numProcessed = 0; 446 DistributionMethod distributionMethod = DistributionMethod::None; 447 if (procInfo.empty()) { 448 numProcessed = nLoops - iteratorTypes.drop_while(isParallelIterator).size(); 449 } else { 450 distributionMethod = procInfo.front().distributionMethod; 451 numProcessed = 452 nLoops - procInfo 453 .drop_while([&](linalg::ProcInfo p) { 454 return p.distributionMethod == distributionMethod; 455 }) 456 .size(); 457 } 458 459 auto remainderProcInfo = 460 procInfo.empty() ? procInfo : procInfo.drop_front(numProcessed); 461 switch (distributionMethod) { 462 case DistributionMethod::None: { 463 // Generate a single parallel loop-nest operation for all outermost 464 // parallel loops and recurse. 465 b.create<scf::ParallelOp>( 466 loc, lbs.take_front(numProcessed), ubs.take_front(numProcessed), 467 steps.take_front(numProcessed), 468 [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange localIvs) { 469 ivStorage.append(localIvs.begin(), localIvs.end()); 470 generateParallelLoopNest( 471 nestedBuilder, nestedLoc, lbs.drop_front(numProcessed), 472 ubs.drop_front(numProcessed), steps.drop_front(numProcessed), 473 iteratorTypes.drop_front(numProcessed), remainderProcInfo, 474 bodyBuilderFn, ivStorage); 475 }); 476 return; 477 } 478 case DistributionMethod::Cyclic: { 479 // Generate a single parallel loop-nest operation for all outermost 480 // parallel loops and recurse. 481 b.create<scf::ParallelOp>( 482 loc, lbs.take_front(numProcessed), ubs.take_front(numProcessed), 483 steps.take_front(numProcessed), 484 [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange localIvs) { 485 ivStorage.append(localIvs.begin(), localIvs.end()); 486 generateParallelLoopNest( 487 nestedBuilder, nestedLoc, lbs.drop_front(numProcessed), 488 ubs.drop_front(numProcessed), steps.drop_front(numProcessed), 489 iteratorTypes.drop_front(numProcessed), remainderProcInfo, 490 bodyBuilderFn, ivStorage); 491 }); 492 return; 493 } 494 case DistributionMethod::CyclicNumProcsGeNumIters: { 495 // Check (for the processed loops) that the iteration is in-bounds. 496 ArithBuilder ab(b, loc); 497 Value cond = ab.slt(lbs[0], ubs[0]); 498 for (unsigned i = 1; i < numProcessed; ++i) 499 cond = ab._and(cond, ab.slt(lbs[i], ubs[i])); 500 ivStorage.append(lbs.begin(), std::next(lbs.begin(), numProcessed)); 501 b.create<scf::IfOp>(loc, cond, [&](OpBuilder &b, Location loc) { 502 generateParallelLoopNest(b, loc, lbs.drop_front(numProcessed), 503 ubs.drop_front(numProcessed), 504 steps.drop_front(numProcessed), 505 iteratorTypes.drop_front(numProcessed), 506 remainderProcInfo, bodyBuilderFn, ivStorage); 507 b.create<scf::YieldOp>(loc, ValueRange{}); 508 }); 509 return; 510 } 511 case DistributionMethod::CyclicNumProcsEqNumIters: 512 // No check/loops needed here. Set the `%iv` to be the `%lb` and proceed 513 // with inner loop generation. 514 ivStorage.append(lbs.begin(), std::next(lbs.begin(), numProcessed)); 515 generateParallelLoopNest( 516 b, loc, lbs.drop_front(numProcessed), ubs.drop_front(numProcessed), 517 steps.drop_front(numProcessed), iteratorTypes.drop_front(numProcessed), 518 remainderProcInfo, bodyBuilderFn, ivStorage); 519 return; 520 } 521 } 522 523 /// Specialization for generating a mix of parallel and sequential scf loops. 524 template <> 525 void GenerateLoopNest<scf::ParallelOp>::doit( 526 OpBuilder &b, Location loc, ArrayRef<Range> loopRanges, LinalgOp linalgOp, 527 ArrayRef<utils::IteratorType> iteratorTypes, 528 function_ref<scf::ValueVector(OpBuilder &, Location, ValueRange, 529 ValueRange)> 530 bodyBuilderFn, 531 ArrayRef<linalg::ProcInfo> procInfo) { 532 SmallVector<Value> iterArgInitValues = linalgOp.hasBufferSemantics() 533 ? SmallVector<Value>{} 534 : linalgOp.getDpsInitOperands(); 535 assert(iterArgInitValues.empty() && "unexpected ParallelOp init values"); 536 // This function may be passed more iterator types than ranges. 537 assert(iteratorTypes.size() >= loopRanges.size() && 538 "expected iterator type for all ranges"); 539 assert((procInfo.empty() || (procInfo.size() == loopRanges.size())) && 540 "expected proc information for all loops when present"); 541 iteratorTypes = iteratorTypes.take_front(loopRanges.size()); 542 SmallVector<Value, 8> lbsStorage, ubsStorage, stepsStorage, ivs; 543 unsigned numLoops = iteratorTypes.size(); 544 ivs.reserve(numLoops); 545 lbsStorage.reserve(numLoops); 546 ubsStorage.reserve(numLoops); 547 stepsStorage.reserve(numLoops); 548 549 // Get the loop lb, ub, and step. 550 unpackRanges(b, loc, loopRanges, lbsStorage, ubsStorage, stepsStorage); 551 552 // Modify the lb, ub, and step based on the distribution options. 553 for (const auto &it : llvm::enumerate(procInfo)) { 554 if (it.value().distributionMethod != linalg::DistributionMethod::None) { 555 updateBoundsForCyclicDistribution( 556 b, loc, it.value().procId, it.value().nprocs, lbsStorage[it.index()], 557 ubsStorage[it.index()], stepsStorage[it.index()]); 558 } 559 } 560 ValueRange lbs(lbsStorage), ubs(ubsStorage), steps(stepsStorage); 561 generateParallelLoopNest( 562 b, loc, lbs, ubs, steps, iteratorTypes, procInfo, 563 [&](OpBuilder &b, Location loc, ValueRange ivs) { 564 bodyBuilderFn(b, loc, ivs, linalgOp->getOperands()); 565 }, 566 ivs); 567 568 assert(ivs.size() == iteratorTypes.size() && "did not generate enough loops"); 569 } 570 571 static Value materializeTiledShape(OpBuilder &builder, Location loc, 572 Value valueToTile, 573 const SliceParameters &sliceParams) { 574 auto shapedType = dyn_cast<ShapedType>(valueToTile.getType()); 575 auto *sliceOp = TypeSwitch<ShapedType, Operation *>(shapedType) 576 .Case([&](MemRefType) { 577 return builder.create<memref::SubViewOp>( 578 loc, valueToTile, sliceParams.offsets, 579 sliceParams.sizes, sliceParams.strides); 580 }) 581 .Case([&](RankedTensorType) { 582 return builder.create<tensor::ExtractSliceOp>( 583 loc, valueToTile, sliceParams.offsets, 584 sliceParams.sizes, sliceParams.strides); 585 }) 586 .Default([](ShapedType) -> Operation * { 587 llvm_unreachable("Unexpected shaped type"); 588 }); 589 return sliceOp->getResult(0); 590 } 591 592 Value makeTiledShape(OpBuilder &builder, Location loc, Value valueToTile, 593 ArrayRef<OpFoldResult> tileSizes, AffineMap map, 594 ArrayRef<OpFoldResult> lbs, ArrayRef<OpFoldResult> ubs, 595 ArrayRef<OpFoldResult> subShapeSizes, 596 bool omitPartialTileCheck) { 597 SliceParameters sliceParams = 598 computeSliceParameters(builder, loc, valueToTile, tileSizes, map, lbs, 599 ubs, subShapeSizes, omitPartialTileCheck); 600 return materializeTiledShape(builder, loc, valueToTile, sliceParams); 601 } 602 603 SliceParameters 604 computeSliceParameters(OpBuilder &builder, Location loc, Value valueToTile, 605 ArrayRef<OpFoldResult> tileSizes, AffineMap map, 606 ArrayRef<OpFoldResult> lbs, ArrayRef<OpFoldResult> ubs, 607 ArrayRef<OpFoldResult> subShapeSizes, 608 bool omitPartialTileCheck) { 609 auto shapedType = dyn_cast<ShapedType>(valueToTile.getType()); 610 assert(shapedType && "only shaped types can be tiled"); 611 ArrayRef<int64_t> shape = shapedType.getShape(); 612 int64_t rank = shapedType.getRank(); 613 614 // Compute offsets/sizes/strides for the tile. 615 SliceParameters sliceParams; 616 sliceParams.offsets.reserve(rank); 617 sliceParams.sizes.reserve(rank); 618 sliceParams.strides.reserve(rank); 619 for (unsigned r = 0; r < rank; ++r) { 620 LLVM_DEBUG(llvm::dbgs() << "computeSliceParameters: for dim#" << r); 621 if (!isTiled(map.getSubMap({r}), tileSizes)) { 622 sliceParams.offsets.push_back(builder.getIndexAttr(0)); 623 OpFoldResult dim = createFoldedDimOp(builder, loc, valueToTile, r); 624 sliceParams.sizes.push_back(dim); 625 sliceParams.strides.push_back(builder.getIndexAttr(1)); 626 LLVM_DEBUG(llvm::dbgs() << ": not tiled: use size: " << dim << "\n"); 627 continue; 628 } 629 LLVM_DEBUG(llvm::dbgs() << ": tiled: figure out subsize...\n"); 630 631 // Tiling creates a new slice at the proper index, the slice step is 1 632 // (i.e. the op does not subsample, stepping occurs in the loop). 633 auto m = map.getSubMap({r}); 634 LLVM_DEBUG(llvm::dbgs() << "computeSliceParameters: submap: " << m << "\n"); 635 IRRewriter rewriter(builder); 636 OpFoldResult offset = makeComposedFoldedAffineApply(rewriter, loc, m, lbs); 637 sliceParams.offsets.push_back(offset); 638 OpFoldResult closedIntSize = 639 makeComposedFoldedAffineApply(rewriter, loc, m, subShapeSizes); 640 // Resulting size needs to be made half open interval again. 641 AffineExpr s0 = getAffineSymbolExpr(0, builder.getContext()); 642 OpFoldResult size = 643 makeComposedFoldedAffineApply(rewriter, loc, s0 + 1, closedIntSize); 644 LLVM_DEBUG(llvm::dbgs() 645 << "computeSliceParameters: raw size: " << size << "\n"); 646 LLVM_DEBUG(llvm::dbgs() 647 << "computeSliceParameters: new offset: " << offset << "\n"); 648 sliceParams.strides.push_back(builder.getIndexAttr(1)); 649 650 if (omitPartialTileCheck) { 651 // We statically know that the partial/boundary tile condition is 652 // unnecessary. 653 LLVM_DEBUG(llvm::dbgs() << "makeTiledShape: new size: " << size << "\n"); 654 sliceParams.sizes.push_back(size); 655 continue; 656 } 657 658 // The size of the subview / extract_slice should be trimmed to avoid 659 // out-of-bounds accesses, unless: 660 // a. We statically know the subshape size divides the shape size evenly. 661 // b. The subshape size is 1. According to the way the loops are set up, 662 // tensors with "0" dimensions would never be constructed. 663 int64_t shapeSize = shape[r]; 664 std::optional<int64_t> sizeCst = getConstantIntValue(size); 665 auto hasTileSizeOne = sizeCst && *sizeCst == 1; 666 auto dividesEvenly = sizeCst && !ShapedType::isDynamic(shapeSize) && 667 ((shapeSize % *sizeCst) == 0); 668 if (!hasTileSizeOne && !dividesEvenly) { 669 LLVM_DEBUG(llvm::dbgs() << "makeTiledShape: shapeSize=" << shapeSize 670 << ", size: " << size 671 << ": make sure in bound with affine.min\n"); 672 673 AffineExpr dim0, dim1, dim2; 674 bindDims(builder.getContext(), dim0, dim1, dim2); 675 676 // Get the dimension size for this dimension. We need to first calculate 677 // the max index and then plus one. This is important because for 678 // convolution ops, we have its input window dimension's affine map of the 679 // form `(d0 * s0 + d1)`, where `d0`/`d1 is an output/filter window 680 // dimension and `s0` is stride. Directly use the dimension size of 681 // output/filer window dimensions will cause incorrect calculation. 682 AffineMap minusOneMap = 683 AffineMap::inferFromExprList({ArrayRef<AffineExpr>{dim0 - 1}}) 684 .front(); 685 AffineMap plusOneMap = 686 AffineMap::inferFromExprList({ArrayRef<AffineExpr>{dim0 + 1}}) 687 .front(); 688 SmallVector<OpFoldResult> maxIndices = 689 llvm::to_vector(llvm::map_range(ubs, [&](OpFoldResult ub) { 690 return makeComposedFoldedAffineApply(rewriter, loc, minusOneMap, 691 {ub}); 692 })); 693 OpFoldResult maxIndex = 694 makeComposedFoldedAffineApply(rewriter, loc, m, maxIndices); 695 OpFoldResult d = 696 makeComposedFoldedAffineApply(rewriter, loc, plusOneMap, {maxIndex}); 697 698 // Compute min(dim - offset, size) to avoid out-of-bounds accesses. 699 AffineMap minMap = AffineMap::inferFromExprList( 700 {ArrayRef<AffineExpr>{dim1 - dim2, dim0}}) 701 .front(); 702 size = 703 makeComposedFoldedAffineMin(rewriter, loc, minMap, {size, d, offset}); 704 } 705 LLVM_DEBUG(llvm::dbgs() << "makeTiledShape: new size: " << size << "\n"); 706 sliceParams.sizes.push_back(size); 707 } 708 return sliceParams; 709 } 710 711 SmallVector<OpFoldResult> computeTileOffsets(OpBuilder &b, Location loc, 712 ArrayRef<OpFoldResult> ivs, 713 ArrayRef<OpFoldResult> tileSizes) { 714 SmallVector<OpFoldResult> offsets; 715 for (unsigned idx = 0, idxIvs = 0, e = tileSizes.size(); idx < e; ++idx) { 716 LLVM_DEBUG(llvm::dbgs() << "makeTiledShapes: for loop#" << idx << "\n"); 717 bool isTiled = !isZeroIndex(tileSizes[idx]); 718 offsets.push_back(isTiled ? ivs[idxIvs++] : b.getIndexAttr(0)); 719 LLVM_DEBUG(llvm::dbgs() 720 << "computeTileOffsets: " << offsets.back() << "\n"); 721 } 722 return offsets; 723 } 724 725 SmallVector<OpFoldResult> computeTileSizes(OpBuilder &b, Location loc, 726 ArrayRef<OpFoldResult> tileSizes, 727 ArrayRef<OpFoldResult> sizeBounds) { 728 SmallVector<OpFoldResult> sizes; 729 for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx) { 730 bool isTiled = !isZeroIndex(tileSizes[idx]); 731 // Before composing, we need to make range a closed interval. 732 OpFoldResult size = isTiled ? tileSizes[idx] : sizeBounds[idx]; 733 AffineExpr d0 = getAffineDimExpr(0, b.getContext()); 734 IRRewriter rewriter(b); 735 sizes.push_back(makeComposedFoldedAffineApply(rewriter, loc, d0 - 1, size)); 736 LLVM_DEBUG(llvm::dbgs() << "computeTileSizes: " << sizes.back() << "\n"); 737 } 738 return sizes; 739 } 740 741 SmallVector<Type> getTensorOutputTypes(LinalgOp op, ValueRange operands) { 742 if (op.hasBufferSemantics()) 743 return {}; 744 return llvm::to_vector( 745 llvm::map_range(op.getDpsInitOperands(), [&](OpOperand *opOperand) { 746 return operands[opOperand->getOperandNumber()].getType(); 747 })); 748 } 749 750 SmallVector<Value> insertSlicesBack(OpBuilder &builder, Location loc, 751 LinalgOp op, ValueRange operands, 752 ValueRange results) { 753 if (op.hasBufferSemantics()) 754 return {}; 755 SmallVector<Value> tensorResults; 756 tensorResults.reserve(results.size()); 757 // Insert a insert_slice for each output tensor. 758 unsigned resultIdx = 0; 759 for (OpOperand *opOperand : op.getDpsInitOperands()) { 760 // TODO: use an interface/adaptor to avoid leaking position in 761 // `tiledOperands`. 762 Value outputTensor = operands[opOperand->getOperandNumber()]; 763 if (auto sliceOp = outputTensor.getDefiningOp<tensor::ExtractSliceOp>()) { 764 Value inserted = builder.create<tensor::InsertSliceOp>( 765 loc, sliceOp.getSource().getType(), results[resultIdx], 766 sliceOp.getSource(), sliceOp.getOffsets(), sliceOp.getSizes(), 767 sliceOp.getStrides(), sliceOp.getStaticOffsets(), 768 sliceOp.getStaticSizes(), sliceOp.getStaticStrides()); 769 tensorResults.push_back(inserted); 770 } else { 771 tensorResults.push_back(results[resultIdx]); 772 } 773 ++resultIdx; 774 } 775 return tensorResults; 776 } 777 778 SmallVector<std::optional<SliceParameters>> 779 computeAllSliceParameters(OpBuilder &builder, Location loc, LinalgOp linalgOp, 780 ValueRange valuesToTile, ArrayRef<OpFoldResult> ivs, 781 ArrayRef<OpFoldResult> tileSizes, 782 ArrayRef<OpFoldResult> sizeBounds, 783 bool omitPartialTileCheck) { 784 assert(ivs.size() == static_cast<size_t>(llvm::count_if( 785 llvm::make_range(tileSizes.begin(), tileSizes.end()), 786 [](OpFoldResult v) { return !isZeroIndex(v); })) && 787 "expected as many ivs as non-zero sizes"); 788 789 // Construct (potentially temporary) mins and maxes on which to apply maps 790 // that define tile subshapes. 791 SmallVector<OpFoldResult> lbs = 792 computeTileOffsets(builder, loc, ivs, tileSizes); 793 SmallVector<OpFoldResult> subShapeSizes = 794 computeTileSizes(builder, loc, tileSizes, sizeBounds); 795 796 assert(static_cast<int64_t>(valuesToTile.size()) <= 797 linalgOp->getNumOperands() && 798 "more value to tile than operands."); 799 SmallVector<std::optional<SliceParameters>> allSliceParams; 800 allSliceParams.reserve(valuesToTile.size()); 801 for (auto [opOperand, val] : 802 llvm::zip(linalgOp->getOpOperands(), valuesToTile)) { 803 Value shapedOp = val; 804 LLVM_DEBUG(llvm::dbgs() << "makeTiledShapes: for operand " << shapedOp); 805 AffineMap map = linalgOp.getMatchingIndexingMap(&opOperand); 806 // Use `opOperand` as is if it is not tiled and not an output tensor. Having 807 // an extract/insert slice pair for all output tensors simplifies follow up 808 // transformations such as padding and bufferization since the 809 // extract/insert slice pairs make the accessed iteration argument 810 // subdomains explicit. 811 812 Type operandType = opOperand.get().getType(); 813 if (!isTiled(map, tileSizes) && !(isa<RankedTensorType>(operandType) && 814 linalgOp.isDpsInit(&opOperand))) { 815 allSliceParams.push_back(std::nullopt); 816 LLVM_DEBUG(llvm::dbgs() 817 << ": not tiled: use shape: " << operandType << "\n"); 818 continue; 819 } 820 LLVM_DEBUG(llvm::dbgs() << ": tiled: figure out subshape...\n"); 821 822 allSliceParams.push_back(computeSliceParameters( 823 builder, loc, shapedOp, tileSizes, map, lbs, sizeBounds, subShapeSizes, 824 omitPartialTileCheck)); 825 } 826 827 return allSliceParams; 828 } 829 830 SmallVector<Value> makeTiledShapes(OpBuilder &builder, Location loc, 831 LinalgOp linalgOp, ValueRange valuesToTile, 832 ArrayRef<OpFoldResult> ivs, 833 ArrayRef<OpFoldResult> tileSizes, 834 ArrayRef<OpFoldResult> sizeBounds, 835 bool omitPartialTileCheck) { 836 SmallVector<std::optional<SliceParameters>> allSliceParameter = 837 computeAllSliceParameters(builder, loc, linalgOp, valuesToTile, ivs, 838 tileSizes, sizeBounds, omitPartialTileCheck); 839 SmallVector<Value> tiledShapes; 840 for (auto item : llvm::zip(valuesToTile, allSliceParameter)) { 841 Value valueToTile = std::get<0>(item); 842 std::optional<SliceParameters> sliceParams = std::get<1>(item); 843 tiledShapes.push_back( 844 sliceParams.has_value() 845 ? materializeTiledShape(builder, loc, valueToTile, *sliceParams) 846 : valueToTile); 847 } 848 return tiledShapes; 849 } 850 851 void offsetIndices(OpBuilder &b, LinalgOp linalgOp, 852 ArrayRef<OpFoldResult> offsets) { 853 IRRewriter rewriter(b); 854 offsetIndices(rewriter, linalgOp, offsets); 855 } 856 857 void offsetIndices(RewriterBase &b, LinalgOp linalgOp, 858 ArrayRef<OpFoldResult> offsets) { 859 if (!linalgOp.hasIndexSemantics()) 860 return; 861 862 for (IndexOp indexOp : linalgOp.getBlock()->getOps<IndexOp>()) { 863 if (indexOp.getDim() >= offsets.size() || !offsets[indexOp.getDim()]) 864 continue; 865 OpBuilder::InsertionGuard guard(b); 866 b.setInsertionPointAfter(indexOp); 867 AffineExpr index, offset; 868 bindDims(b.getContext(), index, offset); 869 OpFoldResult applied = makeComposedFoldedAffineApply( 870 b, indexOp.getLoc(), index + offset, 871 {getAsOpFoldResult(indexOp.getResult()), offsets[indexOp.getDim()]}); 872 Value materialized = 873 getValueOrCreateConstantIndexOp(b, indexOp.getLoc(), applied); 874 b.replaceOpWithIf(indexOp, materialized, [&](OpOperand &use) { 875 return use.getOwner() != materialized.getDefiningOp(); 876 }); 877 } 878 } 879 880 /// Get the reassociation maps to fold the result of a extract_slice (or source 881 /// of a insert_slice) operation with given offsets, and sizes to its 882 /// rank-reduced version. This is only done for the cases where the size is 1 883 /// and offset is 0. Strictly speaking the offset 0 is not required in general, 884 /// but non-zero offsets are not handled by SPIR-V backend at this point (and 885 /// potentially cannot be handled). 886 std::optional<SmallVector<ReassociationIndices>> 887 getReassociationMapForFoldingUnitDims(ArrayRef<OpFoldResult> mixedSizes) { 888 SmallVector<ReassociationIndices> reassociation; 889 ReassociationIndices curr; 890 for (const auto &it : llvm::enumerate(mixedSizes)) { 891 auto dim = it.index(); 892 auto size = it.value(); 893 curr.push_back(dim); 894 auto attr = llvm::dyn_cast_if_present<Attribute>(size); 895 if (attr && cast<IntegerAttr>(attr).getInt() == 1) 896 continue; 897 reassociation.emplace_back(ReassociationIndices{}); 898 std::swap(reassociation.back(), curr); 899 } 900 // When the reassociations are not empty, then fold the remaining 901 // unit-dimensions into the last dimension. If the reassociations so far is 902 // empty, then leave it emtpy. This will fold everything to a rank-0 tensor. 903 if (!curr.empty() && !reassociation.empty()) 904 reassociation.back().append(curr.begin(), curr.end()); 905 return reassociation; 906 } 907 908 } // namespace linalg 909 } // namespace mlir 910