1 //===- Vectorization.cpp - Implementation of linalg Vectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Vectorization transformations. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "mlir/Dialect/Affine/Utils.h" 13 14 #include "mlir/Analysis/SliceAnalysis.h" 15 #include "mlir/Dialect/Affine/IR/AffineOps.h" 16 #include "mlir/Dialect/Arith/IR/Arith.h" 17 #include "mlir/Dialect/Func/IR/FuncOps.h" 18 #include "mlir/Dialect/Linalg/IR/Linalg.h" 19 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 20 #include "mlir/Dialect/Linalg/Utils/Utils.h" 21 #include "mlir/Dialect/Tensor/IR/Tensor.h" 22 #include "mlir/Dialect/Tensor/Utils/Utils.h" 23 #include "mlir/Dialect/Utils/IndexingUtils.h" 24 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 25 #include "mlir/Dialect/Vector/IR/VectorOps.h" 26 #include "mlir/Dialect/Vector/Interfaces/MaskableOpInterface.h" 27 #include "mlir/Dialect/Vector/Utils/VectorUtils.h" 28 #include "mlir/IR/AffineExpr.h" 29 #include "mlir/IR/Builders.h" 30 #include "mlir/IR/BuiltinTypeInterfaces.h" 31 #include "mlir/IR/BuiltinTypes.h" 32 #include "mlir/IR/OpDefinition.h" 33 #include "mlir/IR/PatternMatch.h" 34 #include "mlir/Support/LLVM.h" 35 #include "mlir/Transforms/RegionUtils.h" 36 #include "llvm/ADT/STLExtras.h" 37 #include "llvm/ADT/Sequence.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/ADT/TypeSwitch.h" 40 #include "llvm/ADT/iterator_range.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/MathExtras.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <optional> 45 #include <type_traits> 46 47 using namespace mlir; 48 using namespace mlir::linalg; 49 50 #define DEBUG_TYPE "linalg-vectorization" 51 52 #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") 53 #define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n") 54 55 /// Try to vectorize `convOp` as a convolution. 56 static FailureOr<Operation *> 57 vectorizeConvolution(RewriterBase &rewriter, LinalgOp convOp, 58 ArrayRef<int64_t> inputVecSizes = {}, 59 ArrayRef<bool> inputVecScalableFlags = {}, 60 bool flatten1DDepthwiseConv = false); 61 62 /// Return the unique instance of OpType in `block` if it is indeed unique. 63 /// Return null if none or more than 1 instances exist. 64 template <typename OpType> 65 static OpType getSingleOpOfType(Block &block) { 66 OpType res; 67 block.walk([&](OpType op) { 68 if (res) { 69 res = nullptr; 70 return WalkResult::interrupt(); 71 } 72 res = op; 73 return WalkResult::advance(); 74 }); 75 return res; 76 } 77 78 /// Helper function to extract the input slices after filter is unrolled along 79 /// kw. 80 static SmallVector<Value> 81 extractConvInputSlices(RewriterBase &rewriter, Location loc, Value input, 82 int64_t nSize, int64_t wSize, int64_t cSize, 83 int64_t kwSize, int strideW, int dilationW, 84 int64_t wSizeStep, bool isSingleChanneled) { 85 SmallVector<Value> result; 86 if (isSingleChanneled) { 87 // Extract input slice of size {wSizeStep} @ [w + kw] for non-channeled 88 // convolution. 89 SmallVector<int64_t> sizes{wSizeStep}; 90 SmallVector<int64_t> strides{1}; 91 for (int64_t kw = 0; kw < kwSize; ++kw) { 92 for (int64_t w = 0; w < wSize; w += wSizeStep) { 93 result.push_back(rewriter.create<vector::ExtractStridedSliceOp>( 94 loc, input, /*offsets=*/ArrayRef<int64_t>{w + kw}, sizes, strides)); 95 } 96 } 97 } else { 98 // Extract lhs slice of size {n, wSizeStep, c} @ [0, sw * w + dw * kw, 0] 99 // for channeled convolution. 100 SmallVector<int64_t> sizes{nSize, wSizeStep, cSize}; 101 SmallVector<int64_t> strides{1, 1, 1}; 102 for (int64_t kw = 0; kw < kwSize; ++kw) { 103 for (int64_t w = 0; w < wSize; w += wSizeStep) { 104 result.push_back(rewriter.create<vector::ExtractStridedSliceOp>( 105 loc, input, 106 /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0}, 107 sizes, strides)); 108 } 109 } 110 } 111 return result; 112 } 113 114 /// Helper function to extract the filter slices after filter is unrolled along 115 /// kw. 116 static SmallVector<Value> extractConvFilterSlices(RewriterBase &rewriter, 117 Location loc, Value filter, 118 int64_t kwSize) { 119 SmallVector<Value> result; 120 // Extract rhs slice of size [{c, f} for channeled convolutions and {1} for 121 // non-chanelled convolution] @ [kw]. 122 for (int64_t kw = 0; kw < kwSize; ++kw) { 123 result.push_back(rewriter.create<vector::ExtractOp>( 124 loc, filter, /*offsets=*/ArrayRef<int64_t>{kw})); 125 } 126 return result; 127 } 128 129 /// Helper function to extract the result slices after filter is unrolled along 130 /// kw. 131 static SmallVector<Value> 132 extractConvResultSlices(RewriterBase &rewriter, Location loc, Value res, 133 int64_t nSize, int64_t wSize, int64_t fSize, 134 int64_t wSizeStep, bool isSingleChanneled) { 135 SmallVector<Value> result; 136 if (isSingleChanneled) { 137 // Extract res slice: {wSizeStep} @ [w] for non-channeled convolution. 138 SmallVector<int64_t> sizes{wSizeStep}; 139 SmallVector<int64_t> strides{1}; 140 for (int64_t w = 0; w < wSize; w += wSizeStep) { 141 result.push_back(rewriter.create<vector::ExtractStridedSliceOp>( 142 loc, res, /*offsets=*/ArrayRef<int64_t>{w}, sizes, strides)); 143 } 144 } else { 145 // Extract res slice: {n, wSizeStep, f} @ [0, w, 0] for channeled 146 // convolution. 147 SmallVector<int64_t> sizes{nSize, wSizeStep, fSize}; 148 SmallVector<int64_t> strides{1, 1, 1}; 149 for (int64_t w = 0; w < wSize; w += wSizeStep) { 150 result.push_back(rewriter.create<vector::ExtractStridedSliceOp>( 151 loc, res, /*offsets=*/ArrayRef<int64_t>{0, w, 0}, sizes, strides)); 152 } 153 } 154 return result; 155 } 156 157 /// Helper function to insert the computed result slices. 158 static Value insertConvResultSlices(RewriterBase &rewriter, Location loc, 159 Value res, int64_t wSize, int64_t wSizeStep, 160 SmallVectorImpl<Value> &resVals, 161 bool isSingleChanneled) { 162 163 if (isSingleChanneled) { 164 // Write back res slice: {wSizeStep} @ [w] for non-channeled convolution. 165 // This does not depend on kw. 166 SmallVector<int64_t> strides{1}; 167 for (int64_t w = 0; w < wSize; w += wSizeStep) { 168 res = rewriter.create<vector::InsertStridedSliceOp>( 169 loc, resVals[w], res, /*offsets=*/ArrayRef<int64_t>{w}, strides); 170 } 171 } else { 172 // Write back res slice: {n, wSizeStep, f} @ [0, w, 0] for channeled 173 // convolution. This does not depend on kw. 174 SmallVector<int64_t> strides{1, 1, 1}; 175 for (int64_t w = 0; w < wSize; w += wSizeStep) { 176 res = rewriter.create<vector::InsertStridedSliceOp>( 177 loc, resVals[w], res, /*offsets=*/ArrayRef<int64_t>{0, w, 0}, 178 strides); 179 } 180 } 181 return res; 182 } 183 184 /// Contains the vectorization state and related methods used across the 185 /// vectorization process of a given operation. 186 struct VectorizationState { 187 VectorizationState(RewriterBase &rewriter) : rewriterGuard(rewriter) {} 188 189 /// Initializes the vectorization state, including the computation of the 190 /// canonical vector shape for vectorization. 191 LogicalResult initState(RewriterBase &rewriter, LinalgOp linalgOp, 192 ArrayRef<int64_t> inputVectorSizes, 193 ArrayRef<bool> inputScalableVecDims); 194 195 /// Returns the canonical vector shape used to vectorize the iteration space. 196 ArrayRef<int64_t> getCanonicalVecShape() const { return canonicalVecShape; } 197 198 /// Returns the vector dimensions that are scalable in the canonical vector 199 /// shape. 200 ArrayRef<bool> getScalableVecDims() const { return scalableVecDims; } 201 202 /// Returns a vector type of the provided `elementType` with the canonical 203 /// vector shape and the corresponding fixed/scalable dimensions bit. If 204 /// `dimPermutation` is provided, the canonical vector dimensions are permuted 205 /// accordingly. 206 VectorType getCanonicalVecType( 207 Type elementType, 208 std::optional<AffineMap> dimPermutation = std::nullopt) const { 209 SmallVector<int64_t> vectorShape; 210 SmallVector<bool> scalableDims; 211 if (dimPermutation.has_value()) { 212 vectorShape = 213 applyPermutationMap<int64_t>(*dimPermutation, canonicalVecShape); 214 scalableDims = 215 applyPermutationMap<bool>(*dimPermutation, scalableVecDims); 216 } else { 217 vectorShape.append(canonicalVecShape.begin(), canonicalVecShape.end()); 218 scalableDims.append(scalableVecDims.begin(), scalableVecDims.end()); 219 } 220 221 return VectorType::get(vectorShape, elementType, scalableDims); 222 } 223 224 /// Masks an operation with the canonical vector mask if the operation needs 225 /// masking. Returns the masked operation or the original operation if masking 226 /// is not needed. If provided, the canonical mask for this operation is 227 /// permuted using `maybeMaskingMap`. 228 Operation * 229 maskOperation(RewriterBase &rewriter, Operation *opToMask, LinalgOp linalgOp, 230 std::optional<AffineMap> maybeMaskingMap = std::nullopt); 231 232 private: 233 /// Initializes the iteration space static sizes using the Linalg op 234 /// information. This may become more complicated in the future. 235 void initIterSpaceStaticSizes(LinalgOp linalgOp) { 236 iterSpaceStaticSizes.append(linalgOp.getStaticLoopRanges()); 237 } 238 239 /// Generates 'arith.constant' and 'tensor/memref.dim' operations for 240 /// all the static and dynamic dimensions of the iteration space to be 241 /// vectorized and store them in `iterSpaceValueSizes`. 242 LogicalResult precomputeIterSpaceValueSizes(RewriterBase &rewriter, 243 LinalgOp linalgOp); 244 245 /// Create or retrieve an existing mask value to mask `opToMask` in the 246 /// canonical vector iteration space. If `maybeMaskingMap` the mask is 247 /// permuted using that permutation map. If a new mask is created, it will be 248 /// cached for future users. 249 Value getOrCreateMaskFor(RewriterBase &rewriter, Operation *opToMask, 250 LinalgOp linalgOp, 251 std::optional<AffineMap> maybeMaskingMap); 252 253 // Holds the compile-time static sizes of the iteration space to vectorize. 254 // Dynamic dimensions are represented using ShapedType::kDynamic. 255 SmallVector<int64_t> iterSpaceStaticSizes; 256 257 /// Holds the value sizes of the iteration space to vectorize. Static 258 /// dimensions are represented by 'arith.constant' and dynamic 259 /// dimensions by 'tensor/memref.dim'. 260 SmallVector<Value> iterSpaceValueSizes; 261 262 /// Holds the canonical vector shape used to vectorize the iteration space. 263 SmallVector<int64_t> canonicalVecShape; 264 265 /// Holds the vector dimensions that are scalable in the canonical vector 266 /// shape. 267 SmallVector<bool> scalableVecDims; 268 269 /// Holds the active masks for permutations of the canonical vector iteration 270 /// space. 271 DenseMap<AffineMap, Value> activeMaskCache; 272 273 /// Global vectorization guard for the incoming rewriter. It's initialized 274 /// when the vectorization state is initialized. 275 OpBuilder::InsertionGuard rewriterGuard; 276 }; 277 278 LogicalResult 279 VectorizationState::precomputeIterSpaceValueSizes(RewriterBase &rewriter, 280 LinalgOp linalgOp) { 281 // TODO: Support 0-d vectors. 282 for (int vecDim = 0, end = canonicalVecShape.size(); vecDim < end; ++vecDim) { 283 if (!ShapedType::isDynamic(iterSpaceStaticSizes[vecDim])) { 284 // Create constant index op for static dimensions. 285 iterSpaceValueSizes.push_back(rewriter.create<arith::ConstantIndexOp>( 286 linalgOp.getLoc(), iterSpaceStaticSizes[vecDim])); 287 continue; 288 } 289 290 // Find an operand defined on this dimension of the iteration space to 291 // extract the runtime dimension size. 292 Value operand; 293 unsigned operandDimPos; 294 if (failed(linalgOp.mapIterationSpaceDimToOperandDim(vecDim, operand, 295 operandDimPos))) 296 return failure(); 297 298 Value dynamicDim = linalgOp.hasPureTensorSemantics() 299 ? (Value)rewriter.create<tensor::DimOp>( 300 linalgOp.getLoc(), operand, operandDimPos) 301 : (Value)rewriter.create<memref::DimOp>( 302 linalgOp.getLoc(), operand, operandDimPos); 303 iterSpaceValueSizes.push_back(dynamicDim); 304 } 305 306 return success(); 307 } 308 309 /// Initializes the vectorization state, including the computation of the 310 /// canonical vector shape for vectorization. 311 // TODO: Move this to the constructor when we can remove the failure cases. 312 LogicalResult 313 VectorizationState::initState(RewriterBase &rewriter, LinalgOp linalgOp, 314 ArrayRef<int64_t> inputVectorSizes, 315 ArrayRef<bool> inputScalableVecDims) { 316 // Initialize the insertion point. 317 rewriter.setInsertionPoint(linalgOp); 318 319 if (!inputVectorSizes.empty()) { 320 // Get the canonical vector shape from the input vector sizes provided. This 321 // path should be taken to vectorize code with dynamic shapes and when using 322 // vector sizes greater than the iteration space sizes. 323 canonicalVecShape.append(inputVectorSizes.begin(), inputVectorSizes.end()); 324 scalableVecDims.append(inputScalableVecDims.begin(), 325 inputScalableVecDims.end()); 326 } else { 327 // Compute the canonical vector shape from the operation shape. If there are 328 // dynamic shapes, the operation won't be vectorized. We assume all the 329 // vector dimensions are fixed. 330 canonicalVecShape = linalgOp.getStaticLoopRanges(); 331 scalableVecDims.append(linalgOp.getNumLoops(), false); 332 } 333 334 LDBG("Canonical vector shape: "); 335 LLVM_DEBUG(llvm::interleaveComma(canonicalVecShape, llvm::dbgs())); 336 LLVM_DEBUG(llvm::dbgs() << "\n"); 337 LDBG("Scalable vector dims: "); 338 LLVM_DEBUG(llvm::interleaveComma(scalableVecDims, llvm::dbgs())); 339 LLVM_DEBUG(llvm::dbgs() << "\n"); 340 341 if (ShapedType::isDynamicShape(canonicalVecShape)) 342 return failure(); 343 344 // Initialize iteration space static sizes. 345 initIterSpaceStaticSizes(linalgOp); 346 347 // Generate 'arith.constant' and 'tensor/memref.dim' operations for 348 // all the static and dynamic dimensions of the iteration space, needed to 349 // compute a mask during vectorization. 350 if (failed(precomputeIterSpaceValueSizes(rewriter, linalgOp))) 351 return failure(); 352 353 return success(); 354 } 355 356 /// Create or retrieve an existing mask value to mask `opToMask` in the 357 /// canonical vector iteration space. If `maybeMaskingMap` the mask is permuted 358 /// using that permutation map. If a new mask is created, it will be cached for 359 /// future users. 360 Value VectorizationState::getOrCreateMaskFor( 361 RewriterBase &rewriter, Operation *opToMask, LinalgOp linalgOp, 362 std::optional<AffineMap> maybeMaskingMap) { 363 // No mask is needed if the operation is not maskable. 364 auto maskableOp = dyn_cast<vector::MaskableOpInterface>(opToMask); 365 if (!maskableOp) 366 return Value(); 367 368 assert(!maskableOp.isMasked() && 369 "Masking an operation that is already masked"); 370 371 // If no masking map was provided, use an identity map with the loop dims. 372 assert((!maybeMaskingMap || *maybeMaskingMap) && 373 "Unexpected null mask permutation map"); 374 AffineMap maskingMap = 375 maybeMaskingMap ? *maybeMaskingMap 376 : AffineMap::getMultiDimIdentityMap( 377 linalgOp.getNumLoops(), rewriter.getContext()); 378 379 LDBG("Masking map: " << maskingMap << "\n"); 380 381 // Return the active mask for the masking map of this operation if it was 382 // already created. 383 auto activeMaskIt = activeMaskCache.find(maskingMap); 384 if (activeMaskIt != activeMaskCache.end()) { 385 Value mask = activeMaskIt->second; 386 LDBG("Reusing mask: " << mask << "\n"); 387 return mask; 388 } 389 390 // Compute permuted projection of the iteration space to be masked and the 391 // corresponding mask shape. If the resulting iteration space dimensions are 392 // static and identical to the mask shape, masking is not needed for this 393 // operation. 394 // TODO: Improve this check. Only projected permutation indexing maps are 395 // supported. 396 SmallVector<int64_t> permutedStaticSizes = 397 applyPermutationMap<int64_t>(maskingMap, iterSpaceStaticSizes); 398 auto maskType = getCanonicalVecType(rewriter.getI1Type(), maskingMap); 399 auto maskShape = maskType.getShape(); 400 401 LDBG("Mask shape: "); 402 LLVM_DEBUG(llvm::interleaveComma(maskShape, llvm::dbgs())); 403 LLVM_DEBUG(llvm::dbgs() << "\n"); 404 405 if (permutedStaticSizes == maskShape) { 406 LDBG("Masking is not needed for masking map: " << maskingMap << "\n"); 407 activeMaskCache[maskingMap] = Value(); 408 return Value(); 409 } 410 411 // Permute the iteration space value sizes to compute the mask upper bounds. 412 SmallVector<Value> upperBounds = 413 applyPermutationMap(maskingMap, ArrayRef<Value>(iterSpaceValueSizes)); 414 assert(!maskShape.empty() && !upperBounds.empty() && 415 "Masked 0-d vectors are not supported yet"); 416 417 // Create the mask based on the dimension values. 418 Value mask = rewriter.create<vector::CreateMaskOp>(linalgOp.getLoc(), 419 maskType, upperBounds); 420 LDBG("Creating new mask: " << mask << "\n"); 421 activeMaskCache[maskingMap] = mask; 422 return mask; 423 } 424 425 /// Masks an operation with the canonical vector mask if the operation needs 426 /// masking. Returns the masked operation or the original operation if masking 427 /// is not needed. If provided, the canonical mask for this operation is 428 /// permuted using `maybeMaskingMap`. 429 Operation * 430 VectorizationState::maskOperation(RewriterBase &rewriter, Operation *opToMask, 431 LinalgOp linalgOp, 432 std::optional<AffineMap> maybeMaskingMap) { 433 LDBG("Trying to mask: " << *opToMask << "\n"); 434 435 // Create or retrieve mask for this operation. 436 Value mask = 437 getOrCreateMaskFor(rewriter, opToMask, linalgOp, maybeMaskingMap); 438 439 if (!mask) { 440 LDBG("No mask required\n"); 441 return opToMask; 442 } 443 444 // Wrap the operation with a new `vector.mask` and update D-U chain. 445 assert(opToMask && "Expected a valid operation to mask"); 446 auto maskOp = cast<vector::MaskOp>( 447 mlir::vector::maskOperation(rewriter, opToMask, mask)); 448 Operation *maskOpTerminator = &maskOp.getMaskRegion().front().back(); 449 450 for (auto [resIdx, resVal] : llvm::enumerate(opToMask->getResults())) 451 rewriter.replaceAllUsesExcept(resVal, maskOp.getResult(resIdx), 452 maskOpTerminator); 453 454 LDBG("Masked operation: " << *maskOp << "\n"); 455 return maskOp; 456 } 457 458 /// Given an indexing `map` coming from a LinalgOp indexing, restricted to a 459 /// projectedPermutation, compress the unused dimensions to serve as a 460 /// permutation_map for a vector transfer operation. 461 /// For example, given a linalg op such as: 462 /// 463 /// ``` 464 /// %0 = linalg.generic { 465 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d4, d0, d2)>, 466 /// indexing_maps = affine_map<(d0, d1, d2, d3, d4) -> (d1, d3)> 467 /// } 468 /// ins(%0 : tensor<2x3x4xf32>) 469 /// outs(%1 : tensor<5x6xf32>) 470 /// ``` 471 /// 472 /// the iteration domain size of the linalg op is 3x5x4x6x2. The first affine 473 /// map is reindexed to `affine_map<(d0, d1, d2) -> (d2, d0, d1)>`, the second 474 /// affine map is reindexed to `affine_map<(d0, d1) -> (d0, d1)>`. 475 static AffineMap reindexIndexingMap(AffineMap map) { 476 assert(map.isProjectedPermutation(/*allowZeroInResults=*/true) && 477 "expected projected permutation"); 478 auto res = compressUnusedDims(map); 479 assert(res.getNumDims() == res.getNumResults() && 480 "expected reindexed map with same number of dims and results"); 481 return res; 482 } 483 484 /// Helper enum to represent conv1d input traversal order. 485 enum class Conv1DOpOrder { 486 W, // Corresponds to non-channeled 1D convolution operation. 487 Ncw, // Corresponds to operation that traverses the input in (n, c, w) order. 488 Nwc // Corresponds to operation that traverses the input in (n, w, c) order. 489 }; 490 491 /// Helper data structure to represent the result of vectorization. 492 /// In certain specific cases, like terminators, we do not want to propagate/ 493 enum VectorizationStatus { 494 /// Op failed to vectorize. 495 Failure = 0, 496 /// Op vectorized and custom function took care of replacement logic 497 NoReplace, 498 /// Op vectorized into a new Op whose results will replace original Op's 499 /// results. 500 NewOp 501 // TODO: support values if Op vectorized to Many-Ops whose results we need to 502 // aggregate for replacement. 503 }; 504 struct VectorizationResult { 505 /// Return status from vectorizing the current op. 506 enum VectorizationStatus status = VectorizationStatus::Failure; 507 /// New vectorized operation to replace the current op. 508 /// Replacement behavior is specified by `status`. 509 Operation *newOp; 510 }; 511 512 std::optional<vector::CombiningKind> 513 mlir::linalg::getCombinerOpKind(Operation *combinerOp) { 514 using ::mlir::vector::CombiningKind; 515 516 if (!combinerOp) 517 return std::nullopt; 518 return llvm::TypeSwitch<Operation *, std::optional<CombiningKind>>(combinerOp) 519 .Case<arith::AddIOp, arith::AddFOp>( 520 [&](auto op) { return CombiningKind::ADD; }) 521 .Case<arith::AndIOp>([&](auto op) { return CombiningKind::AND; }) 522 .Case<arith::MaxSIOp>([&](auto op) { return CombiningKind::MAXSI; }) 523 .Case<arith::MaxUIOp>([&](auto op) { return CombiningKind::MAXUI; }) 524 .Case<arith::MaximumFOp>([&](auto op) { return CombiningKind::MAXIMUMF; }) 525 .Case<arith::MaxNumFOp>([&](auto op) { return CombiningKind::MAXNUMF; }) 526 .Case<arith::MinSIOp>([&](auto op) { return CombiningKind::MINSI; }) 527 .Case<arith::MinUIOp>([&](auto op) { return CombiningKind::MINUI; }) 528 .Case<arith::MinimumFOp>([&](auto op) { return CombiningKind::MINIMUMF; }) 529 .Case<arith::MinNumFOp>([&](auto op) { return CombiningKind::MINNUMF; }) 530 .Case<arith::MulIOp, arith::MulFOp>( 531 [&](auto op) { return CombiningKind::MUL; }) 532 .Case<arith::OrIOp>([&](auto op) { return CombiningKind::OR; }) 533 .Case<arith::XOrIOp>([&](auto op) { return CombiningKind::XOR; }) 534 .Default([&](auto op) { return std::nullopt; }); 535 } 536 537 /// Check whether `outputOperand` is a reduction with a single combiner 538 /// operation. Return the combiner operation of the reduction. Return 539 /// nullptr otherwise. Multiple reduction operations would impose an 540 /// ordering between reduction dimensions and is currently unsupported in 541 /// Linalg. This limitation is motivated by the fact that e.g. min(max(X)) != 542 /// max(min(X)) 543 // TODO: use in LinalgOp verification, there is a circular dependency atm. 544 static Operation *matchLinalgReduction(OpOperand *outputOperand) { 545 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 546 unsigned outputPos = 547 outputOperand->getOperandNumber() - linalgOp.getNumDpsInputs(); 548 // Only single combiner operations are supported for now. 549 SmallVector<Operation *, 4> combinerOps; 550 if (!matchReduction(linalgOp.getRegionOutputArgs(), outputPos, combinerOps) || 551 combinerOps.size() != 1) 552 return nullptr; 553 554 // Return the combiner operation. 555 return combinerOps[0]; 556 } 557 558 /// Broadcast `value` to a vector of `shape` if possible. Return value 559 /// otherwise. 560 static Value broadcastIfNeeded(OpBuilder &b, Value value, Type dstType) { 561 auto dstVecType = dyn_cast<VectorType>(dstType); 562 // If no shape to broadcast to, just return `value`. 563 if (dstVecType.getRank() == 0) 564 return value; 565 if (vector::isBroadcastableTo(value.getType(), dstVecType) != 566 vector::BroadcastableToResult::Success) 567 return value; 568 Location loc = b.getInsertionPoint()->getLoc(); 569 return b.createOrFold<vector::BroadcastOp>(loc, dstVecType, value); 570 } 571 572 /// Create MultiDimReductionOp to compute the reduction for `reductionOp`. This 573 /// assumes that `reductionOp` has two operands and one of them is the reduction 574 /// initial value.buildMultiDimReduce 575 // Note: this is a true builder that notifies the OpBuilder listener. 576 // TODO: Consider moving as a static helper on the ReduceOp. 577 static Operation *buildMultiDimReduce(OpBuilder &b, Operation *reduceOp, 578 Value valueToReduce, Value acc, 579 ArrayRef<bool> dimsToMask) { 580 auto maybeKind = getCombinerOpKind(reduceOp); 581 assert(maybeKind && "Failed precondition: could not get reduction kind"); 582 return b.create<vector::MultiDimReductionOp>( 583 reduceOp->getLoc(), valueToReduce, acc, dimsToMask, *maybeKind); 584 } 585 586 static SmallVector<bool> getDimsToReduce(LinalgOp linalgOp) { 587 return llvm::to_vector( 588 llvm::map_range(linalgOp.getIteratorTypesArray(), isReductionIterator)); 589 } 590 591 /// Check if `op` is a linalg.reduce or a linalg.generic that has at least one 592 /// reduction iterator. 593 static bool hasReductionIterator(LinalgOp &op) { 594 return isa<linalg::ReduceOp>(op) || 595 (isa<linalg::GenericOp>(op) && 596 llvm::any_of(op.getIteratorTypesArray(), isReductionIterator)); 597 } 598 599 /// Build a vector.transfer_write of `value` into `outputOperand` at indices set 600 /// to all `0`; where `outputOperand` is an output operand of the LinalgOp 601 /// currently being vectorized. If `dest` has null rank, build an memref.store. 602 /// Return the produced value or null if no value is produced. 603 // Note: this is a true builder that notifies the OpBuilder listener. 604 // TODO: Consider moving as a static helper on the ReduceOp. 605 static Value buildVectorWrite(RewriterBase &rewriter, Value value, 606 OpOperand *outputOperand, 607 VectorizationState &state) { 608 Location loc = value.getLoc(); 609 auto linalgOp = cast<LinalgOp>(outputOperand->getOwner()); 610 AffineMap opOperandMap = linalgOp.getMatchingIndexingMap(outputOperand); 611 612 // Compute the vector type of the value to store. This type should be an 613 // identity or projection of the canonical vector type without any permutation 614 // applied, given that any permutation in a transfer write happens as part of 615 // the write itself. 616 AffineMap vectorTypeMap = AffineMap::getFilteredIdentityMap( 617 opOperandMap.getContext(), opOperandMap.getNumInputs(), 618 [&](AffineDimExpr dimExpr) -> bool { 619 return llvm::is_contained(opOperandMap.getResults(), dimExpr); 620 }); 621 auto vectorType = state.getCanonicalVecType( 622 getElementTypeOrSelf(outputOperand->get().getType()), vectorTypeMap); 623 624 Operation *write; 625 if (vectorType.getRank() > 0) { 626 AffineMap writeMap = inversePermutation(reindexIndexingMap(opOperandMap)); 627 SmallVector<Value> indices(linalgOp.getRank(outputOperand), 628 rewriter.create<arith::ConstantIndexOp>(loc, 0)); 629 value = broadcastIfNeeded(rewriter, value, vectorType); 630 assert(value.getType() == vectorType && "Incorrect type"); 631 write = rewriter.create<vector::TransferWriteOp>( 632 loc, value, outputOperand->get(), indices, writeMap); 633 } else { 634 // 0-d case is still special: do not invert the reindexing writeMap. 635 if (!isa<VectorType>(value.getType())) 636 value = rewriter.create<vector::BroadcastOp>(loc, vectorType, value); 637 assert(value.getType() == vectorType && "Incorrect type"); 638 write = rewriter.create<vector::TransferWriteOp>( 639 loc, value, outputOperand->get(), ValueRange{}); 640 } 641 642 write = state.maskOperation(rewriter, write, linalgOp, opOperandMap); 643 644 // If masked, set in-bounds to true. Masking guarantees that the access will 645 // be in-bounds. 646 if (auto maskOp = dyn_cast<vector::MaskingOpInterface>(write)) { 647 auto maskedWriteOp = cast<vector::TransferWriteOp>(maskOp.getMaskableOp()); 648 SmallVector<bool> inBounds(maskedWriteOp.getVectorType().getRank(), true); 649 maskedWriteOp.setInBoundsAttr(rewriter.getBoolArrayAttr(inBounds)); 650 } 651 652 LDBG("vectorized op: " << *write << "\n"); 653 if (!write->getResults().empty()) 654 return write->getResult(0); 655 return Value(); 656 } 657 658 // Custom vectorization precondition function type. This is intented to be used 659 // with CustomVectorizationHook. Returns success if the corresponding custom 660 // hook can vectorize the op. 661 using CustomVectorizationPrecondition = 662 std::function<LogicalResult(Operation *, bool)>; 663 664 // Custom vectorization function type. Produce a vector form of Operation* 665 // assuming all its vectorized operands are already in the IRMapping. 666 // Return nullptr if the Operation cannot be vectorized. 667 using CustomVectorizationHook = 668 std::function<VectorizationResult(Operation *, const IRMapping &)>; 669 670 /// Helper function to vectorize the terminator of a `linalgOp`. New result 671 /// vector values are appended to `newResults`. Return 672 /// VectorizationStatus::NoReplace to signal the vectorization algorithm that it 673 /// should not try to map produced operations and instead return the results 674 /// using the `newResults` vector making them available to the vectorization 675 /// algorithm for RAUW. This function is meant to be used as a 676 /// CustomVectorizationHook. 677 static VectorizationResult 678 vectorizeLinalgYield(RewriterBase &rewriter, Operation *op, 679 const IRMapping &bvm, VectorizationState &state, 680 LinalgOp linalgOp, SmallVectorImpl<Value> &newResults) { 681 auto yieldOp = dyn_cast<linalg::YieldOp>(op); 682 if (!yieldOp) 683 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 684 for (const auto &output : llvm::enumerate(yieldOp.getValues())) { 685 // TODO: Scan for an opportunity for reuse. 686 // TODO: use a map. 687 Value vectorValue = bvm.lookup(output.value()); 688 Value newResult = 689 buildVectorWrite(rewriter, vectorValue, 690 linalgOp.getDpsInitOperand(output.index()), state); 691 if (newResult) 692 newResults.push_back(newResult); 693 } 694 695 return VectorizationResult{VectorizationStatus::NoReplace, nullptr}; 696 } 697 698 /// Helper function to vectorize the index operations of a `linalgOp`. Return 699 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it 700 /// should map the produced operations. This function is meant to be used as a 701 /// CustomVectorizationHook. 702 static VectorizationResult vectorizeLinalgIndex(RewriterBase &rewriter, 703 VectorizationState &state, 704 Operation *op, 705 LinalgOp linalgOp) { 706 IndexOp indexOp = dyn_cast<linalg::IndexOp>(op); 707 if (!indexOp) 708 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 709 auto loc = indexOp.getLoc(); 710 // Compute the static loop sizes of the index op. 711 ArrayRef<int64_t> targetShape = state.getCanonicalVecShape(); 712 auto dim = indexOp.getDim(); 713 // Compute a one-dimensional index vector for the index op dimension. 714 auto indexVectorType = 715 VectorType::get({targetShape[dim]}, rewriter.getIndexType(), 716 state.getScalableVecDims()[dim]); 717 auto indexSteps = rewriter.create<vector::StepOp>(loc, indexVectorType); 718 // Return the one-dimensional index vector if it lives in the trailing 719 // dimension of the iteration space since the vectorization algorithm in this 720 // case can handle the broadcast. 721 if (dim == targetShape.size() - 1) 722 return VectorizationResult{VectorizationStatus::NewOp, indexSteps}; 723 // Otherwise permute the targetShape to move the index dimension last, 724 // broadcast the one-dimensional index vector to the permuted shape, and 725 // finally transpose the broadcasted index vector to undo the permutation. 726 auto permPattern = 727 llvm::to_vector(llvm::seq<unsigned>(0, targetShape.size())); 728 std::swap(permPattern[dim], permPattern.back()); 729 auto permMap = 730 AffineMap::getPermutationMap(permPattern, linalgOp.getContext()); 731 732 auto broadCastOp = rewriter.create<vector::BroadcastOp>( 733 loc, state.getCanonicalVecType(rewriter.getIndexType(), permMap), 734 indexSteps); 735 SmallVector<int64_t> transposition = 736 llvm::to_vector<16>(llvm::seq<int64_t>(0, linalgOp.getNumLoops())); 737 std::swap(transposition.back(), transposition[dim]); 738 auto transposeOp = 739 rewriter.create<vector::TransposeOp>(loc, broadCastOp, transposition); 740 return VectorizationResult{VectorizationStatus::NewOp, transposeOp}; 741 } 742 743 /// Helper function to check if the tensor.extract can be vectorized by the 744 /// custom hook vectorizeTensorExtract. 745 static LogicalResult 746 tensorExtractVectorizationPrecondition(Operation *op, bool vectorizeNDExtract) { 747 tensor::ExtractOp extractOp = dyn_cast<tensor::ExtractOp>(op); 748 if (!extractOp) 749 return failure(); 750 751 if (extractOp.getIndices().size() != 1 && !vectorizeNDExtract) 752 return failure(); 753 754 // Check the index type, but only for non 0-d tensors (for which we do need 755 // access indices). 756 if (not extractOp.getIndices().empty()) { 757 if (!VectorType::isValidElementType(extractOp.getIndices()[0].getType())) 758 return failure(); 759 } 760 761 if (llvm::any_of(extractOp->getResultTypes(), [](Type type) { 762 return !VectorType::isValidElementType(type); 763 })) { 764 return failure(); 765 } 766 767 return success(); 768 } 769 770 /// Calculates the offsets (`$index_vec`) for `vector.gather` operations 771 /// generated from `tensor.extract`. The offset is calculated as follows 772 /// (example using scalar values): 773 /// 774 /// offset = extractOp.indices[0] 775 /// for (i = 1; i < numIndices; i++) 776 /// offset = extractOp.dimSize[i] * offset + extractOp.indices[i]; 777 /// 778 /// For tensor<45 x 80 x 15 x f32> and index [1, 2, 3], this leads to: 779 /// offset = ( ( 1 ) * 80 + 2 ) * 15 + 3 780 static Value calculateGatherOffset(RewriterBase &rewriter, 781 VectorizationState &state, 782 tensor::ExtractOp extractOp, 783 const IRMapping &bvm) { 784 // The vector of indices for GatherOp should be shaped as the output vector. 785 auto indexVecType = state.getCanonicalVecType(rewriter.getIndexType()); 786 auto loc = extractOp.getLoc(); 787 788 Value offset = broadcastIfNeeded( 789 rewriter, bvm.lookup(extractOp.getIndices()[0]), indexVecType); 790 791 const size_t numIndices = extractOp.getIndices().size(); 792 for (size_t i = 1; i < numIndices; i++) { 793 Value dimIdx = rewriter.create<arith::ConstantIndexOp>(loc, i); 794 795 auto dimSize = broadcastIfNeeded( 796 rewriter, 797 rewriter.create<tensor::DimOp>(loc, extractOp.getTensor(), dimIdx), 798 indexVecType); 799 800 offset = rewriter.create<arith::MulIOp>(loc, offset, dimSize); 801 802 auto extractOpIndex = broadcastIfNeeded( 803 rewriter, bvm.lookup(extractOp.getIndices()[i]), indexVecType); 804 805 offset = rewriter.create<arith::AddIOp>(loc, extractOpIndex, offset); 806 } 807 808 return offset; 809 } 810 811 enum VectorMemoryAccessKind { ScalarBroadcast, Contiguous, Gather }; 812 813 /// Find the index of the trailing non-unit dim in linalgOp. This hook is used 814 /// when checking whether `tensor.extract` Op (within a `linalg.generic` Op) 815 /// represents a contiguous load operation. 816 /// 817 /// Note that when calling this hook, it is assumed that the output vector is 818 /// effectively 1D. Other cases (i.e. reading n-D vectors) should've been 819 /// labelled as a gather load before entering this method. 820 /// 821 /// Following on from the above, it is assumed that: 822 /// * for statically shaped loops, when no masks are used, only one dim is != 823 /// 1 (that's what the shape of the output vector is based on). 824 /// * for dynamically shaped loops, there might be more non-unit dims 825 /// as the output vector type is user-specified. 826 /// 827 /// TODO: Statically shaped loops + vector masking 828 static uint64_t getTrailingNonUnitLoopDimIdx(LinalgOp linalgOp) { 829 SmallVector<int64_t> loopRanges = linalgOp.getStaticLoopRanges(); 830 assert(linalgOp.hasDynamicShape() || 831 llvm::count_if(loopRanges, [](int64_t dim) { return dim != 1; }) == 832 1 && 833 "For statically shaped Linalg Ops, only one " 834 "non-unit loop dim is expected"); 835 836 size_t idx = loopRanges.size() - 1; 837 for (; idx >= 0; idx--) 838 if (loopRanges[idx] != 1) 839 break; 840 841 return idx; 842 } 843 844 /// Checks whether `val` can be used for calculating a loop invariant index. 845 static bool isLoopInvariantIdx(LinalgOp &linalgOp, Value &val, 846 VectorType resType) { 847 848 assert(((llvm::count_if(resType.getShape(), 849 [](int64_t dimSize) { return dimSize > 1; }) == 1)) && 850 "n-D vectors are not yet supported"); 851 852 // Blocks outside _this_ linalg.generic are effectively loop invariant. 853 // However, analysing block arguments for _this_ linalg.generic Op is a bit 854 // tricky. Just bail out in the latter case. 855 // TODO: We could try analysing the corresponding affine map here. 856 auto *block = linalgOp.getBlock(); 857 if (isa<BlockArgument>(val)) 858 return llvm::all_of(block->getArguments(), 859 [&val](Value v) { return (v != val); }); 860 861 Operation *defOp = val.getDefiningOp(); 862 assert(defOp && "This is neither a block argument nor an operation result"); 863 864 // IndexOp is loop invariant as long as its result remains constant across 865 // iterations. Note that for dynamic shapes, the corresponding dim will also 866 // be conservatively treated as != 1. 867 if (auto indexOp = dyn_cast<linalg::IndexOp>(defOp)) { 868 return linalgOp.getStaticLoopRanges()[indexOp.getDim()] == 1; 869 } 870 871 auto *ancestor = block->findAncestorOpInBlock(*defOp); 872 873 // Values define outside `linalgOp` are loop invariant. 874 if (!ancestor) 875 return true; 876 877 // Values defined inside `linalgOp`, which are constant, are loop invariant. 878 if (isa<arith::ConstantOp>(ancestor)) 879 return true; 880 881 bool result = true; 882 for (auto op : ancestor->getOperands()) 883 result &= isLoopInvariantIdx(linalgOp, op, resType); 884 885 return result; 886 } 887 888 /// Check whether `val` could be used for calculating the trailing index for a 889 /// contiguous load operation. 890 /// 891 /// There are currently 3 types of values that are allowed here: 892 /// 1. loop-invariant values, 893 /// 2. values that increment by 1 with every loop iteration, 894 /// 3. results of basic arithmetic operations (linear and continuous) 895 /// involving 1., 2. and 3. 896 /// This method returns True if indeed only such values are used in calculating 897 /// `val.` 898 /// 899 /// Additionally, the trailing index for a contiguous load operation should 900 /// increment by 1 with every loop iteration, i.e. be based on: 901 /// * `linalg.index <dim>` , 902 /// where <dim> is the trailing non-unit dim of the iteration space (this way, 903 /// `linalg.index <dim>` increments by 1 with every loop iteration). 904 /// `foundIndexOp` is updated to `true` when such Op is found. 905 static bool isContiguousLoadIdx(LinalgOp &linalgOp, Value &val, 906 bool &foundIndexOp, VectorType resType) { 907 908 assert(((llvm::count_if(resType.getShape(), 909 [](int64_t dimSize) { return dimSize > 1; }) == 1)) && 910 "n-D vectors are not yet supported"); 911 912 // Blocks outside _this_ linalg.generic are effectively loop invariant. 913 // However, analysing block arguments for _this_ linalg.generic Op is a bit 914 // tricky. Just bail out in the latter case. 915 // TODO: We could try analysing the corresponding affine map here. 916 auto *block = linalgOp.getBlock(); 917 if (isa<BlockArgument>(val)) 918 return llvm::all_of(block->getArguments(), 919 [&val](Value v) { return (v != val); }); 920 921 Operation *defOp = val.getDefiningOp(); 922 assert(defOp && "This is neither a block argument nor an operation result"); 923 924 if (auto indexOp = dyn_cast<linalg::IndexOp>(defOp)) { 925 auto loopDimThatIncrementsByOne = getTrailingNonUnitLoopDimIdx(linalgOp); 926 927 foundIndexOp = (indexOp.getDim() == loopDimThatIncrementsByOne); 928 return true; 929 } 930 931 auto *ancestor = block->findAncestorOpInBlock(*defOp); 932 933 if (!ancestor) 934 return false; 935 936 // Conservatively reject Ops that could lead to indices with stride other 937 // than 1. 938 if (!isa<arith::AddIOp, arith::ConstantOp, linalg::IndexOp>(ancestor)) 939 return false; 940 941 bool result = false; 942 for (auto op : ancestor->getOperands()) 943 result |= isContiguousLoadIdx(linalgOp, op, foundIndexOp, resType); 944 945 return result; 946 } 947 948 /// Infer the memory access pattern for the input ExtractOp 949 /// 950 /// Based on the ExtratOp result shape and the access indices, decides whether 951 /// this Op corresponds to a contiguous load (including a broadcast of a scalar) 952 /// or a gather load. When analysing the ExtractOp indices (to identify 953 /// contiguous laods), this method looks for "loop" invariant indices (e.g. 954 /// block arguments) and indices that change linearly (e.g. via `linalg.index` 955 /// Op). 956 /// 957 /// Note that it is always safe to use gather load operations for contiguous 958 /// loads (albeit slow), but not vice-versa. When in doubt, bail out and assume 959 /// that `extractOp` is a gather load. 960 static VectorMemoryAccessKind 961 getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp, 962 LinalgOp &linalgOp, VectorType resType) { 963 964 auto inputShape = cast<ShapedType>(extractOp.getTensor().getType()); 965 966 // 0. Is this a 0-D vector? If yes then this is a scalar broadcast. 967 if (inputShape.getShape().empty()) 968 return VectorMemoryAccessKind::ScalarBroadcast; 969 970 // True for vectors that are effectively 1D, e.g. `vector<1x4x1xi32>`, false 971 // otherwise. 972 bool isOutput1DVector = 973 (llvm::count_if(resType.getShape(), 974 [](int64_t dimSize) { return dimSize > 1; }) == 1); 975 // 1. Assume that it's a gather load when reading non-1D vector. 976 if (!isOutput1DVector) 977 return VectorMemoryAccessKind::Gather; 978 979 bool leadingIdxsLoopInvariant = true; 980 981 // 2. Analyze the leading indices of `extractOp`. 982 // Look at the way each index is calculated and decide whether it is suitable 983 // for a contiguous load, i.e. whether it's loop invariant. If not, it's a 984 // gather load. 985 auto indices = extractOp.getIndices(); 986 auto leadIndices = indices.drop_back(1); 987 988 for (auto [i, indexVal] : llvm::enumerate(leadIndices)) { 989 if (inputShape.getShape()[i] == 1) 990 continue; 991 992 leadingIdxsLoopInvariant &= isLoopInvariantIdx(linalgOp, indexVal, resType); 993 } 994 995 if (!leadingIdxsLoopInvariant) { 996 LDBG("Found gather load: " << extractOp); 997 return VectorMemoryAccessKind::Gather; 998 } 999 1000 // 3. Analyze the trailing index for `extractOp`. 1001 // At this point we know that the leading indices are loop invariant. This 1002 // means that is potentially a scalar or a contiguous load. We can decide 1003 // based on the trailing idx. 1004 auto extractOpTrailingIdx = indices.back(); 1005 1006 // 3a. Scalar broadcast load 1007 // If the trailing index is loop invariant then this is a scalar load. 1008 if (leadingIdxsLoopInvariant && 1009 isLoopInvariantIdx(linalgOp, extractOpTrailingIdx, resType)) { 1010 LDBG("Found scalar broadcast load: " << extractOp); 1011 1012 return VectorMemoryAccessKind::ScalarBroadcast; 1013 } 1014 1015 // 3b. Contiguous loads 1016 // The trailing `extractOp` index should increment with every loop iteration. 1017 // This effectively means that it must be based on the trailing loop index. 1018 // This is what the following bool captures. 1019 bool foundIndexOp = false; 1020 bool isContiguousLoad = isContiguousLoadIdx(linalgOp, extractOpTrailingIdx, 1021 foundIndexOp, resType); 1022 // TODO: Support generating contiguous loads for column vectors - that will 1023 // require adding a permutation map to tranfer_read Ops. 1024 bool isRowVector = resType.getShape().back() != 1; 1025 isContiguousLoad &= (foundIndexOp && isRowVector); 1026 1027 if (isContiguousLoad) { 1028 LDBG("Found contigous load: " << extractOp); 1029 return VectorMemoryAccessKind::Contiguous; 1030 } 1031 1032 // 4. Fallback case - gather load. 1033 LDBG("Found gather load: " << extractOp); 1034 return VectorMemoryAccessKind::Gather; 1035 } 1036 1037 /// Helper function to vectorize the tensor.extract operations. Returns 1038 /// VectorizationStatus::NewOp to signal the vectorization algorithm that it 1039 /// should map the produced operations. This function is meant to be used as a 1040 /// CustomVectorizationHook. 1041 static VectorizationResult 1042 vectorizeTensorExtract(RewriterBase &rewriter, VectorizationState &state, 1043 Operation *op, LinalgOp linalgOp, const IRMapping &bvm) { 1044 tensor::ExtractOp extractOp = dyn_cast<tensor::ExtractOp>(op); 1045 if (!extractOp) 1046 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 1047 auto loc = extractOp.getLoc(); 1048 1049 // Compute the static loop sizes of the extract op. 1050 auto resultType = state.getCanonicalVecType(extractOp.getResult().getType()); 1051 auto maskConstantOp = rewriter.create<arith::ConstantOp>( 1052 loc, 1053 DenseIntElementsAttr::get(state.getCanonicalVecType(rewriter.getI1Type()), 1054 /*value=*/true)); 1055 auto passThruConstantOp = 1056 rewriter.create<arith::ConstantOp>(loc, rewriter.getZeroAttr(resultType)); 1057 1058 // Base indices are currently set to 0. We will need to re-visit if more 1059 // generic scenarios are to be supported. 1060 SmallVector<Value> baseIndices( 1061 extractOp.getIndices().size(), 1062 rewriter.create<arith::ConstantIndexOp>(loc, 0)); 1063 1064 VectorMemoryAccessKind memAccessKind = 1065 getTensorExtractMemoryAccessPattern(extractOp, linalgOp, resultType); 1066 1067 // 1. Handle gather access 1068 if (memAccessKind == VectorMemoryAccessKind::Gather) { 1069 Value offset = calculateGatherOffset(rewriter, state, extractOp, bvm); 1070 1071 // Generate the gather load 1072 Operation *gatherOp = rewriter.create<vector::GatherOp>( 1073 loc, resultType, extractOp.getTensor(), baseIndices, offset, 1074 maskConstantOp, passThruConstantOp); 1075 gatherOp = state.maskOperation(rewriter, gatherOp, linalgOp); 1076 1077 LDBG("Vectorised as gather load: " << extractOp << "\n"); 1078 return VectorizationResult{VectorizationStatus::NewOp, gatherOp}; 1079 } 1080 1081 // 2. Handle: 1082 // a. scalar loads + broadcast, 1083 // b. contiguous loads. 1084 // Both cases use vector.transfer_read. 1085 1086 assert(llvm::count_if(resultType.getShape(), 1087 [](uint64_t dim) { return dim != 1; }) && 1088 "Contiguous loads and scalar loads + broadcast only support 1-D " 1089 "vectors ATM!"); 1090 1091 // Collect indices for `vector.transfer_read`. At this point, the indices will 1092 // either be scalars or would have been broadcast to vectors matching the 1093 // result type. For indices that are vectors, there are two options: 1094 // * for non-trailing indices, all elements are identical (contiguous 1095 // loads are identified by looking for non-trailing indices that are 1096 // invariant with respect to the corresponding linalg.generic), or 1097 // * for trailing indices, the index vector will contain values with stride 1098 // one, but for `vector.transfer_read` only the first (i.e. 0th) index is 1099 // needed. 1100 // This means that 1101 // * for scalar indices - just re-use it, 1102 // * for vector indices (e.g. `vector<1x1x4xindex>`) - extract the bottom 1103 // (0th) element and use that. 1104 SmallVector<Value> transferReadIdxs; 1105 auto zero = rewriter.create<arith::ConstantOp>( 1106 loc, rewriter.getI32Type(), rewriter.getZeroAttr(rewriter.getI32Type())); 1107 for (size_t i = 0; i < extractOp.getIndices().size(); i++) { 1108 Value idx = bvm.lookup(extractOp.getIndices()[i]); 1109 if (idx.getType().isIndex()) { 1110 transferReadIdxs.push_back(idx); 1111 continue; 1112 } 1113 1114 auto indexAs1dVector = rewriter.create<vector::ShapeCastOp>( 1115 loc, 1116 VectorType::get(resultType.getShape().back(), rewriter.getIndexType(), 1117 resultType.getScalableDims().back()), 1118 idx); 1119 transferReadIdxs.push_back( 1120 rewriter.create<vector::ExtractElementOp>(loc, indexAs1dVector, zero)); 1121 } 1122 1123 // `tensor.extract_element` is always in-bounds, hence the following holds. 1124 auto dstRank = resultType.getRank(); 1125 auto srcRank = extractOp.getTensor().getType().getRank(); 1126 SmallVector<bool> inBounds(dstRank, true); 1127 1128 // 2a. Handle scalar broadcast access. 1129 if (memAccessKind == VectorMemoryAccessKind::ScalarBroadcast) { 1130 MLIRContext *ctx = rewriter.getContext(); 1131 SmallVector<AffineExpr> exprs(dstRank, getAffineConstantExpr(0, ctx)); 1132 auto permutationMap = AffineMap::get(srcRank, 0, exprs, ctx); 1133 1134 auto transferReadOp = rewriter.create<vector::TransferReadOp>( 1135 loc, resultType, extractOp.getTensor(), transferReadIdxs, 1136 permutationMap, inBounds); 1137 1138 LDBG("Vectorised as scalar broadcast load: " << extractOp << "\n"); 1139 return VectorizationResult{VectorizationStatus::NewOp, transferReadOp}; 1140 } 1141 1142 // 2b. Handle contiguous access. 1143 auto permutationMap = AffineMap::getMinorIdentityMap( 1144 srcRank, std::min(dstRank, srcRank), rewriter.getContext()); 1145 1146 int32_t rankDiff = dstRank - srcRank; 1147 // When dstRank > srcRank, broadcast the source tensor to the unitary leading 1148 // dims so that the ranks match. This is done by extending the map with 0s. 1149 // For example, for dstRank = 3, srcRank = 2, the following map created 1150 // above: 1151 // (d0, d1) --> (d0, d1) 1152 // is extended as: 1153 // (d0, d1) --> (0, d0, d1) 1154 while (rankDiff > 0) { 1155 permutationMap = permutationMap.insertResult( 1156 mlir::getAffineConstantExpr(0, rewriter.getContext()), 0); 1157 rankDiff--; 1158 } 1159 1160 auto transferReadOp = rewriter.create<vector::TransferReadOp>( 1161 loc, resultType, extractOp.getTensor(), transferReadIdxs, permutationMap, 1162 inBounds); 1163 1164 LDBG("Vectorised as contiguous load: " << extractOp); 1165 return VectorizationResult{VectorizationStatus::NewOp, transferReadOp}; 1166 } 1167 1168 /// Emit reduction operations if the shapes of the value to reduce is different 1169 /// that the result shape. 1170 // Note: this is a true builder that notifies the OpBuilder listener. 1171 // TODO: Consider moving as a static helper on the ReduceOp. 1172 static Operation *reduceIfNeeded(OpBuilder &b, LinalgOp linalgOp, Operation *op, 1173 Value reduceValue, Value initialValue, 1174 const IRMapping &bvm) { 1175 Value reduceVec = bvm.lookup(reduceValue); 1176 Value outputVec = bvm.lookup(initialValue); 1177 auto reduceType = dyn_cast<VectorType>(reduceVec.getType()); 1178 auto outputType = dyn_cast<VectorType>(outputVec.getType()); 1179 // Reduce only if needed as the value may already have been reduce for 1180 // contraction vectorization. 1181 if (!reduceType || 1182 (outputType && reduceType.getShape() == outputType.getShape())) 1183 return nullptr; 1184 SmallVector<bool> dimsToMask = getDimsToReduce(linalgOp); 1185 return buildMultiDimReduce(b, op, reduceVec, outputVec, dimsToMask); 1186 } 1187 1188 /// Generic vectorization for a single operation `op`, given already vectorized 1189 /// operands carried by `bvm`. Vectorization occurs as follows: 1190 /// 1. Try to apply any of the `customVectorizationHooks` and return its 1191 /// result on success. 1192 /// 2. Clone any constant in the current scope without vectorization: each 1193 /// consumer of the constant will later determine the shape to which the 1194 /// constant needs to be broadcast to. 1195 /// 3. Fail on any remaining non `ElementwiseMappable` op. It is the purpose 1196 /// of the `customVectorizationHooks` to cover such cases. 1197 /// 4. Clone `op` in vector form to a vector of shape prescribed by the first 1198 /// operand of maximal rank. Other operands have smaller rank and are 1199 /// broadcast accordingly. It is assumed this broadcast is always legal, 1200 /// otherwise, it means one of the `customVectorizationHooks` is incorrect. 1201 /// 1202 /// This function assumes all operands of `op` have been vectorized and are in 1203 /// the `bvm` mapping. As a consequence, this function is meant to be called on 1204 /// a topologically-sorted list of ops. 1205 /// This function does not update `bvm` but returns a VectorizationStatus that 1206 /// instructs the caller what `bvm` update needs to occur. 1207 static VectorizationResult 1208 vectorizeOneOp(RewriterBase &rewriter, VectorizationState &state, 1209 LinalgOp linalgOp, Operation *op, const IRMapping &bvm, 1210 ArrayRef<CustomVectorizationHook> customVectorizationHooks) { 1211 LDBG("vectorize op " << *op << "\n"); 1212 1213 // 1. Try to apply any CustomVectorizationHook. 1214 if (!customVectorizationHooks.empty()) { 1215 for (auto &customFunc : customVectorizationHooks) { 1216 VectorizationResult result = customFunc(op, bvm); 1217 if (result.status == VectorizationStatus::Failure) 1218 continue; 1219 return result; 1220 } 1221 } 1222 1223 // 2. Constant ops don't get vectorized but rather broadcasted at their users. 1224 // Clone so that the constant is not confined to the linalgOp block . 1225 if (isa<arith::ConstantOp, func::ConstantOp>(op)) 1226 return VectorizationResult{VectorizationStatus::NewOp, rewriter.clone(*op)}; 1227 1228 // 3. Only ElementwiseMappable are allowed in the generic vectorization. 1229 if (!OpTrait::hasElementwiseMappableTraits(op)) 1230 return VectorizationResult{VectorizationStatus::Failure, nullptr}; 1231 1232 // 4 . Check if the operation is a reduction. 1233 SmallVector<std::pair<Value, Value>> reductionOperands; 1234 for (Value operand : op->getOperands()) { 1235 auto blockArg = dyn_cast<BlockArgument>(operand); 1236 if (!blockArg || blockArg.getOwner() != linalgOp.getBlock() || 1237 blockArg.getArgNumber() < linalgOp.getNumDpsInputs()) 1238 continue; 1239 SmallVector<Operation *> reductionOps; 1240 Value reduceValue = matchReduction( 1241 linalgOp.getRegionOutputArgs(), 1242 blockArg.getArgNumber() - linalgOp.getNumDpsInputs(), reductionOps); 1243 if (!reduceValue) 1244 continue; 1245 reductionOperands.push_back(std::make_pair(reduceValue, operand)); 1246 } 1247 if (!reductionOperands.empty()) { 1248 assert(reductionOperands.size() == 1); 1249 Operation *reduceOp = 1250 reduceIfNeeded(rewriter, linalgOp, op, reductionOperands[0].first, 1251 reductionOperands[0].second, bvm); 1252 if (reduceOp) 1253 return VectorizationResult{VectorizationStatus::NewOp, reduceOp}; 1254 } 1255 1256 // 5. Generic vectorization path for ElementwiseMappable ops. 1257 // a. Get the first max ranked shape. 1258 VectorType firstMaxRankedType; 1259 for (Value operand : op->getOperands()) { 1260 auto vecOperand = bvm.lookup(operand); 1261 assert(vecOperand && "Vector operand couldn't be found"); 1262 1263 auto vecType = dyn_cast<VectorType>(vecOperand.getType()); 1264 if (vecType && (!firstMaxRankedType || 1265 firstMaxRankedType.getRank() < vecType.getRank())) 1266 firstMaxRankedType = vecType; 1267 } 1268 // b. Broadcast each op if needed. 1269 SmallVector<Value> vecOperands; 1270 for (Value scalarOperand : op->getOperands()) { 1271 Value vecOperand = bvm.lookup(scalarOperand); 1272 assert(vecOperand && "Vector operand couldn't be found"); 1273 1274 if (firstMaxRankedType) { 1275 auto vecType = VectorType::get(firstMaxRankedType.getShape(), 1276 getElementTypeOrSelf(vecOperand.getType()), 1277 firstMaxRankedType.getScalableDims()); 1278 vecOperands.push_back(broadcastIfNeeded(rewriter, vecOperand, vecType)); 1279 } else { 1280 vecOperands.push_back(vecOperand); 1281 } 1282 } 1283 // c. for elementwise, the result is the vector with the firstMaxRankedShape 1284 SmallVector<Type> resultTypes; 1285 for (Type resultType : op->getResultTypes()) { 1286 resultTypes.push_back( 1287 firstMaxRankedType 1288 ? VectorType::get(firstMaxRankedType.getShape(), resultType, 1289 firstMaxRankedType.getScalableDims()) 1290 : resultType); 1291 } 1292 // d. Build and return the new op. 1293 return VectorizationResult{ 1294 VectorizationStatus::NewOp, 1295 rewriter.create(op->getLoc(), op->getName().getIdentifier(), vecOperands, 1296 resultTypes, op->getAttrs())}; 1297 } 1298 1299 /// Generic vectorization function that rewrites the body of a `linalgOp` into 1300 /// vector form. Generic vectorization proceeds as follows: 1301 /// 1. Verify the `linalgOp` has one non-empty region. 1302 /// 2. Values defined above the region are mapped to themselves and will be 1303 /// broadcasted on a per-need basis by their consumers. 1304 /// 3. Each region argument is vectorized into a vector.transfer_read (or 0-d 1305 /// load). 1306 /// TODO: Reuse opportunities for RAR dependencies. 1307 /// 4a. Register CustomVectorizationHook for YieldOp to capture the results. 1308 /// 4rewriter. Register CustomVectorizationHook for IndexOp to access the 1309 /// iteration indices. 1310 /// 5. Iteratively call vectorizeOneOp on the region operations. 1311 /// 1312 /// When `broadcastToMaximalCommonShape` is set to true, eager broadcasting is 1313 /// performed to the maximal common vector size implied by the `linalgOp` 1314 /// iteration space. This eager broadcasting is introduced in the 1315 /// permutation_map of the vector.transfer_read operations. The eager 1316 /// broadcasting makes it trivial to detrmine where broadcast, transposes and 1317 /// reductions should occur, without any bookkeeping. The tradeoff is that, in 1318 /// the absence of good canonicalizations, the amount of work increases. 1319 /// This is not deemed a problem as we expect canonicalizations and foldings to 1320 /// aggressively clean up the useless work. 1321 static LogicalResult 1322 vectorizeAsLinalgGeneric(RewriterBase &rewriter, VectorizationState &state, 1323 LinalgOp linalgOp, 1324 SmallVectorImpl<Value> &newResults) { 1325 LDBG("Vectorizing operation as linalg generic\n"); 1326 Block *block = linalgOp.getBlock(); 1327 1328 // 2. Values defined above the region can only be broadcast for now. Make them 1329 // map to themselves. 1330 IRMapping bvm; 1331 SetVector<Value> valuesSet; 1332 mlir::getUsedValuesDefinedAbove(linalgOp->getRegion(0), valuesSet); 1333 bvm.map(valuesSet.getArrayRef(), valuesSet.getArrayRef()); 1334 1335 if (linalgOp.getNumDpsInits() == 0) 1336 return failure(); 1337 1338 // 3. Turn all BBArgs into vector.transfer_read / load. 1339 Location loc = linalgOp.getLoc(); 1340 Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0); 1341 for (OpOperand *opOperand : linalgOp.getOpOperandsMatchingBBargs()) { 1342 BlockArgument bbarg = linalgOp.getMatchingBlockArgument(opOperand); 1343 if (linalgOp.isScalar(opOperand)) { 1344 bvm.map(bbarg, opOperand->get()); 1345 continue; 1346 } 1347 1348 // 3.a. Convert the indexing map for this input/output to a transfer read 1349 // permutation map and masking map. 1350 AffineMap indexingMap = linalgOp.getMatchingIndexingMap(opOperand); 1351 1352 // Remove zeros from indexing map to use it as masking map. 1353 SmallVector<int64_t> zeroPos; 1354 auto results = indexingMap.getResults(); 1355 for (const auto &result : llvm::enumerate(results)) { 1356 if (isa<AffineConstantExpr>(result.value())) { 1357 zeroPos.push_back(result.index()); 1358 } 1359 } 1360 AffineMap maskingMap = indexingMap.dropResults(zeroPos); 1361 1362 AffineMap readMap; 1363 VectorType readType; 1364 Type elemType = getElementTypeOrSelf(opOperand->get()); 1365 if (linalgOp.isDpsInput(opOperand)) { 1366 // 3.a.i. For input reads we use the canonical vector shape. 1367 readMap = inverseAndBroadcastProjectedPermutation(indexingMap); 1368 readType = state.getCanonicalVecType(elemType); 1369 } else { 1370 // 3.a.ii. For output reads (iteration-carried dependence, e.g., 1371 // reductions), the vector shape is computed by mapping the canonical 1372 // vector shape to the output domain and back to the canonical domain. 1373 readMap = inversePermutation(reindexIndexingMap(indexingMap)); 1374 readType = 1375 state.getCanonicalVecType(elemType, readMap.compose(indexingMap)); 1376 } 1377 1378 SmallVector<Value> indices(linalgOp.getShape(opOperand).size(), zero); 1379 1380 // Make sure that the in_bounds attribute corresponding to a broadcast dim 1381 // is `true` 1382 SmallVector<unsigned> broadcastedDims = readMap.getBroadcastDims(); 1383 SmallVector<bool> inBounds(readType.getRank(), false); 1384 1385 for (auto idx : broadcastedDims) 1386 inBounds[idx] = true; 1387 1388 Operation *read = rewriter.create<vector::TransferReadOp>( 1389 loc, readType, opOperand->get(), indices, readMap, 1390 ArrayRef<bool>(inBounds)); 1391 read = state.maskOperation(rewriter, read, linalgOp, maskingMap); 1392 Value readValue = read->getResult(0); 1393 1394 // 3.b. If masked, set in-bounds to true. Masking guarantees that the access 1395 // will be in-bounds. 1396 if (auto maskOp = dyn_cast<vector::MaskingOpInterface>(read)) { 1397 SmallVector<bool> inBounds(readType.getRank(), true); 1398 cast<vector::TransferReadOp>(maskOp.getMaskableOp()) 1399 .setInBoundsAttr(rewriter.getBoolArrayAttr(inBounds)); 1400 } 1401 1402 // 3.c. Not all ops support 0-d vectors, extract the scalar for now. 1403 // TODO: remove this. 1404 if (readType.getRank() == 0) 1405 readValue = rewriter.create<vector::ExtractElementOp>(loc, readValue); 1406 1407 LDBG("New vectorized bbarg(" << bbarg.getArgNumber() << "): " << readValue 1408 << "\n"); 1409 bvm.map(bbarg, readValue); 1410 bvm.map(opOperand->get(), readValue); 1411 } 1412 1413 SmallVector<CustomVectorizationHook> hooks; 1414 // 4a. Register CustomVectorizationHook for yieldOp. 1415 CustomVectorizationHook vectorizeYield = 1416 [&](Operation *op, const IRMapping &bvm) -> VectorizationResult { 1417 return vectorizeLinalgYield(rewriter, op, bvm, state, linalgOp, newResults); 1418 }; 1419 hooks.push_back(vectorizeYield); 1420 1421 // 4b. Register CustomVectorizationHook for indexOp. 1422 CustomVectorizationHook vectorizeIndex = 1423 [&](Operation *op, const IRMapping &bvm) -> VectorizationResult { 1424 return vectorizeLinalgIndex(rewriter, state, op, linalgOp); 1425 }; 1426 hooks.push_back(vectorizeIndex); 1427 1428 // 4c. Register CustomVectorizationHook for extractOp. 1429 CustomVectorizationHook vectorizeExtract = 1430 [&](Operation *op, const IRMapping &bvm) -> VectorizationResult { 1431 return vectorizeTensorExtract(rewriter, state, op, linalgOp, bvm); 1432 }; 1433 hooks.push_back(vectorizeExtract); 1434 1435 // 5. Iteratively call `vectorizeOneOp` to each op in the slice. 1436 for (Operation &op : block->getOperations()) { 1437 VectorizationResult result = 1438 vectorizeOneOp(rewriter, state, linalgOp, &op, bvm, hooks); 1439 if (result.status == VectorizationStatus::Failure) { 1440 LDBG("failed to vectorize: " << op << "\n"); 1441 return failure(); 1442 } 1443 if (result.status == VectorizationStatus::NewOp) { 1444 Operation *maybeMaskedOp = 1445 state.maskOperation(rewriter, result.newOp, linalgOp); 1446 LDBG("New vector op: " << *maybeMaskedOp << "\n"); 1447 bvm.map(op.getResults(), maybeMaskedOp->getResults()); 1448 } 1449 } 1450 1451 return success(); 1452 } 1453 1454 /// Given a tensor::PackOp, return the `dest` shape before any packing 1455 /// permutations. 1456 static SmallVector<int64_t> getTiledPackShape(tensor::PackOp packOp, 1457 ArrayRef<int64_t> destShape) { 1458 return applyPermutation(destShape, tensor::getPackInverseDestPerm(packOp)); 1459 } 1460 1461 /// Given an input, the mixed destSizes, and the vector sizes for vectorization, 1462 /// create an empty destination tensor and create a TransferWriteOp from the 1463 /// input to the empty tensor. If the destination shape is not the same as the 1464 /// inputVectorSizes for the first rank(inputVectorSizes) dims, then create a 1465 /// mask for the write. If `useInBoundsInsteadOfMasking` is set, then update the 1466 /// inBounds attribute of the transfer write op instead of masking. 1467 static Operation *createWriteOrMaskedWrite(OpBuilder &builder, Location loc, 1468 Value input, 1469 SmallVector<OpFoldResult> destSizes, 1470 ArrayRef<int64_t> inputVectorSizes, 1471 bool useInBoundsInsteadOfMasking) { 1472 1473 auto inputType = cast<VectorType>(input.getType()); 1474 Value dest = builder.create<tensor::EmptyOp>(loc, destSizes, 1475 inputType.getElementType()); 1476 int64_t rank = cast<ShapedType>(dest.getType()).getRank(); 1477 auto zero = builder.create<arith::ConstantIndexOp>(loc, 0); 1478 auto destShape = cast<ShapedType>(dest.getType()).getShape(); 1479 SmallVector<bool> inBoundsVal(rank, true); 1480 if (useInBoundsInsteadOfMasking) { 1481 // Update the inBounds attribute. 1482 for (unsigned i = 0; i < rank; i++) 1483 inBoundsVal[i] = (destShape[i] == inputVectorSizes[i]) && 1484 !ShapedType::isDynamic(destShape[i]); 1485 } 1486 Operation *write = builder.create<vector::TransferWriteOp>( 1487 loc, 1488 /*vector=*/input, 1489 /*source=*/dest, 1490 /*indices=*/SmallVector<Value>(rank, zero), 1491 /*inBounds=*/inBoundsVal); 1492 assert(llvm::none_of( 1493 destShape.drop_front(inputVectorSizes.size()), 1494 [](int64_t size) { return size == ShapedType::kDynamic; }) && 1495 "Only dims aligned with inputVectorSizes may be dynamic"); 1496 if (useInBoundsInsteadOfMasking) 1497 return write; 1498 bool needMaskForWrite = !llvm::equal( 1499 inputVectorSizes, destShape.take_front(inputVectorSizes.size())); 1500 if (needMaskForWrite) { 1501 SmallVector<int64_t> writeMaskShape; 1502 writeMaskShape.append(inputVectorSizes.begin(), inputVectorSizes.end()); 1503 writeMaskShape.append(destShape.begin() + inputVectorSizes.size(), 1504 destShape.end()); 1505 auto writeMaskType = VectorType::get(writeMaskShape, builder.getI1Type()); 1506 Value maskForWrite = 1507 builder.create<vector::CreateMaskOp>(loc, writeMaskType, destSizes); 1508 write = mlir::vector::maskOperation(builder, write, maskForWrite); 1509 } 1510 return write; 1511 } 1512 1513 /// Vectorize tensor::PackOp with (1) static innerTiles (2) constant 1514 /// padding value and (3) input vector sizes into: 1515 /// masked_transfer_read->shape_cast->transpose->transfer_write_in_bounds 1516 /// As in the following example: 1517 /// %pack = tensor.pack %src inner_dims_pos = [2, 1] inner_tiles = [16, 2] 1518 /// into %dst : tensor<32x8x16xf32> -> tensor<32x4x1x16x2xf32> 1519 /// 1520 /// This pack would be vectorized to: 1521 /// 1522 /// %load = vector.mask %mask { 1523 /// vector.transfer_read %arg0[%c0, %c0, %c0], %cst 1524 /// {in_bounds = [true, true, true]} : 1525 /// tensor<32x7x16xf32>, vector<32x8x16xf32> 1526 /// } : vector<32x8x16xi1> -> vector<32x8x16xf32> 1527 /// %shape_cast = vector.shape_cast %load : vector<32x8x16xf32> 1528 /// to vector<32x4x2x1x16xf32> 1529 /// %transpose = vector.transpose %shape_cast, [0, 1, 3, 4, 2] 1530 /// : vector<32x4x2x1x16xf32> to vector<32x4x1x16x2xf32> 1531 /// %write = vector.transfer_write %transpose, 1532 /// %empty[%c0_0, %c0_0, %c0_0, %c0_0, %c0_0] 1533 /// {in_bounds = [true, true, true, true, true]} 1534 /// : vector<32x4x1x16x2xf32>, tensor<32x4x1x16x2xf32> 1535 /// 1536 /// If the (3) input vector sizes are not provided, the vector sizes are 1537 /// determined by the result tensor shape. Also, we update the inBounds 1538 /// attribute instead of masking. 1539 static LogicalResult 1540 vectorizeAsTensorPackOp(RewriterBase &rewriter, tensor::PackOp packOp, 1541 ArrayRef<int64_t> inputVectorSizes, 1542 SmallVectorImpl<Value> &newResults) { 1543 OpBuilder::InsertionGuard g(rewriter); 1544 rewriter.setInsertionPoint(packOp); 1545 1546 Location loc = packOp.getLoc(); 1547 auto padValue = packOp.getPaddingValue(); 1548 if (!padValue) { 1549 padValue = rewriter.create<arith::ConstantOp>( 1550 loc, rewriter.getZeroAttr(packOp.getSourceType().getElementType())); 1551 } 1552 ReifiedRankedShapedTypeDims reifiedReturnShapes; 1553 LogicalResult status = 1554 cast<ReifyRankedShapedTypeOpInterface>(packOp.getOperation()) 1555 .reifyResultShapes(rewriter, reifiedReturnShapes); 1556 (void)status; // prevent unused variable warning on non-assert builds. 1557 assert(succeeded(status) && "failed to reify result shapes"); 1558 1559 // If the input vector sizes are not provided, then the vector sizes are 1560 // determined by the result tensor shape. In case the vector sizes aren't 1561 // provided, we update the inBounds attribute instead of masking. 1562 bool useInBoundsInsteadOfMasking = false; 1563 if (inputVectorSizes.empty()) { 1564 ArrayRef<int64_t> resultTensorShape = packOp.getDestType().getShape(); 1565 inputVectorSizes = resultTensorShape.take_front(packOp.getSourceRank()); 1566 useInBoundsInsteadOfMasking = true; 1567 } 1568 1569 // Create masked TransferReadOp. 1570 SmallVector<int64_t> inputShape(inputVectorSizes); 1571 auto innerTiles = packOp.getStaticInnerTiles(); 1572 auto innerDimsPos = packOp.getInnerDimsPos(); 1573 auto outerDimsPerm = packOp.getOuterDimsPerm(); 1574 if (!outerDimsPerm.empty()) 1575 applyPermutationToVector(inputShape, 1576 invertPermutationVector(outerDimsPerm)); 1577 for (auto [idx, size] : enumerate(innerTiles)) 1578 inputShape[innerDimsPos[idx]] *= size; 1579 auto maskedRead = vector::createReadOrMaskedRead( 1580 rewriter, loc, packOp.getSource(), inputShape, padValue, 1581 useInBoundsInsteadOfMasking); 1582 1583 // Create ShapeCastOp. 1584 SmallVector<int64_t> destShape(inputVectorSizes); 1585 destShape.append(innerTiles.begin(), innerTiles.end()); 1586 auto tiledPackType = VectorType::get(getTiledPackShape(packOp, destShape), 1587 packOp.getDestType().getElementType()); 1588 auto shapeCastOp = 1589 rewriter.create<vector::ShapeCastOp>(loc, tiledPackType, maskedRead); 1590 1591 // Create TransposeOp. 1592 auto destPermutation = 1593 invertPermutationVector(tensor::getPackInverseDestPerm(packOp)); 1594 auto transposeOp = rewriter.create<vector::TransposeOp>( 1595 loc, shapeCastOp.getResult(), destPermutation); 1596 1597 // Create TransferWriteOp. 1598 Operation *write = createWriteOrMaskedWrite( 1599 rewriter, loc, transposeOp.getResult(), reifiedReturnShapes[0], 1600 inputVectorSizes, /*useInBoundsInsteadOfMasking=*/false); 1601 newResults.push_back(write->getResult(0)); 1602 return success(); 1603 } 1604 1605 /// Vectorize a `tensor::UnPackOp` to these 4 Ops: 1606 /// Vector::TransferReadOp - Reads a vector from the source tensor 1607 /// vector::TransposeOp - Transpose the Source tensor 1608 /// ShapeCastOp - Reshape the data based on the target. 1609 /// vector::TransferWriteOp. - Write the result vector back to the destination 1610 /// tensor. 1611 /// If the vector sizes are not provided: 1612 /// * the vector sizes are determined by the input operand and attributes, 1613 /// * update the inBounds attribute instead of masking. 1614 static LogicalResult 1615 vectorizeAsTensorUnpackOp(RewriterBase &rewriter, tensor::UnPackOp unpackOp, 1616 ArrayRef<int64_t> inputVectorSizes, 1617 SmallVectorImpl<Value> &newResults) { 1618 1619 OpBuilder::InsertionGuard g(rewriter); 1620 rewriter.setInsertionPoint(unpackOp); 1621 1622 RankedTensorType unpackTensorType = unpackOp.getSourceType(); 1623 1624 ArrayRef<int64_t> innerDimPos = unpackOp.getInnerDimsPos(); 1625 ArrayRef<int64_t> innerTiles = unpackOp.getStaticInnerTiles(); 1626 ArrayRef<int64_t> sourceShape = unpackTensorType.getShape(); 1627 bool useInBoundsInsteadOfMasking = false; 1628 ArrayRef<int64_t> outerDimsPerm = unpackOp.getOuterDimsPerm(); 1629 1630 auto destSize = unpackOp.getDestRank(); 1631 1632 if (!inputVectorSizes.empty()) 1633 assert(inputVectorSizes.size() == destSize && 1634 "Incorrect number of input vector sizes"); 1635 1636 // vectorSizes is the shape of the vector that will be used to do final 1637 // write on the destination tensor. It is set like this: Let's say the 1638 // source tensor is rank 'M' and the dest tensor rank 'N', where N <= M. 1639 // Thus: 1640 // 1. vectorSizes = sourceShape.take_front(N) 1641 // 2. if outer_dims_perms is present: do that permutation on vectorSizes. 1642 // 3. multiply all the locations in vectorSize pointed by innerDimPos by the 1643 // innerTiles attribute value. 1644 SmallVector<int64_t> vectorSizes(inputVectorSizes); 1645 if (vectorSizes.empty()) { 1646 llvm::append_range(vectorSizes, sourceShape.take_front(destSize)); 1647 if (!outerDimsPerm.empty()) 1648 applyPermutationToVector(vectorSizes, outerDimsPerm); 1649 for (auto [i, pos] : llvm::enumerate(innerDimPos)) 1650 vectorSizes[pos] *= innerTiles[i]; 1651 1652 useInBoundsInsteadOfMasking = true; 1653 } 1654 1655 // readVectorSizes is the size of tensor used to read and apply mask. It is 1656 // set like this: Let's say the vectorSize (VS) array is size 'N' and 1657 // the sourceShape(SS) is 'M' where M >= N and InnerTileSizes (IT) of 1658 // size M-N 1659 // Thus: 1660 // - initially: readVectorSizes = vectorInputSizes 1661 // - Divide all the readMaskShape locations pointed by innerDimPos 1662 // by the innerTileSize attribute value. 1663 // - if outer_dims_perms is present: do that permutation on readVectorSizes. 1664 // - Append the remaining shape from SS 1665 // E.g. let's say let's say unpackTensorType.getShape() = <8x8x32x16> 1666 // inner Dim Pos = [0, 1] and Inner Tiles = [32, 16], vector_sizes are [512, 1667 // 128] and outer_dims_perm is [1, 0] then read shape is: 1668 // ReadVectorSizes(initial): [512, 128] 1669 // Final Value(after innerDim Adjustment): [512/32, 128/16] 1670 // = [16, 8] 1671 // After applying outer_dims_perm: [8, 16] 1672 // After appending the rest of the sourceShape: [8, 16, 32, 16] 1673 1674 SmallVector<int64_t> readVectorSizes(vectorSizes.begin(), vectorSizes.end()); 1675 1676 for (auto [index, size] : enumerate(innerTiles)) { 1677 readVectorSizes[innerDimPos[index]] = 1678 llvm::divideCeil(readVectorSizes[innerDimPos[index]], size); 1679 } 1680 if (!outerDimsPerm.empty()) { 1681 applyPermutationToVector(readVectorSizes, outerDimsPerm); 1682 } 1683 readVectorSizes.append(sourceShape.begin() + vectorSizes.size(), 1684 sourceShape.end()); 1685 1686 ReifiedRankedShapedTypeDims reifiedRetShapes; 1687 LogicalResult status = 1688 cast<ReifyRankedShapedTypeOpInterface>(unpackOp.getOperation()) 1689 .reifyResultShapes(rewriter, reifiedRetShapes); 1690 if (status.failed()) { 1691 LDBG("Unable to reify result shapes of " << unpackOp); 1692 return failure(); 1693 } 1694 Location loc = unpackOp->getLoc(); 1695 1696 auto padValue = rewriter.create<arith::ConstantOp>( 1697 loc, rewriter.getZeroAttr(unpackOp.getSourceType().getElementType())); 1698 1699 // Read result, mask if necessary. If transferReadOp shape is not equal 1700 // to shape of source, then a mask is necessary. 1701 Value readResult = vector::createReadOrMaskedRead( 1702 rewriter, loc, unpackOp.getSource(), readVectorSizes, padValue, 1703 /*useInBoundsInsteadOfMasking=*/false); 1704 1705 PackingMetadata packMetadata; 1706 SmallVector<int64_t> lastDimToInsertPosPerm = 1707 tensor::getUnPackInverseSrcPerm(unpackOp, packMetadata); 1708 ShapedType maskedOpShapedType = cast<ShapedType>(readResult.getType()); 1709 SmallVector<int64_t> stripMineShape(maskedOpShapedType.getShape()); 1710 mlir::Type stripMineElemType = maskedOpShapedType.getElementType(); 1711 applyPermutationToVector(stripMineShape, lastDimToInsertPosPerm); 1712 RankedTensorType stripMineTensorType = 1713 RankedTensorType::get(stripMineShape, stripMineElemType); 1714 // Transpose the appropriate rows to match output. 1715 vector::TransposeOp transposeOp = rewriter.create<vector::TransposeOp>( 1716 loc, readResult, lastDimToInsertPosPerm); 1717 1718 // Collapse the vector to the size required by result. 1719 RankedTensorType collapsedType = tensor::CollapseShapeOp::inferCollapsedType( 1720 stripMineTensorType, packMetadata.reassociations); 1721 mlir::VectorType vecCollapsedType = 1722 VectorType::get(collapsedType.getShape(), collapsedType.getElementType()); 1723 vector::ShapeCastOp shapeCastOp = rewriter.create<vector::ShapeCastOp>( 1724 loc, vecCollapsedType, transposeOp->getResult(0)); 1725 1726 // writeVectorSizes had to match the shapecast shape for dynamic sizes, 1727 // otherwise the validator complains that the mask size is invalid. 1728 SmallVector<int64_t> writeVectorSizes( 1729 unpackOp.getDestType().hasStaticShape() 1730 ? vectorSizes 1731 : shapeCastOp.getResultVectorType().getShape()); 1732 Operation *write = createWriteOrMaskedWrite( 1733 rewriter, loc, shapeCastOp.getResult(), reifiedRetShapes[0], 1734 writeVectorSizes, useInBoundsInsteadOfMasking); 1735 newResults.push_back(write->getResult(0)); 1736 return success(); 1737 } 1738 1739 /// Vectorize a `padOp` with (1) static result type, (2) constant padding value 1740 /// and (3) all-zero lowPad to 1741 /// `transfer_write_in_bounds(transfer_read_masked(pad_source, pad_value))`. 1742 static LogicalResult 1743 vectorizeAsTensorPadOp(RewriterBase &rewriter, tensor::PadOp padOp, 1744 ArrayRef<int64_t> inputVectorSizes, 1745 SmallVectorImpl<Value> &newResults) { 1746 auto padValue = padOp.getConstantPaddingValue(); 1747 Location loc = padOp.getLoc(); 1748 1749 // transfer_write_in_bounds(transfer_read_masked(pad_source, pad_value)) 1750 OpBuilder::InsertionGuard g(rewriter); 1751 rewriter.setInsertionPoint(padOp); 1752 1753 ReifiedRankedShapedTypeDims reifiedReturnShapes; 1754 LogicalResult status = 1755 cast<ReifyRankedShapedTypeOpInterface>(padOp.getOperation()) 1756 .reifyResultShapes(rewriter, reifiedReturnShapes); 1757 (void)status; // prevent unused variable warning on non-assert builds 1758 assert(succeeded(status) && "failed to reify result shapes"); 1759 auto maskedRead = vector::createReadOrMaskedRead( 1760 rewriter, loc, padOp.getSource(), inputVectorSizes, padValue, 1761 /*useInBoundsInsteadOfMasking=*/false); 1762 Operation *write = createWriteOrMaskedWrite( 1763 rewriter, loc, maskedRead, reifiedReturnShapes[0], inputVectorSizes, 1764 /*useInBoundsInsteadOfMasking=*/false); 1765 newResults.push_back(write->getResult(0)); 1766 return success(); 1767 } 1768 1769 // TODO: probably need some extra checks for reduction followed by consumer 1770 // ops that may not commute (e.g. linear reduction + non-linear instructions). 1771 static LogicalResult reductionPreconditions(LinalgOp op) { 1772 if (llvm::none_of(op.getIteratorTypesArray(), isReductionIterator)) { 1773 LDBG("reduction precondition failed: no reduction iterator\n"); 1774 return failure(); 1775 } 1776 for (OpOperand &opOperand : op.getDpsInitsMutable()) { 1777 AffineMap indexingMap = op.getMatchingIndexingMap(&opOperand); 1778 if (indexingMap.isPermutation()) 1779 continue; 1780 1781 Operation *reduceOp = matchLinalgReduction(&opOperand); 1782 if (!reduceOp || !getCombinerOpKind(reduceOp)) { 1783 LDBG("reduction precondition failed: reduction detection failed\n"); 1784 return failure(); 1785 } 1786 } 1787 return success(); 1788 } 1789 1790 static LogicalResult 1791 vectorizeDynamicConvOpPrecondition(linalg::LinalgOp conv, 1792 bool flatten1DDepthwiseConv) { 1793 if (flatten1DDepthwiseConv) { 1794 LDBG("Vectorization of flattened convs with dynamic shapes is not " 1795 "supported\n"); 1796 return failure(); 1797 } 1798 1799 if (!isa<linalg::DepthwiseConv1DNwcWcOp>(conv)) { 1800 LDBG("Not a 1D depth-wise WC conv, dynamic shapes are not supported\n"); 1801 return failure(); 1802 } 1803 1804 // Support dynamic shapes in 1D depthwise convolution, but only in the 1805 // _channel_ dimension. 1806 Value lhs = conv.getDpsInputOperand(0)->get(); 1807 ArrayRef<int64_t> lhsShape = cast<ShapedType>(lhs.getType()).getShape(); 1808 auto shapeWithoutCh = lhsShape.drop_back(1); 1809 if (ShapedType::isDynamicShape(shapeWithoutCh)) { 1810 LDBG("Dynamically-shaped op vectorization precondition failed: only " 1811 "channel dim can be dynamic\n"); 1812 return failure(); 1813 } 1814 1815 return success(); 1816 } 1817 1818 static LogicalResult 1819 vectorizeDynamicLinalgOpPrecondition(linalg::LinalgOp op, 1820 bool flatten1DDepthwiseConv) { 1821 if (isa<ConvolutionOpInterface>(op.getOperation())) 1822 return vectorizeDynamicConvOpPrecondition(op, flatten1DDepthwiseConv); 1823 1824 if (hasReductionIterator(op)) 1825 return reductionPreconditions(op); 1826 1827 // TODO: Masking only supports dynamic element-wise ops, linalg.generic ops, 1828 // linalg.copy ops and ops that implement ContractionOpInterface for now. 1829 if (!isElementwise(op) && 1830 !isa<linalg::GenericOp, linalg::CopyOp, linalg::ContractionOpInterface>( 1831 op.getOperation())) 1832 return failure(); 1833 1834 LDBG("Dynamically-shaped op meets vectorization pre-conditions\n"); 1835 return success(); 1836 } 1837 1838 /// Need to check if the inner-tiles are static/constant. 1839 static LogicalResult 1840 vectorizeUnPackOpPrecondition(tensor::UnPackOp unpackOp, 1841 ArrayRef<int64_t> inputVectorSizes) { 1842 1843 if (llvm::any_of(unpackOp.getInnerTiles(), [](OpFoldResult res) { 1844 return !getConstantIntValue(res).has_value(); 1845 })) { 1846 LDBG("Inner-tiles must be constant: " << unpackOp << "\n"); 1847 return failure(); 1848 } 1849 ArrayRef<int64_t> resultShape = unpackOp.getDestType().getShape(); 1850 bool satisfyEmptyCond = inputVectorSizes.empty() && 1851 unpackOp.getDestType().hasStaticShape() && 1852 unpackOp.getSourceType().hasStaticShape(); 1853 if (!satisfyEmptyCond && 1854 failed(vector::isValidMaskedInputVector(resultShape, inputVectorSizes))) 1855 return failure(); 1856 1857 return success(); 1858 } 1859 1860 static LogicalResult vectorizeLinalgOpPrecondition( 1861 LinalgOp linalgOp, ArrayRef<int64_t> inputVectorSizes, 1862 bool vectorizeNDExtract, bool flatten1DDepthwiseConv) { 1863 // tensor with dimension of 0 cannot be vectorized. 1864 if (llvm::is_contained(linalgOp.getStaticShape(), 0)) 1865 return failure(); 1866 // Check API contract for input vector sizes. 1867 if (!inputVectorSizes.empty() && 1868 failed(vector::isValidMaskedInputVector(linalgOp.getStaticLoopRanges(), 1869 inputVectorSizes))) 1870 return failure(); 1871 1872 if (linalgOp.hasDynamicShape() && failed(vectorizeDynamicLinalgOpPrecondition( 1873 linalgOp, flatten1DDepthwiseConv))) { 1874 LDBG("Dynamically-shaped op failed vectorization pre-conditions\n"); 1875 return failure(); 1876 } 1877 1878 SmallVector<CustomVectorizationPrecondition> customPreconditions; 1879 1880 // Register CustomVectorizationPrecondition for extractOp. 1881 customPreconditions.push_back(tensorExtractVectorizationPrecondition); 1882 1883 // All types in the body should be a supported element type for VectorType. 1884 for (Operation &innerOp : linalgOp->getRegion(0).front()) { 1885 // Check if any custom hook can vectorize the inner op. 1886 if (llvm::any_of( 1887 customPreconditions, 1888 [&](const CustomVectorizationPrecondition &customPrecondition) { 1889 return succeeded( 1890 customPrecondition(&innerOp, vectorizeNDExtract)); 1891 })) { 1892 continue; 1893 } 1894 if (llvm::any_of(innerOp.getOperandTypes(), [](Type type) { 1895 return !VectorType::isValidElementType(type); 1896 })) { 1897 return failure(); 1898 } 1899 if (llvm::any_of(innerOp.getResultTypes(), [](Type type) { 1900 return !VectorType::isValidElementType(type); 1901 })) { 1902 return failure(); 1903 } 1904 } 1905 if (isElementwise(linalgOp)) 1906 return success(); 1907 1908 // TODO: isaConvolutionOpInterface that can also infer from generic 1909 // features. But we will still need stride/dilation attributes that will be 1910 // annoying to reverse-engineer... 1911 if (isa<ConvolutionOpInterface>(linalgOp.getOperation())) 1912 return success(); 1913 // TODO: the common vector shape is equal to the static loop sizes only when 1914 // all indexing maps are projected permutations. For convs and stencils the 1915 // logic will need to evolve. 1916 if (!allIndexingsAreProjectedPermutation(linalgOp)) { 1917 LDBG("precondition failed: not projected permutations\n"); 1918 return failure(); 1919 } 1920 if (failed(reductionPreconditions(linalgOp))) { 1921 LDBG("precondition failed: reduction preconditions\n"); 1922 return failure(); 1923 } 1924 return success(); 1925 } 1926 1927 static LogicalResult 1928 vectorizePackOpPrecondition(tensor::PackOp packOp, 1929 ArrayRef<int64_t> inputVectorSizes) { 1930 auto padValue = packOp.getPaddingValue(); 1931 Attribute cstAttr; 1932 if (padValue && !matchPattern(padValue, m_Constant(&cstAttr))) { 1933 LDBG("pad value is not constant: " << packOp << "\n"); 1934 return failure(); 1935 } 1936 ArrayRef<int64_t> resultTensorShape = packOp.getDestType().getShape(); 1937 bool satisfyEmptyCond = true; 1938 if (inputVectorSizes.empty()) { 1939 if (!packOp.getDestType().hasStaticShape() || 1940 !packOp.getSourceType().hasStaticShape()) 1941 satisfyEmptyCond = false; 1942 } 1943 1944 if (!satisfyEmptyCond && 1945 failed(vector::isValidMaskedInputVector( 1946 resultTensorShape.take_front(packOp.getSourceRank()), 1947 inputVectorSizes))) 1948 return failure(); 1949 1950 if (llvm::any_of(packOp.getInnerTiles(), [](OpFoldResult v) { 1951 return !getConstantIntValue(v).has_value(); 1952 })) { 1953 LDBG("inner_tiles must be constant: " << packOp << "\n"); 1954 return failure(); 1955 } 1956 1957 return success(); 1958 } 1959 1960 static LogicalResult 1961 vectorizePadOpPrecondition(tensor::PadOp padOp, 1962 ArrayRef<int64_t> inputVectorSizes) { 1963 auto padValue = padOp.getConstantPaddingValue(); 1964 if (!padValue) { 1965 LDBG("pad value is not constant: " << padOp << "\n"); 1966 return failure(); 1967 } 1968 1969 ArrayRef<int64_t> resultTensorShape = padOp.getResultType().getShape(); 1970 if (failed(vector::isValidMaskedInputVector(resultTensorShape, 1971 inputVectorSizes))) 1972 return failure(); 1973 1974 if (llvm::any_of(padOp.getLow(), [](Value v) { 1975 std::optional<int64_t> res = getConstantIntValue(v); 1976 return !res.has_value() || res.value() != 0; 1977 })) { 1978 LDBG("low pad must all be zero: " << padOp << "\n"); 1979 return failure(); 1980 } 1981 1982 return success(); 1983 } 1984 1985 /// Preconditions for scalable vectors. This is quite restrictive - it models 1986 /// the fact that in practice we would only make selected dimensions scalable. 1987 static LogicalResult 1988 vectorizeScalableVectorPrecondition(Operation *op, 1989 ArrayRef<int64_t> inputVectorSizes, 1990 ArrayRef<bool> inputScalableVecDims) { 1991 assert(inputVectorSizes.size() == inputScalableVecDims.size() && 1992 "Number of input vector sizes and scalable dims doesn't match"); 1993 1994 size_t numOfScalableDims = 1995 llvm::count_if(inputScalableVecDims, [](bool flag) { return flag; }); 1996 1997 if (numOfScalableDims == 0) 1998 return success(); 1999 2000 auto linalgOp = dyn_cast<LinalgOp>(op); 2001 2002 // Cond 1: There's been no need for scalable vectorisation of 2003 // non-linalg Ops so far 2004 if (!linalgOp) 2005 return failure(); 2006 2007 // Cond 2: There's been no need for more than 2 scalable dims so far 2008 if (numOfScalableDims > 2) 2009 return failure(); 2010 2011 // Cond 3: Look at the configuration in `inputScalableVecDims` and verify that 2012 // it matches one of the supported cases: 2013 // 1. exactly 1 dim is scalable and that's the _last_ parallel dim 2014 // 2. exactly 2 dims are scalable and those are the _last two adjacent_ 2015 // parallel dims 2016 // 3. exactly 1 reduction dim is scalable and that's the last (innermost) dim 2017 // The 2nd restriction above means that only Matmul-like Ops are supported 2018 // when 2 dims are scalable, e.g. : 2019 // * iterators = [parallel, parallel, reduction] 2020 // * scalable flags = [true, true, false] 2021 2022 // Find the first scalable flag 2023 bool seenParalell = false; 2024 auto iterators = linalgOp.getIteratorTypesArray(); 2025 SmallVector<bool> scalableFlags(inputScalableVecDims); 2026 while (!scalableFlags.back()) { 2027 seenParalell |= (iterators.back() == utils::IteratorType::parallel); 2028 2029 iterators.pop_back(); 2030 scalableFlags.pop_back(); 2031 } 2032 2033 switch (iterators.back()) { 2034 case utils::IteratorType::reduction: { 2035 // Check 3. above is met. 2036 if (iterators.size() != inputVectorSizes.size()) { 2037 LDBG("Non-trailing reduction dim requested for scalable " 2038 "vectorization\n"); 2039 return failure(); 2040 } 2041 if (isa<linalg::MatmulOp>(op) || isa<linalg::MatmulTransposeAOp>(op)) { 2042 LDBG("Scalable vectorization of the reduction dim in Matmul-like ops " 2043 "is not supported\n"); 2044 return failure(); 2045 } 2046 break; 2047 } 2048 case utils::IteratorType::parallel: { 2049 // Check 1. and 2. above are met. 2050 if (seenParalell) { 2051 LDBG("Inner parallel dim not requested for scalable " 2052 "vectorization\n"); 2053 return failure(); 2054 } 2055 break; 2056 } 2057 } 2058 2059 // If present, check the 2nd scalable dim. ATM, only Matmul-like Ops are 2060 // supported for which expect the folowing config: 2061 // * iterators = [parallel, parallel, reduction] 2062 // * scalable flags = [true, true, false] 2063 if (numOfScalableDims == 2) { 2064 // Disallow below case which breaks 3. above: 2065 // * iterators = [..., parallel, reduction] 2066 // * scalable flags = [..., true, true] 2067 if (iterators.back() == utils::IteratorType::reduction) { 2068 LDBG("Higher dim than the trailing reduction dim requested for scalable " 2069 "vectorization\n"); 2070 return failure(); 2071 } 2072 scalableFlags.pop_back(); 2073 iterators.pop_back(); 2074 2075 if (!scalableFlags.back() || 2076 (iterators.back() != utils::IteratorType::parallel)) 2077 return failure(); 2078 } 2079 2080 // Cond 4: Only the following ops are supported in the 2081 // presence of scalable vectors 2082 return success(isElementwise(linalgOp) || isa<linalg::MatmulOp>(op) || 2083 isa<linalg::MatmulTransposeAOp>(op) || 2084 isa<linalg::DepthwiseConv1DNwcWcOp>(op) || 2085 isa<linalg::MatvecOp>(op) || hasReductionIterator(linalgOp)); 2086 } 2087 2088 LogicalResult mlir::linalg::vectorizeOpPrecondition( 2089 Operation *op, ArrayRef<int64_t> inputVectorSizes, 2090 ArrayRef<bool> inputScalableVecDims, bool vectorizeNDExtract, 2091 bool flatten1DDepthwiseConv) { 2092 if (failed(vectorizeScalableVectorPrecondition(op, inputVectorSizes, 2093 inputScalableVecDims))) 2094 return failure(); 2095 2096 return TypeSwitch<Operation *, LogicalResult>(op) 2097 .Case<linalg::LinalgOp>([&](auto linalgOp) { 2098 return vectorizeLinalgOpPrecondition(linalgOp, inputVectorSizes, 2099 vectorizeNDExtract, 2100 flatten1DDepthwiseConv); 2101 }) 2102 .Case<tensor::PadOp>([&](auto padOp) { 2103 return vectorizePadOpPrecondition(padOp, inputVectorSizes); 2104 }) 2105 .Case<tensor::PackOp>([&](auto packOp) { 2106 return vectorizePackOpPrecondition(packOp, inputVectorSizes); 2107 }) 2108 .Case<tensor::UnPackOp>([&](auto unpackOp) { 2109 return vectorizeUnPackOpPrecondition(unpackOp, inputVectorSizes); 2110 }) 2111 .Default([](auto) { return failure(); }); 2112 } 2113 2114 /// Converts affine.apply Ops to arithmetic operations. 2115 static void convertAffineApply(RewriterBase &rewriter, LinalgOp linalgOp) { 2116 OpBuilder::InsertionGuard g(rewriter); 2117 auto toReplace = linalgOp.getBlock()->getOps<affine::AffineApplyOp>(); 2118 2119 for (auto op : make_early_inc_range(toReplace)) { 2120 rewriter.setInsertionPoint(op); 2121 auto expanded = affine::expandAffineExpr( 2122 rewriter, op->getLoc(), op.getAffineMap().getResult(0), 2123 op.getOperands().take_front(op.getAffineMap().getNumDims()), 2124 op.getOperands().take_back(op.getAffineMap().getNumSymbols())); 2125 rewriter.replaceOp(op, expanded); 2126 } 2127 } 2128 2129 /// Emit a suitable vector form for an operation. If provided, 2130 /// `inputVectorSizes` are used to vectorize this operation. 2131 /// `inputVectorSizes` must match the rank of the iteration space of the 2132 /// operation and the input vector sizes must be greater than or equal to 2133 /// their counterpart iteration space sizes, if static. `inputVectorShapes` 2134 /// also allows the vectorization of operations with dynamic shapes. 2135 LogicalResult mlir::linalg::vectorize(RewriterBase &rewriter, Operation *op, 2136 ArrayRef<int64_t> inputVectorSizes, 2137 ArrayRef<bool> inputScalableVecDims, 2138 bool vectorizeNDExtract, 2139 bool flatten1DDepthwiseConv) { 2140 LDBG("Attempting to vectorize:\n" << *op << "\n"); 2141 LDBG("Input vector sizes: "); 2142 LLVM_DEBUG(llvm::interleaveComma(inputVectorSizes, llvm::dbgs())); 2143 LLVM_DEBUG(llvm::dbgs() << "\n"); 2144 LDBG("Input scalable vector dims: "); 2145 LLVM_DEBUG(llvm::interleaveComma(inputScalableVecDims, llvm::dbgs())); 2146 LLVM_DEBUG(llvm::dbgs() << "\n"); 2147 2148 if (failed(vectorizeOpPrecondition(op, inputVectorSizes, inputScalableVecDims, 2149 vectorizeNDExtract, 2150 flatten1DDepthwiseConv))) { 2151 LDBG("Vectorization pre-conditions failed\n"); 2152 return failure(); 2153 } 2154 2155 // Initialize vectorization state. 2156 VectorizationState state(rewriter); 2157 if (auto linalgOp = dyn_cast<linalg::LinalgOp>(op)) { 2158 if (failed(state.initState(rewriter, linalgOp, inputVectorSizes, 2159 inputScalableVecDims))) { 2160 LDBG("Vectorization state couldn't be initialized\n"); 2161 return failure(); 2162 } 2163 } 2164 2165 SmallVector<Value> results; 2166 auto vectorizeResult = 2167 TypeSwitch<Operation *, LogicalResult>(op) 2168 .Case<linalg::LinalgOp>([&](auto linalgOp) { 2169 // TODO: isaConvolutionOpInterface that can also infer from 2170 // generic features. Will require stride/dilation attributes 2171 // inference. 2172 if (isa<ConvolutionOpInterface>(linalgOp.getOperation())) { 2173 FailureOr<Operation *> convOr = vectorizeConvolution( 2174 rewriter, linalgOp, inputVectorSizes, inputScalableVecDims, 2175 flatten1DDepthwiseConv); 2176 if (succeeded(convOr)) { 2177 llvm::append_range(results, (*convOr)->getResults()); 2178 return success(); 2179 } 2180 2181 LDBG("Unsupported convolution can't be vectorized.\n"); 2182 return failure(); 2183 } 2184 2185 LDBG("Vectorize generic by broadcasting to the canonical vector " 2186 "shape\n"); 2187 2188 // Pre-process before proceeding. 2189 convertAffineApply(rewriter, linalgOp); 2190 2191 // TODO: 'vectorize' takes in a 'RewriterBase' which is up-casted 2192 // to 'OpBuilder' when it is passed over to some methods like 2193 // 'vectorizeAsLinalgGeneric'. This is highly problematic: if we 2194 // erase an op within these methods, the actual rewriter won't be 2195 // notified and we will end up with read-after-free issues! 2196 return vectorizeAsLinalgGeneric(rewriter, state, linalgOp, results); 2197 }) 2198 .Case<tensor::PadOp>([&](auto padOp) { 2199 return vectorizeAsTensorPadOp(rewriter, padOp, inputVectorSizes, 2200 results); 2201 }) 2202 .Case<tensor::PackOp>([&](auto packOp) { 2203 return vectorizeAsTensorPackOp(rewriter, packOp, inputVectorSizes, 2204 results); 2205 }) 2206 .Case<tensor::UnPackOp>([&](auto unpackOp) { 2207 return vectorizeAsTensorUnpackOp(rewriter, unpackOp, 2208 inputVectorSizes, results); 2209 }) 2210 .Default([](auto) { return failure(); }); 2211 2212 if (failed(vectorizeResult)) { 2213 LDBG("Vectorization failed\n"); 2214 return failure(); 2215 } 2216 2217 if (!results.empty()) 2218 rewriter.replaceOp(op, results); 2219 else 2220 rewriter.eraseOp(op); 2221 2222 return success(); 2223 } 2224 2225 LogicalResult mlir::linalg::vectorizeCopy(RewriterBase &rewriter, 2226 memref::CopyOp copyOp) { 2227 auto srcType = cast<MemRefType>(copyOp.getSource().getType()); 2228 auto dstType = cast<MemRefType>(copyOp.getTarget().getType()); 2229 if (!srcType.hasStaticShape() || !dstType.hasStaticShape()) 2230 return failure(); 2231 2232 auto srcElementType = getElementTypeOrSelf(srcType); 2233 auto dstElementType = getElementTypeOrSelf(dstType); 2234 if (!VectorType::isValidElementType(srcElementType) || 2235 !VectorType::isValidElementType(dstElementType)) 2236 return failure(); 2237 2238 auto readType = VectorType::get(srcType.getShape(), srcElementType); 2239 auto writeType = VectorType::get(dstType.getShape(), dstElementType); 2240 2241 Location loc = copyOp->getLoc(); 2242 Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0); 2243 SmallVector<Value> indices(srcType.getRank(), zero); 2244 2245 Value readValue = rewriter.create<vector::TransferReadOp>( 2246 loc, readType, copyOp.getSource(), indices, 2247 rewriter.getMultiDimIdentityMap(srcType.getRank())); 2248 if (cast<VectorType>(readValue.getType()).getRank() == 0) { 2249 readValue = rewriter.create<vector::ExtractElementOp>(loc, readValue); 2250 readValue = rewriter.create<vector::BroadcastOp>(loc, writeType, readValue); 2251 } 2252 Operation *writeValue = rewriter.create<vector::TransferWriteOp>( 2253 loc, readValue, copyOp.getTarget(), indices, 2254 rewriter.getMultiDimIdentityMap(srcType.getRank())); 2255 rewriter.replaceOp(copyOp, writeValue->getResults()); 2256 return success(); 2257 } 2258 2259 //----------------------------------------------------------------------------// 2260 // Misc. vectorization patterns. 2261 //----------------------------------------------------------------------------// 2262 2263 /// Helper function that retrieves the value of an IntegerAttr. 2264 static int64_t getIntFromAttr(Attribute attr) { 2265 return cast<IntegerAttr>(attr).getInt(); 2266 } 2267 2268 /// Given an ArrayRef of OpFoldResults, return a vector of Values. 2269 /// IntegerAttrs are converted to ConstantIndexOps. Other attribute types are 2270 /// not supported. 2271 static SmallVector<Value> ofrToIndexValues(RewriterBase &rewriter, Location loc, 2272 ArrayRef<OpFoldResult> ofrs) { 2273 SmallVector<Value> result; 2274 for (auto o : ofrs) { 2275 if (auto val = llvm::dyn_cast_if_present<Value>(o)) { 2276 result.push_back(val); 2277 } else { 2278 result.push_back(rewriter.create<arith::ConstantIndexOp>( 2279 loc, getIntFromAttr(o.template get<Attribute>()))); 2280 } 2281 } 2282 return result; 2283 } 2284 2285 /// Rewrite a tensor::PadOp into a sequence of EmptyOp, FillOp and 2286 /// InsertSliceOp. For now, only constant padding values are supported. 2287 /// If there is enough static type information, TransferReadOps and 2288 /// TransferWriteOps may be generated instead of InsertSliceOps. 2289 struct GenericPadOpVectorizationPattern : public GeneralizePadOpPattern { 2290 GenericPadOpVectorizationPattern(MLIRContext *context, 2291 PatternBenefit benefit = 1) 2292 : GeneralizePadOpPattern(context, tryVectorizeCopy, benefit) {} 2293 /// Vectorize the copying of a tensor::PadOp's source. This is possible if 2294 /// each dimension size is statically know in the source type or the result 2295 /// type (or both). 2296 static LogicalResult tryVectorizeCopy(RewriterBase &rewriter, 2297 tensor::PadOp padOp, Value dest) { 2298 auto sourceType = padOp.getSourceType(); 2299 auto resultType = padOp.getResultType(); 2300 if (!VectorType::isValidElementType(sourceType.getElementType())) 2301 return failure(); 2302 2303 // Copy cannot be vectorized if pad value is non-constant and source shape 2304 // is dynamic. In case of a dynamic source shape, padding must be appended 2305 // by TransferReadOp, but TransferReadOp supports only constant padding. 2306 auto padValue = padOp.getConstantPaddingValue(); 2307 if (!padValue) { 2308 if (!sourceType.hasStaticShape()) 2309 return failure(); 2310 // Create dummy padding value. 2311 auto elemType = sourceType.getElementType(); 2312 padValue = rewriter.create<arith::ConstantOp>( 2313 padOp.getLoc(), elemType, rewriter.getZeroAttr(elemType)); 2314 } 2315 2316 SmallVector<int64_t> vecShape; 2317 SmallVector<bool> readInBounds; 2318 SmallVector<bool> writeInBounds; 2319 for (unsigned i = 0; i < sourceType.getRank(); ++i) { 2320 if (!sourceType.isDynamicDim(i)) { 2321 vecShape.push_back(sourceType.getDimSize(i)); 2322 // Source shape is statically known: Neither read nor write are 2323 // out-of- bounds. 2324 readInBounds.push_back(true); 2325 writeInBounds.push_back(true); 2326 } else if (!resultType.isDynamicDim(i)) { 2327 // Source shape is not statically known, but result shape is. 2328 // Vectorize with size of result shape. This may be larger than the 2329 // source size. 2330 vecShape.push_back(resultType.getDimSize(i)); 2331 // Read may be out-of-bounds because the result size could be larger 2332 // than the source size. 2333 readInBounds.push_back(false); 2334 // Write is out-of-bounds if low padding > 0. 2335 writeInBounds.push_back( 2336 getConstantIntValue(padOp.getMixedLowPad()[i]) == 2337 static_cast<int64_t>(0)); 2338 } else { 2339 // Neither source nor result dim of padOp is static. Cannot vectorize 2340 // the copy. 2341 return failure(); 2342 } 2343 } 2344 auto vecType = VectorType::get(vecShape, sourceType.getElementType()); 2345 2346 // Generate TransferReadOp. 2347 SmallVector<Value> readIndices( 2348 vecType.getRank(), 2349 rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0)); 2350 auto read = rewriter.create<vector::TransferReadOp>( 2351 padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue, 2352 ArrayRef<bool>{readInBounds}); 2353 2354 // If `dest` is a FillOp and the TransferWriteOp would overwrite the 2355 // entire tensor, write directly to the FillOp's operand. 2356 if (llvm::equal(vecShape, resultType.getShape()) && 2357 llvm::all_of(writeInBounds, [](bool b) { return b; })) 2358 if (auto fill = dest.getDefiningOp<FillOp>()) 2359 dest = fill.output(); 2360 2361 // Generate TransferWriteOp. 2362 auto writeIndices = 2363 ofrToIndexValues(rewriter, padOp.getLoc(), padOp.getMixedLowPad()); 2364 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 2365 padOp, read, dest, writeIndices, ArrayRef<bool>{writeInBounds}); 2366 2367 return success(); 2368 } 2369 }; 2370 2371 /// Base pattern for rewriting tensor::PadOps whose result is consumed by a 2372 /// given operation type OpTy. 2373 template <typename OpTy> 2374 struct VectorizePadOpUserPattern : public OpRewritePattern<tensor::PadOp> { 2375 using OpRewritePattern<tensor::PadOp>::OpRewritePattern; 2376 2377 LogicalResult matchAndRewrite(tensor::PadOp padOp, 2378 PatternRewriter &rewriter) const final { 2379 bool changed = false; 2380 // Insert users in vector, because some users may be replaced/removed. 2381 for (auto *user : llvm::to_vector<4>(padOp->getUsers())) 2382 if (auto op = dyn_cast<OpTy>(user)) 2383 changed |= rewriteUser(rewriter, padOp, op).succeeded(); 2384 return success(changed); 2385 } 2386 2387 protected: 2388 virtual LogicalResult rewriteUser(PatternRewriter &rewriter, 2389 tensor::PadOp padOp, OpTy op) const = 0; 2390 }; 2391 2392 /// Rewrite use of tensor::PadOp result in TransferReadOp. E.g.: 2393 /// ``` 2394 /// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32> 2395 /// %r = vector.transfer_read %0[%c0, %c0], %cst 2396 /// {in_bounds = [true, true]} : tensor<17x5xf32>, vector<17x5xf32> 2397 /// ``` 2398 /// is rewritten to: 2399 /// ``` 2400 /// %r = vector.transfer_read %src[%c0, %c0], %padding 2401 /// {in_bounds = [true, true]} 2402 /// : tensor<?x?xf32>, vector<17x5xf32> 2403 /// ``` 2404 /// Note: By restricting this pattern to in-bounds TransferReadOps, we can be 2405 /// sure that the original padding value %cst was never used. 2406 /// 2407 /// This rewrite is possible if: 2408 /// - `xferOp` has no out-of-bounds dims or mask. 2409 /// - Low padding is static 0. 2410 /// - Single, scalar padding value. 2411 struct PadOpVectorizationWithTransferReadPattern 2412 : public VectorizePadOpUserPattern<vector::TransferReadOp> { 2413 using VectorizePadOpUserPattern< 2414 vector::TransferReadOp>::VectorizePadOpUserPattern; 2415 2416 LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, 2417 vector::TransferReadOp xferOp) const override { 2418 // Low padding must be static 0. 2419 if (!padOp.hasZeroLowPad()) 2420 return failure(); 2421 // Pad value must be a constant. 2422 auto padValue = padOp.getConstantPaddingValue(); 2423 if (!padValue) 2424 return failure(); 2425 // Padding value of existing `xferOp` is unused. 2426 if (xferOp.hasOutOfBoundsDim() || xferOp.getMask()) 2427 return failure(); 2428 2429 rewriter.modifyOpInPlace(xferOp, [&]() { 2430 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 2431 xferOp->setAttr(xferOp.getInBoundsAttrName(), 2432 rewriter.getBoolArrayAttr(inBounds)); 2433 xferOp.getSourceMutable().assign(padOp.getSource()); 2434 xferOp.getPaddingMutable().assign(padValue); 2435 }); 2436 2437 return success(); 2438 } 2439 }; 2440 2441 /// Rewrite use of tensor::PadOp result in TransferWriteOp. 2442 /// This pattern rewrites TransferWriteOps that write to a padded tensor 2443 /// value, where the same amount of padding is immediately removed again after 2444 /// the write. In such cases, the TransferWriteOp can write to the non-padded 2445 /// tensor value and apply out-of-bounds masking. E.g.: 2446 /// ``` 2447 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 2448 /// : tensor<...> to tensor<?x?xf32> 2449 /// %1 = tensor.pad %0 ... : tensor<?x?xf32> to tensor<17x5xf32> 2450 /// %2 = vector.transfer_write %vec, %1[...] 2451 /// : vector<17x5xf32>, tensor<17x5xf32> 2452 /// %r = tensor.extract_slice %2[0, 0] [%s0, %s1] [1, 1] 2453 /// : tensor<17x5xf32> to tensor<?x?xf32> 2454 /// ``` 2455 /// is rewritten to: 2456 /// ``` 2457 /// %0 = tensor.extract_slice ...[...] [%s0, %s1] [1, 1] 2458 /// : tensor<...> to tensor<?x?xf32> 2459 /// %r = vector.transfer_write %vec, %0[...] : vector<17x5xf32>, 2460 /// tensor<?x?xf32> 2461 /// ``` 2462 /// Note: It is important that the ExtractSliceOp %r resizes the result of the 2463 /// TransferWriteOp to the same size as the input of the TensorPadOp (or an 2464 /// even smaller size). Otherwise, %r's new (dynamic) dimensions would differ 2465 /// from %r's old dimensions. 2466 /// 2467 /// This rewrite is possible if: 2468 /// - Low padding is static 0. 2469 /// - `xferOp` has exactly one use, which is an ExtractSliceOp. This 2470 /// ExtractSliceOp trims the same amount of padding that was added 2471 /// beforehand. 2472 /// - Single, scalar padding value. 2473 struct PadOpVectorizationWithTransferWritePattern 2474 : public VectorizePadOpUserPattern<vector::TransferWriteOp> { 2475 using VectorizePadOpUserPattern< 2476 vector::TransferWriteOp>::VectorizePadOpUserPattern; 2477 2478 LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, 2479 vector::TransferWriteOp xferOp) const override { 2480 // TODO: support 0-d corner case. 2481 if (xferOp.getTransferRank() == 0) 2482 return failure(); 2483 2484 // Low padding must be static 0. 2485 if (!padOp.hasZeroLowPad()) 2486 return failure(); 2487 // Pad value must be a constant. 2488 auto padValue = padOp.getConstantPaddingValue(); 2489 if (!padValue) 2490 return failure(); 2491 // TransferWriteOp result must be directly consumed by an ExtractSliceOp. 2492 if (!xferOp->hasOneUse()) 2493 return failure(); 2494 auto trimPadding = dyn_cast<tensor::ExtractSliceOp>(*xferOp->user_begin()); 2495 if (!trimPadding) 2496 return failure(); 2497 // Only static zero offsets supported when trimming padding. 2498 if (!trimPadding.hasZeroOffset()) 2499 return failure(); 2500 // trimPadding must remove the amount of padding that was added earlier. 2501 if (!hasSameTensorSize(padOp.getSource(), trimPadding)) 2502 return failure(); 2503 2504 // Insert the new TransferWriteOp at position of the old TransferWriteOp. 2505 rewriter.setInsertionPoint(xferOp); 2506 2507 SmallVector<bool> inBounds(xferOp.getVectorType().getRank(), false); 2508 auto newXferOp = rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 2509 xferOp, padOp.getSource().getType(), xferOp.getVector(), 2510 padOp.getSource(), xferOp.getIndices(), xferOp.getPermutationMapAttr(), 2511 xferOp.getMask(), rewriter.getBoolArrayAttr(inBounds)); 2512 rewriter.replaceOp(trimPadding, newXferOp->getResult(0)); 2513 2514 return success(); 2515 } 2516 2517 /// Check if `beforePadding` and `afterTrimming` have the same tensor size, 2518 /// i.e., same dimensions. 2519 /// 2520 /// Dimensions may be static, dynamic or mix of both. In case of dynamic 2521 /// dimensions, this function tries to infer the (static) tensor size by 2522 /// looking at the defining op and utilizing op-specific knowledge. 2523 /// 2524 /// This is a conservative analysis. In case equal tensor sizes cannot be 2525 /// proven statically, this analysis returns `false` even though the tensor 2526 /// sizes may turn out to be equal at runtime. 2527 bool hasSameTensorSize(Value beforePadding, 2528 tensor::ExtractSliceOp afterTrimming) const { 2529 // If the input to tensor::PadOp is a CastOp, try with both CastOp 2530 // result and CastOp operand. 2531 if (auto castOp = beforePadding.getDefiningOp<tensor::CastOp>()) 2532 if (hasSameTensorSize(castOp.getSource(), afterTrimming)) 2533 return true; 2534 2535 auto t1 = dyn_cast<RankedTensorType>(beforePadding.getType()); 2536 auto t2 = dyn_cast<RankedTensorType>(afterTrimming.getType()); 2537 // Only RankedTensorType supported. 2538 if (!t1 || !t2) 2539 return false; 2540 // Rank of both values must be the same. 2541 if (t1.getRank() != t2.getRank()) 2542 return false; 2543 2544 // All static dimensions must be the same. Mixed cases (e.g., dimension 2545 // static in `t1` but dynamic in `t2`) are not supported. 2546 for (unsigned i = 0; i < t1.getRank(); ++i) { 2547 if (t1.isDynamicDim(i) != t2.isDynamicDim(i)) 2548 return false; 2549 if (!t1.isDynamicDim(i) && t1.getDimSize(i) != t2.getDimSize(i)) 2550 return false; 2551 } 2552 2553 // Nothing more to check if all dimensions are static. 2554 if (t1.getNumDynamicDims() == 0) 2555 return true; 2556 2557 // All dynamic sizes must be the same. The only supported case at the 2558 // moment is when `beforePadding` is an ExtractSliceOp (or a cast 2559 // thereof). 2560 2561 // Apart from CastOp, only ExtractSliceOp is supported. 2562 auto beforeSlice = beforePadding.getDefiningOp<tensor::ExtractSliceOp>(); 2563 if (!beforeSlice) 2564 return false; 2565 2566 assert(static_cast<size_t>(t1.getRank()) == 2567 beforeSlice.getMixedSizes().size()); 2568 assert(static_cast<size_t>(t2.getRank()) == 2569 afterTrimming.getMixedSizes().size()); 2570 2571 for (unsigned i = 0; i < t1.getRank(); ++i) { 2572 // Skip static dimensions. 2573 if (!t1.isDynamicDim(i)) 2574 continue; 2575 auto size1 = beforeSlice.getMixedSizes()[i]; 2576 auto size2 = afterTrimming.getMixedSizes()[i]; 2577 2578 // Case 1: Same value or same constant int. 2579 if (isEqualConstantIntOrValue(size1, size2)) 2580 continue; 2581 2582 // Other cases: Take a deeper look at defining ops of values. 2583 auto v1 = llvm::dyn_cast_if_present<Value>(size1); 2584 auto v2 = llvm::dyn_cast_if_present<Value>(size2); 2585 if (!v1 || !v2) 2586 return false; 2587 2588 // Case 2: Both values are identical AffineMinOps. (Should not happen if 2589 // CSE is run.) 2590 auto minOp1 = v1.getDefiningOp<affine::AffineMinOp>(); 2591 auto minOp2 = v2.getDefiningOp<affine::AffineMinOp>(); 2592 if (minOp1 && minOp2 && minOp1.getAffineMap() == minOp2.getAffineMap() && 2593 minOp1.getOperands() == minOp2.getOperands()) 2594 continue; 2595 2596 // Add additional cases as needed. 2597 } 2598 2599 // All tests passed. 2600 return true; 2601 } 2602 }; 2603 2604 /// Rewrite use of tensor::PadOp result in InsertSliceOp. E.g.: 2605 /// ``` 2606 /// %0 = tensor.pad %src ... : tensor<?x?xf32> to tensor<17x5xf32> 2607 /// %r = tensor.insert_slice %0 2608 /// into %dest[%a, %b, 0, 0] [1, 1, 17, 5] [1, 1, 1, 1] 2609 /// : tensor<17x5xf32> into tensor<?x?x17x5xf32> 2610 /// ``` 2611 /// is rewritten to: 2612 /// ``` 2613 /// %0 = vector.transfer_read %src[%c0, %c0], %padding 2614 /// : tensor<?x?xf32>, vector<17x5xf32> 2615 /// %r = vector.transfer_write %0, %dest[%a, %b, %c0, %c0] 2616 /// {in_bounds = [true, true]} : vector<17x5xf32>, tensor<?x?x17x5xf32> 2617 /// ``` 2618 /// 2619 /// This rewrite is possible if: 2620 /// - Low padding is static 0. 2621 /// - `padOp` result shape is static. 2622 /// - The entire padded tensor is inserted. 2623 /// (Implies that sizes of `insertOp` are all static.) 2624 /// - Only unit strides in `insertOp`. 2625 /// - Single, scalar padding value. 2626 /// - `padOp` result not used as destination. 2627 struct PadOpVectorizationWithInsertSlicePattern 2628 : public VectorizePadOpUserPattern<tensor::InsertSliceOp> { 2629 using VectorizePadOpUserPattern< 2630 tensor::InsertSliceOp>::VectorizePadOpUserPattern; 2631 2632 LogicalResult rewriteUser(PatternRewriter &rewriter, tensor::PadOp padOp, 2633 tensor::InsertSliceOp insertOp) const override { 2634 // Low padding must be static 0. 2635 if (!padOp.hasZeroLowPad()) 2636 return failure(); 2637 // Only unit stride supported. 2638 if (!insertOp.hasUnitStride()) 2639 return failure(); 2640 // Pad value must be a constant. 2641 auto padValue = padOp.getConstantPaddingValue(); 2642 if (!padValue) 2643 return failure(); 2644 // Dynamic shapes not supported. 2645 if (!cast<ShapedType>(padOp.getResult().getType()).hasStaticShape()) 2646 return failure(); 2647 // Pad result not used as destination. 2648 if (insertOp.getDest() == padOp.getResult()) 2649 return failure(); 2650 2651 auto vecType = VectorType::get(padOp.getType().getShape(), 2652 padOp.getType().getElementType()); 2653 unsigned vecRank = vecType.getRank(); 2654 unsigned tensorRank = insertOp.getType().getRank(); 2655 2656 // Check if sizes match: Insert the entire tensor into most minor dims. 2657 // (No permutations allowed.) 2658 SmallVector<int64_t> expectedSizes(tensorRank - vecRank, 1); 2659 expectedSizes.append(vecType.getShape().begin(), vecType.getShape().end()); 2660 if (!llvm::all_of( 2661 llvm::zip(insertOp.getMixedSizes(), expectedSizes), [](auto it) { 2662 return getConstantIntValue(std::get<0>(it)) == std::get<1>(it); 2663 })) 2664 return failure(); 2665 2666 // Insert the TransferReadOp and TransferWriteOp at the position of the 2667 // InsertSliceOp. 2668 rewriter.setInsertionPoint(insertOp); 2669 2670 // Generate TransferReadOp: Read entire source tensor and add high 2671 // padding. 2672 SmallVector<Value> readIndices( 2673 vecRank, rewriter.create<arith::ConstantIndexOp>(padOp.getLoc(), 0)); 2674 auto read = rewriter.create<vector::TransferReadOp>( 2675 padOp.getLoc(), vecType, padOp.getSource(), readIndices, padValue); 2676 2677 // Generate TransferWriteOp: Write to InsertSliceOp's dest tensor at 2678 // specified offsets. Write is fully in-bounds because a InsertSliceOp's 2679 // source must fit into the destination at the specified offsets. 2680 auto writeIndices = 2681 ofrToIndexValues(rewriter, padOp.getLoc(), insertOp.getMixedOffsets()); 2682 SmallVector<bool> inBounds(vecRank, true); 2683 rewriter.replaceOpWithNewOp<vector::TransferWriteOp>( 2684 insertOp, read, insertOp.getDest(), writeIndices, 2685 ArrayRef<bool>{inBounds}); 2686 2687 return success(); 2688 } 2689 }; 2690 2691 void mlir::linalg::populatePadOpVectorizationPatterns( 2692 RewritePatternSet &patterns, PatternBenefit baseBenefit) { 2693 patterns.add<GenericPadOpVectorizationPattern>(patterns.getContext(), 2694 baseBenefit); 2695 // Try these specialized patterns first before resorting to the generic one. 2696 patterns.add<PadOpVectorizationWithTransferReadPattern, 2697 PadOpVectorizationWithTransferWritePattern, 2698 PadOpVectorizationWithInsertSlicePattern>( 2699 patterns.getContext(), baseBenefit.getBenefit() + 1); 2700 } 2701 2702 //----------------------------------------------------------------------------// 2703 // Forwarding patterns 2704 //----------------------------------------------------------------------------// 2705 2706 /// Check whether there is any interleaved use of any `values` between 2707 /// `firstOp` and `secondOp`. Conservatively return `true` if any op or value 2708 /// is in a different block. 2709 static bool mayExistInterleavedUses(Operation *firstOp, Operation *secondOp, 2710 ValueRange values) { 2711 if (firstOp->getBlock() != secondOp->getBlock() || 2712 !firstOp->isBeforeInBlock(secondOp)) { 2713 LDBG("interleavedUses precondition failed, firstOp: " 2714 << *firstOp << ", second op: " << *secondOp << "\n"); 2715 return true; 2716 } 2717 for (auto v : values) { 2718 for (auto &u : v.getUses()) { 2719 Operation *owner = u.getOwner(); 2720 if (owner == firstOp || owner == secondOp) 2721 continue; 2722 // TODO: this is too conservative, use dominance info in the future. 2723 if (owner->getBlock() == firstOp->getBlock() && 2724 (owner->isBeforeInBlock(firstOp) || secondOp->isBeforeInBlock(owner))) 2725 continue; 2726 LDBG(" found interleaved op " << *owner << ", firstOp: " << *firstOp 2727 << ", second op: " << *secondOp << "\n"); 2728 return true; 2729 } 2730 } 2731 return false; 2732 } 2733 2734 /// Return the unique subview use of `v` if it is indeed unique, null 2735 /// otherwise. 2736 static memref::SubViewOp getSubViewUseIfUnique(Value v) { 2737 memref::SubViewOp subViewOp; 2738 for (auto &u : v.getUses()) { 2739 if (auto newSubViewOp = dyn_cast<memref::SubViewOp>(u.getOwner())) { 2740 if (subViewOp) 2741 return memref::SubViewOp(); 2742 subViewOp = newSubViewOp; 2743 } 2744 } 2745 return subViewOp; 2746 } 2747 2748 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 2749 /// when available. 2750 LogicalResult LinalgCopyVTRForwardingPattern::matchAndRewrite( 2751 vector::TransferReadOp xferOp, PatternRewriter &rewriter) const { 2752 2753 // TODO: support mask. 2754 if (xferOp.getMask()) 2755 return rewriter.notifyMatchFailure(xferOp, "unsupported mask"); 2756 2757 // Transfer into `view`. 2758 Value viewOrAlloc = xferOp.getSource(); 2759 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 2760 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 2761 return rewriter.notifyMatchFailure(xferOp, "source not a view or alloc"); 2762 2763 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 2764 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 2765 if (!subViewOp) 2766 return rewriter.notifyMatchFailure(xferOp, "no subview found"); 2767 Value subView = subViewOp.getResult(); 2768 2769 // Find the copy into `subView` without interleaved uses. 2770 memref::CopyOp copyOp; 2771 for (auto &u : subView.getUses()) { 2772 if (auto newCopyOp = dyn_cast<memref::CopyOp>(u.getOwner())) { 2773 assert(isa<MemRefType>(newCopyOp.getTarget().getType())); 2774 if (newCopyOp.getTarget() != subView) 2775 continue; 2776 if (mayExistInterleavedUses(newCopyOp, xferOp, {viewOrAlloc, subView})) 2777 continue; 2778 copyOp = newCopyOp; 2779 break; 2780 } 2781 } 2782 if (!copyOp) 2783 return rewriter.notifyMatchFailure(xferOp, "no copy found"); 2784 2785 // Find the fill into `viewOrAlloc` without interleaved uses before the 2786 // copy. 2787 FillOp maybeFillOp; 2788 for (auto &u : viewOrAlloc.getUses()) { 2789 if (auto newFillOp = dyn_cast<FillOp>(u.getOwner())) { 2790 assert(isa<MemRefType>(newFillOp.output().getType())); 2791 if (newFillOp.output() != viewOrAlloc) 2792 continue; 2793 if (mayExistInterleavedUses(newFillOp, copyOp, {viewOrAlloc, subView})) 2794 continue; 2795 maybeFillOp = newFillOp; 2796 break; 2797 } 2798 } 2799 // Ensure padding matches. 2800 if (maybeFillOp && xferOp.getPadding() != maybeFillOp.value()) 2801 return rewriter.notifyMatchFailure(xferOp, 2802 "padding value does not match fill"); 2803 2804 // `in` is the subview that memref.copy reads. Replace it. 2805 Value in = copyOp.getSource(); 2806 2807 // memref.copy + linalg.fill can be used to create a padded local buffer. 2808 // The `masked` attribute is only valid on this padded buffer. 2809 // When forwarding to vector.transfer_read, the attribute must be reset 2810 // conservatively. 2811 auto vectorType = xferOp.getVectorType(); 2812 Value res = rewriter.create<vector::TransferReadOp>( 2813 xferOp.getLoc(), vectorType, in, xferOp.getIndices(), 2814 xferOp.getPermutationMapAttr(), xferOp.getPadding(), xferOp.getMask(), 2815 rewriter.getBoolArrayAttr( 2816 SmallVector<bool>(vectorType.getRank(), false))); 2817 2818 if (maybeFillOp) 2819 rewriter.eraseOp(maybeFillOp); 2820 rewriter.eraseOp(copyOp); 2821 rewriter.replaceOp(xferOp, res); 2822 2823 return success(); 2824 } 2825 2826 /// TODO: use interfaces, side-effects and aliasing analysis as appropriate, 2827 /// when available. 2828 LogicalResult LinalgCopyVTWForwardingPattern::matchAndRewrite( 2829 vector::TransferWriteOp xferOp, PatternRewriter &rewriter) const { 2830 // TODO: support mask. 2831 if (xferOp.getMask()) 2832 return rewriter.notifyMatchFailure(xferOp, "unsupported mask"); 2833 2834 // Transfer into `viewOrAlloc`. 2835 Value viewOrAlloc = xferOp.getSource(); 2836 if (!viewOrAlloc.getDefiningOp<memref::ViewOp>() && 2837 !viewOrAlloc.getDefiningOp<memref::AllocOp>()) 2838 return rewriter.notifyMatchFailure(xferOp, "source not a view or alloc"); 2839 2840 // Ensure there is exactly one subview of `viewOrAlloc` defining `subView`. 2841 memref::SubViewOp subViewOp = getSubViewUseIfUnique(viewOrAlloc); 2842 if (!subViewOp) 2843 return rewriter.notifyMatchFailure(xferOp, "no subview found"); 2844 Value subView = subViewOp.getResult(); 2845 2846 // Find the copy from `subView` without interleaved uses. 2847 memref::CopyOp copyOp; 2848 for (auto &u : subViewOp.getResult().getUses()) { 2849 if (auto newCopyOp = dyn_cast<memref::CopyOp>(u.getOwner())) { 2850 if (newCopyOp.getSource() != subView) 2851 continue; 2852 if (mayExistInterleavedUses(xferOp, newCopyOp, {viewOrAlloc, subView})) 2853 continue; 2854 copyOp = newCopyOp; 2855 break; 2856 } 2857 } 2858 if (!copyOp) 2859 return rewriter.notifyMatchFailure(xferOp, "no copy found"); 2860 2861 // `out` is the subview copied into that we replace. 2862 assert(isa<MemRefType>(copyOp.getTarget().getType())); 2863 Value out = copyOp.getTarget(); 2864 2865 // Forward vector.transfer into copy. 2866 // memref.copy + linalg.fill can be used to create a padded local buffer. 2867 // The `masked` attribute is only valid on this padded buffer. 2868 // When forwarding to vector.transfer_write, the attribute must be reset 2869 // conservatively. 2870 auto vector = xferOp.getVector(); 2871 rewriter.create<vector::TransferWriteOp>( 2872 xferOp.getLoc(), vector, out, xferOp.getIndices(), 2873 xferOp.getPermutationMapAttr(), xferOp.getMask(), 2874 rewriter.getBoolArrayAttr( 2875 SmallVector<bool>(vector.getType().getRank(), false))); 2876 2877 rewriter.eraseOp(copyOp); 2878 rewriter.eraseOp(xferOp); 2879 2880 return success(); 2881 } 2882 2883 //===----------------------------------------------------------------------===// 2884 // Convolution vectorization patterns 2885 //===----------------------------------------------------------------------===// 2886 2887 template <int N> 2888 static void bindShapeDims(ShapedType shapedType) {} 2889 2890 template <int N, typename IntTy, typename... IntTy2> 2891 static void bindShapeDims(ShapedType shapedType, IntTy &val, IntTy2 &...vals) { 2892 val = shapedType.getShape()[N]; 2893 bindShapeDims<N + 1, IntTy2 &...>(shapedType, vals...); 2894 } 2895 2896 /// Bind a pack of int& to the leading dimensions of shapedType.getShape(). 2897 template <typename... IntTy> 2898 static void bindShapeDims(ShapedType shapedType, IntTy &...vals) { 2899 bindShapeDims<0>(shapedType, vals...); 2900 } 2901 2902 namespace { 2903 bool isCastOfBlockArgument(Operation *op) { 2904 return isa<CastOpInterface>(op) && op->getNumOperands() == 1 && 2905 isa<BlockArgument>(op->getOperand(0)); 2906 } 2907 2908 bool isSupportedPoolKind(vector::CombiningKind kind) { 2909 switch (kind) { 2910 case vector::CombiningKind::ADD: 2911 case vector::CombiningKind::MAXNUMF: 2912 case vector::CombiningKind::MAXIMUMF: 2913 case vector::CombiningKind::MAXSI: 2914 case vector::CombiningKind::MAXUI: 2915 case vector::CombiningKind::MINNUMF: 2916 case vector::CombiningKind::MINIMUMF: 2917 case vector::CombiningKind::MINSI: 2918 case vector::CombiningKind::MINUI: 2919 return true; 2920 default: 2921 return false; 2922 } 2923 } 2924 2925 /// Generate a vector implementation for either: 2926 /// ``` 2927 /// Op def: ( w, kw ) 2928 /// Iters: ({Par(), Red()}) 2929 /// Layout: {{w + kw}, {kw}, {w}} 2930 /// ``` 2931 /// kw is unrolled. 2932 /// 2933 /// or 2934 /// 2935 /// ``` 2936 /// Op def: ( n, w, c, kw, f ) 2937 /// Iters: ({Par(), Par(), Par(), Red(), Red()}) 2938 /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} 2939 /// ``` 2940 /// kw is unrolled, w is unrolled iff dilationW > 1. 2941 /// 2942 /// or 2943 /// 2944 /// ``` 2945 /// Op def: ( n, c, w, f, kw ) 2946 /// Iters: ({Par(), Par(), Par(), Red(), Red()}) 2947 /// Layout: {{n, c, strideW * w + dilationW * kw}, {f, c, kw}, {n, f, w}} 2948 /// ``` 2949 /// kw is unrolled, w is unrolled iff dilationW > 1. 2950 /// 2951 /// or 2952 /// 2953 /// ``` 2954 /// Op def: ( n, w, c, kw ) 2955 /// Iters: ({Par(), Par(), Par(), Red()}) 2956 /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} 2957 /// ``` 2958 /// kw is unrolled, w is unrolled iff dilationW > 1. 2959 struct Conv1DGenerator 2960 : public StructuredGenerator<LinalgOp, utils::IteratorType> { 2961 Conv1DGenerator(RewriterBase &rewriter, LinalgOp linalgOp, int strideW, 2962 int dilationW) 2963 : StructuredGenerator<LinalgOp, utils::IteratorType>(rewriter, linalgOp), 2964 strideW(strideW), dilationW(dilationW) { 2965 // Determine whether `linalgOp` can be generated with this generator 2966 if (linalgOp.getNumDpsInputs() != 2 || linalgOp.getNumDpsInits() != 1) 2967 return; 2968 lhsShaped = linalgOp.getDpsInputOperand(0)->get(); 2969 rhsShaped = linalgOp.getDpsInputOperand(1)->get(); 2970 resShaped = linalgOp.getDpsInitOperand(0)->get(); 2971 lhsShapedType = dyn_cast<ShapedType>(lhsShaped.getType()); 2972 rhsShapedType = dyn_cast<ShapedType>(rhsShaped.getType()); 2973 resShapedType = dyn_cast<ShapedType>(resShaped.getType()); 2974 if (!lhsShapedType || !rhsShapedType || !resShapedType) 2975 return; 2976 // (LHS has dimension NCW/NWC and RES has dimension NFW/NCW/NWF/NWC) OR 2977 // (non-channeled convolution -> LHS and RHS both have single dimensions). 2978 if ((lhsShapedType.getRank() != 3 || resShapedType.getRank() != 3) && 2979 (lhsShapedType.getRank() != 1 || resShapedType.getRank() != 1)) 2980 return; 2981 2982 Operation *reduceOp = matchLinalgReduction(linalgOp.getDpsInitOperand(0)); 2983 if (!reduceOp) 2984 return; 2985 redOp = reduceOp->getName().getIdentifier(); 2986 2987 if (!setOperKind(reduceOp)) 2988 return; 2989 auto maybeKind = getCombinerOpKind(reduceOp); 2990 if (!maybeKind || (*maybeKind != vector::CombiningKind::ADD && 2991 (oper != Pool || !isSupportedPoolKind(*maybeKind)))) { 2992 return; 2993 } 2994 2995 auto rhsRank = rhsShapedType.getRank(); 2996 switch (oper) { 2997 case Conv: 2998 if (rhsRank != 1 && rhsRank != 2 && rhsRank != 3) 2999 return; 3000 break; 3001 case Pool: 3002 if (rhsRank != 1) 3003 return; 3004 break; 3005 } 3006 // The op is now known to be valid. 3007 valid = true; 3008 } 3009 3010 /// Generate a vector implementation for: 3011 /// ``` 3012 /// Op def: ( w, kw ) 3013 /// Iters: ({Par(), Red()}) 3014 /// Layout: {{w + kw}, {kw}, {w}} 3015 /// ``` 3016 /// kw is always unrolled. 3017 /// 3018 /// or 3019 /// 3020 /// ``` 3021 /// Op def: ( n, w, c, kw, f ) 3022 /// Iters: ({Par(), Par(), Par(), Red(), Red()}) 3023 /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} 3024 /// ``` 3025 /// kw is always unrolled. 3026 /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is 3027 /// > 1. 3028 FailureOr<Operation *> conv(Conv1DOpOrder conv1DOpOrder) { 3029 if (!valid) 3030 return rewriter.notifyMatchFailure(op, "unvectorizable 1-D conv/pool"); 3031 3032 int64_t nSize, wSize, cSize, kwSize, fSize; 3033 SmallVector<int64_t, 3> lhsShape, rhsShape, resShape; 3034 bool isSingleChanneled = (conv1DOpOrder == Conv1DOpOrder::W); 3035 switch (conv1DOpOrder) { 3036 case Conv1DOpOrder::W: 3037 // Initialize unused dimensions 3038 nSize = fSize = cSize = 0; 3039 // out{W} 3040 bindShapeDims(resShapedType, wSize); 3041 // kernel{kw} 3042 bindShapeDims(rhsShapedType, kwSize); 3043 lhsShape = {// iw = ow + kw - 1 3044 // (i.e. 16 convolved with 3 -> 14) 3045 (wSize + kwSize - 1)}; 3046 rhsShape = {kwSize}; 3047 resShape = {wSize}; 3048 break; 3049 case Conv1DOpOrder::Nwc: 3050 // out{n, w, f} 3051 bindShapeDims(resShapedType, nSize, wSize, fSize); 3052 switch (oper) { 3053 case Conv: 3054 // kernel{kw, c, f} 3055 bindShapeDims(rhsShapedType, kwSize, cSize); 3056 break; 3057 case Pool: 3058 // kernel{kw} 3059 bindShapeDims(rhsShapedType, kwSize); 3060 cSize = fSize; 3061 break; 3062 } 3063 lhsShape = {nSize, 3064 // iw = ow * sw + kw * dw - 1 3065 // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) 3066 // Perform the proper inclusive -> exclusive -> inclusive. 3067 ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 3068 1, 3069 cSize}; 3070 switch (oper) { 3071 case Conv: 3072 rhsShape = {kwSize, cSize, fSize}; 3073 break; 3074 case Pool: 3075 rhsShape = {kwSize}; 3076 break; 3077 } 3078 resShape = {nSize, wSize, fSize}; 3079 break; 3080 case Conv1DOpOrder::Ncw: 3081 // out{n, f, w} 3082 bindShapeDims(resShapedType, nSize, fSize, wSize); 3083 switch (oper) { 3084 case Conv: 3085 // kernel{f, c, kw} 3086 bindShapeDims(rhsShapedType, fSize, cSize, kwSize); 3087 break; 3088 case Pool: 3089 // kernel{kw} 3090 bindShapeDims(rhsShapedType, kwSize); 3091 cSize = fSize; 3092 break; 3093 } 3094 lhsShape = {nSize, cSize, 3095 // iw = ow * sw + kw * dw - 1 3096 // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) 3097 // Perform the proper inclusive -> exclusive -> inclusive. 3098 ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 3099 1}; 3100 switch (oper) { 3101 case Conv: 3102 rhsShape = {fSize, cSize, kwSize}; 3103 break; 3104 case Pool: 3105 rhsShape = {kwSize}; 3106 break; 3107 } 3108 resShape = {nSize, fSize, wSize}; 3109 break; 3110 } 3111 3112 vector::TransferWriteOp write; 3113 Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0); 3114 3115 // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1. 3116 // When strideW == 1, we can batch the contiguous loads and avoid 3117 // unrolling 3118 int64_t wSizeStep = strideW == 1 ? wSize : 1; 3119 3120 Type lhsEltType = lhsShapedType.getElementType(); 3121 Type rhsEltType = rhsShapedType.getElementType(); 3122 Type resEltType = resShapedType.getElementType(); 3123 auto lhsType = VectorType::get(lhsShape, lhsEltType); 3124 auto rhsType = VectorType::get(rhsShape, rhsEltType); 3125 auto resType = VectorType::get(resShape, resEltType); 3126 // Zero padding with the corresponding dimensions for lhs, rhs and res. 3127 SmallVector<Value> lhsPadding(lhsShape.size(), zero); 3128 SmallVector<Value> rhsPadding(rhsShape.size(), zero); 3129 SmallVector<Value> resPadding(resShape.size(), zero); 3130 3131 // Read the whole lhs, rhs and res in one shot (with zero padding). 3132 Value lhs = rewriter.create<vector::TransferReadOp>(loc, lhsType, lhsShaped, 3133 lhsPadding); 3134 // This is needed only for Conv. 3135 Value rhs = nullptr; 3136 if (oper == Conv) 3137 rhs = rewriter.create<vector::TransferReadOp>(loc, rhsType, rhsShaped, 3138 rhsPadding); 3139 Value res = rewriter.create<vector::TransferReadOp>(loc, resType, resShaped, 3140 resPadding); 3141 3142 // The base vectorization case for channeled convolution is input: 3143 // {n,w,c}, weight: {kw,c,f}, output: {n,w,f}. To reuse the base pattern 3144 // vectorization case, we do pre transpose on input, weight, and output. 3145 switch (conv1DOpOrder) { 3146 case Conv1DOpOrder::W: 3147 case Conv1DOpOrder::Nwc: 3148 // Base case, so no transposes necessary. 3149 break; 3150 case Conv1DOpOrder::Ncw: { 3151 // To match base vectorization case, we pre-transpose current case. 3152 // ncw -> nwc 3153 static constexpr std::array<int64_t, 3> permLhs = {0, 2, 1}; 3154 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, permLhs); 3155 // fcw -> wcf 3156 static constexpr std::array<int64_t, 3> permRhs = {2, 1, 0}; 3157 3158 // This is needed only for Conv. 3159 if (oper == Conv) 3160 rhs = rewriter.create<vector::TransposeOp>(loc, rhs, permRhs); 3161 // nfw -> nwf 3162 static constexpr std::array<int64_t, 3> permRes = {0, 2, 1}; 3163 res = rewriter.create<vector::TransposeOp>(loc, res, permRes); 3164 break; 3165 } 3166 } 3167 3168 //===------------------------------------------------------------------===// 3169 // Begin vector-only rewrite part 3170 //===------------------------------------------------------------------===// 3171 // Unroll along kw and read slices of lhs and rhs. 3172 SmallVector<Value> lhsVals, rhsVals, resVals; 3173 lhsVals = extractConvInputSlices(rewriter, loc, lhs, nSize, wSize, cSize, 3174 kwSize, strideW, dilationW, wSizeStep, 3175 isSingleChanneled); 3176 // Do not do for pooling. 3177 if (oper == Conv) 3178 rhsVals = extractConvFilterSlices(rewriter, loc, rhs, kwSize); 3179 resVals = extractConvResultSlices(rewriter, loc, res, nSize, wSize, fSize, 3180 wSizeStep, isSingleChanneled); 3181 3182 auto linearIndex = [&](int64_t kw, int64_t w) { 3183 return kw * (wSize / wSizeStep) + w; 3184 }; 3185 3186 // Compute contraction: O{n, w, f} += I{n, sw * w + dw * kw, c} * F{c, f} 3187 // or perform outerproduct for non-channeled convolution or perform simple 3188 // arith operation for pooling 3189 for (int64_t kw = 0; kw < kwSize; ++kw) { 3190 for (int64_t w = 0; w < wSize; w += wSizeStep) { 3191 switch (oper) { 3192 case Conv: 3193 if (isSingleChanneled) { 3194 resVals[w] = conv1dSliceAsOuterProduct(rewriter, loc, 3195 lhsVals[linearIndex(kw, w)], 3196 rhsVals[kw], resVals[w]); 3197 } else { 3198 resVals[w] = conv1dSliceAsContraction(rewriter, loc, 3199 lhsVals[linearIndex(kw, w)], 3200 rhsVals[kw], resVals[w]); 3201 } 3202 break; 3203 case Pool: 3204 resVals[w] = pool1dSlice(rewriter, loc, lhsVals[linearIndex(kw, w)], 3205 resVals[w]); 3206 break; 3207 } 3208 } 3209 } 3210 3211 res = insertConvResultSlices(rewriter, loc, res, wSize, wSizeStep, resVals, 3212 isSingleChanneled); 3213 //===------------------------------------------------------------------===// 3214 // End vector-only rewrite part 3215 //===------------------------------------------------------------------===// 3216 3217 // The base vectorization case for channeled convolution is output: 3218 // {n,w,f} To reuse the result from base pattern vectorization case, we 3219 // post transpose the base case result. 3220 switch (conv1DOpOrder) { 3221 case Conv1DOpOrder::W: 3222 case Conv1DOpOrder::Nwc: 3223 // Base case, so no transposes necessary. 3224 break; 3225 case Conv1DOpOrder::Ncw: { 3226 // nwf -> nfw 3227 static constexpr std::array<int64_t, 3> perm = {0, 2, 1}; 3228 res = rewriter.create<vector::TransposeOp>(loc, res, perm); 3229 break; 3230 } 3231 } 3232 3233 return rewriter 3234 .create<vector::TransferWriteOp>(loc, res, resShaped, resPadding) 3235 .getOperation(); 3236 } 3237 3238 // Take a value and widen to have the same element type as `ty`. 3239 Value promote(RewriterBase &rewriter, Location loc, Value val, Type ty) { 3240 const Type srcElementType = getElementTypeOrSelf(val.getType()); 3241 const Type dstElementType = getElementTypeOrSelf(ty); 3242 assert(isa<IntegerType>(dstElementType) || isa<FloatType>(dstElementType)); 3243 if (srcElementType == dstElementType) 3244 return val; 3245 3246 const int64_t srcWidth = srcElementType.getIntOrFloatBitWidth(); 3247 const int64_t dstWidth = dstElementType.getIntOrFloatBitWidth(); 3248 const Type dstType = 3249 cast<ShapedType>(val.getType()).cloneWith(std::nullopt, dstElementType); 3250 3251 if (isa<IntegerType>(srcElementType) && isa<FloatType>(dstElementType)) { 3252 return rewriter.create<arith::SIToFPOp>(loc, dstType, val); 3253 } 3254 3255 if (isa<FloatType>(srcElementType) && isa<FloatType>(dstElementType) && 3256 srcWidth < dstWidth) 3257 return rewriter.create<arith::ExtFOp>(loc, dstType, val); 3258 3259 if (isa<IntegerType>(srcElementType) && isa<IntegerType>(dstElementType) && 3260 srcWidth < dstWidth) 3261 return rewriter.create<arith::ExtSIOp>(loc, dstType, val); 3262 3263 assert(false && "unhandled promotion case"); 3264 return nullptr; 3265 } 3266 3267 // Create a contraction: lhs{n, w, c} * rhs{c, f} -> res{n, w, f} 3268 Value conv1dSliceAsContraction(RewriterBase &rewriter, Location loc, 3269 Value lhs, Value rhs, Value res) { 3270 vector::IteratorType par = vector::IteratorType::parallel; 3271 vector::IteratorType red = vector::IteratorType::reduction; 3272 AffineExpr n, w, f, c; 3273 bindDims(ctx, n, w, f, c); 3274 lhs = promote(rewriter, loc, lhs, res.getType()); 3275 rhs = promote(rewriter, loc, rhs, res.getType()); 3276 return rewriter.create<vector::ContractionOp>( 3277 loc, lhs, rhs, res, 3278 /*indexingMaps=*/MapList{{n, w, c}, {c, f}, {n, w, f}}, 3279 /*iteratorTypes=*/ArrayRef<vector::IteratorType>{par, par, par, red}); 3280 } 3281 3282 // Create an outerproduct: lhs{w} * rhs{1} -> res{w} for single channel 3283 // convolution. 3284 Value conv1dSliceAsOuterProduct(RewriterBase &rewriter, Location loc, 3285 Value lhs, Value rhs, Value res) { 3286 return rewriter.create<vector::OuterProductOp>( 3287 loc, res.getType(), lhs, rhs, res, vector::CombiningKind::ADD); 3288 } 3289 3290 // Create a reduction: lhs{n, w, c} -> res{n, w, c} 3291 Value pool1dSlice(RewriterBase &rewriter, Location loc, Value lhs, 3292 Value res) { 3293 if (isPoolExt) 3294 lhs = rewriter.create(loc, poolExtOp, lhs, res.getType())->getResult(0); 3295 return rewriter 3296 .create(loc, redOp, ArrayRef<Value>{lhs, res}, res.getType()) 3297 ->getResult(0); 3298 } 3299 3300 /// Generate a vector implementation for: 3301 /// ``` 3302 /// Op def: ( n, w, c, kw) 3303 /// Iters: ({Par(), Par(), Par(), Red()}) 3304 /// Layout: {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} 3305 /// ``` 3306 /// kw is always unrolled. 3307 /// TODO: w (resp. kw) is unrolled when the strideW ( resp. dilationW) is 3308 /// > 1. 3309 FailureOr<Operation *> depthwiseConv(uint64_t channelDimVecSize, 3310 bool channelDimScalableFlag, 3311 bool flatten) { 3312 if (!valid) 3313 return rewriter.notifyMatchFailure(op, "unvectorizable depthwise conv"); 3314 3315 bool scalableChDim = false; 3316 bool useMasking = false; 3317 int64_t nSize, wSize, cSize, kwSize; 3318 // kernel{kw, c} 3319 bindShapeDims(rhsShapedType, kwSize, cSize); 3320 if (ShapedType::isDynamic(cSize)) { 3321 assert(channelDimVecSize != 0 && "Channel dim vec size must be > 0"); 3322 cSize = channelDimVecSize; 3323 // Scalable vectors are only used when both conditions are met: 3324 // 1. channel dim is dynamic 3325 // 2. channelDimScalableFlag is set 3326 scalableChDim = channelDimScalableFlag; 3327 useMasking = true; 3328 } 3329 3330 assert(!(useMasking && flatten) && 3331 "Unsupported flattened conv with dynamic shapes"); 3332 3333 // out{n, w, c} 3334 bindShapeDims(resShapedType, nSize, wSize); 3335 3336 vector::TransferWriteOp write; 3337 Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0); 3338 3339 // w is unrolled (i.e. wSizeStep == 1) iff strideW > 1. 3340 // When strideW == 1, we can batch the contiguous loads and avoid 3341 // unrolling 3342 int64_t wSizeStep = strideW == 1 ? wSize : 1; 3343 3344 Type lhsEltType = lhsShapedType.getElementType(); 3345 Type rhsEltType = rhsShapedType.getElementType(); 3346 Type resEltType = resShapedType.getElementType(); 3347 VectorType lhsType = VectorType::get( 3348 {nSize, 3349 // iw = ow * sw + kw * dw - 1 3350 // (i.e. 16 convolved with 3 (@stride 1 dilation 1) -> 14) 3351 ((wSize - 1) * strideW + 1) + ((kwSize - 1) * dilationW + 1) - 1, 3352 cSize}, 3353 lhsEltType, /*scalableDims=*/{false, false, scalableChDim}); 3354 VectorType rhsType = 3355 VectorType::get({kwSize, cSize}, rhsEltType, 3356 /*scalableDims=*/{false, scalableChDim}); 3357 VectorType resType = 3358 VectorType::get({nSize, wSize, cSize}, resEltType, 3359 /*scalableDims=*/{false, false, scalableChDim}); 3360 3361 // Masks the input xfer Op along the channel dim, iff the corresponding 3362 // scalable flag is set. 3363 auto maybeMaskXferOp = [&](ArrayRef<int64_t> maskShape, 3364 ArrayRef<bool> scalableDims, 3365 Operation *opToMask) { 3366 if (!useMasking) 3367 return opToMask; 3368 auto maskType = 3369 VectorType::get(maskShape, rewriter.getI1Type(), scalableDims); 3370 3371 SmallVector<bool> inBounds(maskShape.size(), true); 3372 auto xferOp = cast<VectorTransferOpInterface>(opToMask); 3373 xferOp->setAttr(xferOp.getInBoundsAttrName(), 3374 rewriter.getBoolArrayAttr(inBounds)); 3375 3376 SmallVector<OpFoldResult> mixedDims = vector::getMixedSizesXfer( 3377 cast<LinalgOp>(op).hasPureTensorSemantics(), opToMask, rewriter); 3378 3379 Value maskOp = 3380 rewriter.create<vector::CreateMaskOp>(loc, maskType, mixedDims); 3381 3382 return mlir::vector::maskOperation(rewriter, opToMask, maskOp); 3383 }; 3384 3385 // Read lhs slice of size {n, w * strideW + kw * dilationW, c} @ [0, 0, 3386 // 0]. 3387 Value lhs = rewriter.create<vector::TransferReadOp>( 3388 loc, lhsType, lhsShaped, ValueRange{zero, zero, zero}); 3389 auto maybeMaskedLhs = maybeMaskXferOp( 3390 lhsType.getShape(), lhsType.getScalableDims(), lhs.getDefiningOp()); 3391 3392 // Read rhs slice of size {kw, c} @ [0, 0]. 3393 Value rhs = rewriter.create<vector::TransferReadOp>(loc, rhsType, rhsShaped, 3394 ValueRange{zero, zero}); 3395 auto maybeMaskedRhs = maybeMaskXferOp( 3396 rhsType.getShape(), rhsType.getScalableDims(), rhs.getDefiningOp()); 3397 3398 // Read res slice of size {n, w, c} @ [0, 0, 0]. 3399 Value res = rewriter.create<vector::TransferReadOp>( 3400 loc, resType, resShaped, ValueRange{zero, zero, zero}); 3401 auto maybeMaskedRes = maybeMaskXferOp( 3402 resType.getShape(), resType.getScalableDims(), res.getDefiningOp()); 3403 3404 //===------------------------------------------------------------------===// 3405 // Begin vector-only rewrite part 3406 //===------------------------------------------------------------------===// 3407 // Unroll along kw and read slices of lhs and rhs. 3408 SmallVector<Value> lhsVals, rhsVals, resVals; 3409 auto inOutSliceSizes = SmallVector<int64_t>{nSize, wSizeStep, cSize}; 3410 auto inOutStrides = SmallVector<int64_t>{1, 1, 1}; 3411 3412 // Extract lhs slice of size {n, wSizeStep, c} 3413 // @ [0, sw * w + dw * kw, 0]. 3414 for (int64_t kw = 0; kw < kwSize; ++kw) { 3415 for (int64_t w = 0; w < wSize; w += wSizeStep) { 3416 lhsVals.push_back(rewriter.create<vector::ExtractStridedSliceOp>( 3417 loc, maybeMaskedLhs->getResult(0), 3418 /*offsets=*/ArrayRef<int64_t>{0, w * strideW + kw * dilationW, 0}, 3419 inOutSliceSizes, inOutStrides)); 3420 } 3421 } 3422 // Extract rhs slice of size {c} @ [kw]. 3423 for (int64_t kw = 0; kw < kwSize; ++kw) { 3424 rhsVals.push_back(rewriter.create<vector::ExtractOp>( 3425 loc, maybeMaskedRhs->getResult(0), 3426 /*offsets=*/ArrayRef<int64_t>{kw})); 3427 } 3428 // Extract res slice: {n, wSizeStep, c} @ [0, w, 0]. 3429 for (int64_t w = 0; w < wSize; w += wSizeStep) { 3430 resVals.push_back(rewriter.create<vector::ExtractStridedSliceOp>( 3431 loc, maybeMaskedRes->getResult(0), 3432 /*offsets=*/ArrayRef<int64_t>{0, w, 0}, inOutSliceSizes, 3433 inOutStrides)); 3434 } 3435 3436 auto linearIndex = [&](int64_t kw, int64_t w) { 3437 return kw * (wSize / wSizeStep) + w; 3438 }; 3439 3440 // Note - the scalable flags are ignored as flattening combined with 3441 // scalable vectorization is not supported. 3442 auto inOutFlattenSliceSizes = 3443 SmallVector<int64_t>{nSize, wSizeStep * cSize}; 3444 auto lhsTypeAfterFlattening = 3445 VectorType::get(inOutFlattenSliceSizes, lhsEltType); 3446 auto resTypeAfterFlattening = 3447 VectorType::get(inOutFlattenSliceSizes, resEltType); 3448 3449 // Compute contraction: O{n, w, c} += I{n, sw * w + dw * kw, c} * F{c} 3450 for (int64_t kw = 0; kw < kwSize; ++kw) { 3451 for (int64_t w = 0; w < wSize; w += wSizeStep) { 3452 Value lhsVal = lhsVals[linearIndex(kw, w)]; 3453 Value resVal = resVals[w]; 3454 if (flatten) { 3455 // Flatten the input and output vectors (collapse the channel 3456 // dimension) 3457 lhsVal = rewriter.create<vector::ShapeCastOp>( 3458 loc, lhsTypeAfterFlattening, lhsVals[linearIndex(kw, w)]); 3459 resVal = rewriter.create<vector::ShapeCastOp>( 3460 loc, resTypeAfterFlattening, resVals[w]); 3461 } 3462 resVals[w] = depthwiseConv1dSliceAsMulAcc(rewriter, loc, lhsVal, 3463 rhsVals[kw], resVal, flatten); 3464 if (flatten) { 3465 // Un-flatten the output vector (restore the channel dimension) 3466 resVals[w] = rewriter.create<vector::ShapeCastOp>( 3467 loc, VectorType::get(inOutSliceSizes, resEltType), resVals[w]); 3468 } 3469 } 3470 } 3471 3472 // Its possible we failed to create the Fma. 3473 if (!llvm::all_of(resVals, [](Value v) { return v; })) { 3474 // Manually revert (in reverse order) to avoid leaving a bad IR state. 3475 for (auto &collection : 3476 {resVals, rhsVals, lhsVals, {res, rhs, lhs, zero}}) 3477 for (Value v : collection) 3478 rewriter.eraseOp(v.getDefiningOp()); 3479 return rewriter.notifyMatchFailure(op, "failed to create FMA"); 3480 } 3481 3482 // Write back res slice: {n, wSizeStep, c} @ [0, w, 0]. 3483 // This does not depend on kw. 3484 for (int64_t w = 0; w < wSize; w += wSizeStep) { 3485 maybeMaskedRes = rewriter.create<vector::InsertStridedSliceOp>( 3486 loc, resVals[w], maybeMaskedRes->getResult(0), 3487 /*offsets=*/ArrayRef<int64_t>{0, w, 0}, 3488 /*strides=*/ArrayRef<int64_t>{1, 1, 1}); 3489 } 3490 //===------------------------------------------------------------------===// 3491 // End vector-only rewrite part 3492 //===------------------------------------------------------------------===// 3493 3494 // Write back res slice of size {n, w, c} @ [0, 0, 0]. 3495 Operation *resOut = rewriter.create<vector::TransferWriteOp>( 3496 loc, maybeMaskedRes->getResult(0), resShaped, 3497 ValueRange{zero, zero, zero}); 3498 return maybeMaskXferOp(resType.getShape(), resType.getScalableDims(), 3499 resOut); 3500 } 3501 3502 /// Lower: 3503 /// * lhs{n, w, c} * rhs{c} -> res{n, w, c} (flatten = false) 3504 /// * lhs{n, w * c} * rhs{c} -> res{n, w * c} (flatten = true) 3505 /// to MulAcc. 3506 Value depthwiseConv1dSliceAsMulAcc(RewriterBase &rewriter, Location loc, 3507 Value lhs, Value rhs, Value res, 3508 bool flatten) { 3509 auto rhsTy = cast<ShapedType>(rhs.getType()); 3510 auto resTy = cast<ShapedType>(res.getType()); 3511 3512 // TODO(suderman): Change this to use a vector.ima intrinsic. 3513 lhs = promote(rewriter, loc, lhs, resTy); 3514 3515 if (flatten) { 3516 // NOTE: This following logic won't work for scalable vectors. For this 3517 // reason, "flattening" is not supported when shapes are dynamic (this 3518 // should be captured by one of the pre-conditions). 3519 3520 // There are two options for handling the filter: 3521 // * shape_cast(broadcast(filter)) 3522 // * broadcast(shuffle(filter)) 3523 // Opt for the option without shape_cast to simplify the codegen. 3524 auto rhsSize = cast<VectorType>(rhs.getType()).getShape()[0]; 3525 auto resSize = cast<VectorType>(res.getType()).getShape()[1]; 3526 3527 SmallVector<int64_t, 16> indices; 3528 for (int i = 0; i < resSize / rhsSize; ++i) { 3529 for (int j = 0; j < rhsSize; ++j) 3530 indices.push_back(j); 3531 } 3532 3533 rhs = rewriter.create<vector::ShuffleOp>(loc, rhs, rhs, indices); 3534 } 3535 // Broadcast the filter to match the output vector 3536 rhs = rewriter.create<vector::BroadcastOp>( 3537 loc, resTy.clone(rhsTy.getElementType()), rhs); 3538 3539 rhs = promote(rewriter, loc, rhs, resTy); 3540 3541 if (!lhs || !rhs) 3542 return nullptr; 3543 3544 if (isa<FloatType>(resTy.getElementType())) 3545 return rewriter.create<vector::FMAOp>(loc, lhs, rhs, res); 3546 3547 auto mul = rewriter.create<arith::MulIOp>(loc, lhs, rhs); 3548 return rewriter.create<arith::AddIOp>(loc, mul, res); 3549 } 3550 3551 /// Entry point for non-channeled convolution: 3552 /// {{w + kw}, {kw}, {w}} 3553 FailureOr<Operation *> generateNonChanneledConv() { 3554 AffineExpr w, kw; 3555 bindDims(ctx, w, kw); 3556 if (!iters({Par(), Red()})) 3557 return rewriter.notifyMatchFailure(op, 3558 "failed to match conv::W 1-par 1-red"); 3559 3560 // No transposition needed. 3561 if (layout({/*lhsIndex*/ {w + kw}, 3562 /*rhsIndex*/ {kw}, 3563 /*resIndex*/ {w}})) 3564 return conv(Conv1DOpOrder::W); 3565 3566 return rewriter.notifyMatchFailure(op, "not a conv::W layout"); 3567 } 3568 3569 /// Entry point that transposes into the common form: 3570 /// {{n, strideW * w + dilationW * kw, c}, {kw, c, f}, {n, w, f}} 3571 FailureOr<Operation *> generateNwcConv() { 3572 AffineExpr n, w, f, kw, c; 3573 bindDims(ctx, n, w, f, kw, c); 3574 if (!iters({Par(), Par(), Par(), Red(), Red()})) 3575 return rewriter.notifyMatchFailure( 3576 op, "failed to match conv::Nwc 3-par 2-red"); 3577 3578 // No transposition needed. 3579 if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, 3580 /*rhsIndex*/ {kw, c, f}, 3581 /*resIndex*/ {n, w, f}})) 3582 return conv(Conv1DOpOrder::Nwc); 3583 3584 return rewriter.notifyMatchFailure(op, "not a conv::Nwc layout"); 3585 } 3586 3587 /// Entry point that transposes into the common form: 3588 /// {{n, c, strideW * w + dilationW * kw}, {f, c, kw}, {n, f, w}} 3589 FailureOr<Operation *> generateNcwConv() { 3590 AffineExpr n, w, f, kw, c; 3591 bindDims(ctx, n, f, w, c, kw); 3592 if (!iters({Par(), Par(), Par(), Red(), Red()})) 3593 return rewriter.notifyMatchFailure( 3594 op, "failed to match conv::Ncw 3-par 2-red"); 3595 3596 if (layout({/*lhsIndex*/ {n, c, strideW * w + dilationW * kw}, 3597 /*rhsIndex*/ {f, c, kw}, 3598 /*resIndex*/ {n, f, w}})) 3599 return conv(Conv1DOpOrder::Ncw); 3600 3601 return rewriter.notifyMatchFailure(op, "not a conv::Ncw layout"); 3602 } 3603 3604 /// Entry point that transposes into the common form: 3605 /// {{n, strideW * w + dilationW * kw, c}, {kw}, {n, w, c}} for pooling 3606 FailureOr<Operation *> generateNwcPooling() { 3607 AffineExpr n, w, c, kw; 3608 bindDims(ctx, n, w, c, kw); 3609 if (!iters({Par(), Par(), Par(), Red()})) 3610 return rewriter.notifyMatchFailure(op, 3611 "failed to match pooling 3-par 1-red"); 3612 3613 // No transposition needed. 3614 if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, 3615 /*rhsIndex*/ {kw}, 3616 /*resIndex*/ {n, w, c}})) 3617 return conv(Conv1DOpOrder::Nwc); 3618 3619 return rewriter.notifyMatchFailure(op, "not a pooling::Nwc layout"); 3620 } 3621 3622 /// Entry point that transposes into the common form: 3623 /// {{n, c, strideW * w + dilationW * kw}, {kw}, {n, c, w}} for pooling 3624 FailureOr<Operation *> generateNcwPooling() { 3625 AffineExpr n, w, c, kw; 3626 bindDims(ctx, n, c, w, kw); 3627 if (!iters({Par(), Par(), Par(), Red()})) 3628 return rewriter.notifyMatchFailure(op, 3629 "failed to match pooling 3-par 1-red"); 3630 3631 if (layout({/*lhsIndex*/ {n, c, strideW * w + dilationW * kw}, 3632 /*rhsIndex*/ {kw}, 3633 /*resIndex*/ {n, c, w}})) 3634 return conv(Conv1DOpOrder::Ncw); 3635 3636 return rewriter.notifyMatchFailure(op, "not a pooling::Ncw layout"); 3637 } 3638 3639 /// Entry point that transposes into the common form: 3640 /// {{n, strideW * w + dilationW * kw, c}, {kw, c}, {n, w, c}} 3641 FailureOr<Operation *> generateDilatedConv(uint64_t vecChDimSize = 0, 3642 bool vecChDimScalableFlag = false, 3643 bool flatten = false) { 3644 AffineExpr n, w, c, kw; 3645 bindDims(ctx, n, w, c, kw); 3646 if (!iters({Par(), Par(), Par(), Red()})) 3647 return rewriter.notifyMatchFailure( 3648 op, "failed to match depthwise::Nwc conv 3-par 1-red"); 3649 3650 // No transposition needed. 3651 if (layout({/*lhsIndex*/ {n, strideW * w + dilationW * kw, c}, 3652 /*rhsIndex*/ {kw, c}, 3653 /*resIndex*/ {n, w, c}})) 3654 return depthwiseConv(vecChDimSize, vecChDimScalableFlag, flatten); 3655 3656 return rewriter.notifyMatchFailure(op, "not a depthwise::Nwc layout"); 3657 } 3658 3659 private: 3660 enum OperKind { Conv, Pool }; 3661 bool valid = false; 3662 OperKind oper = Conv; 3663 StringAttr redOp; 3664 StringAttr poolExtOp; 3665 bool isPoolExt = false; 3666 int strideW, dilationW; 3667 Value lhsShaped, rhsShaped, resShaped; 3668 ShapedType lhsShapedType, rhsShapedType, resShapedType; 3669 3670 // Sets oper, poolExtOp and isPoolExt for valid conv/pooling ops. 3671 // Returns true iff it is a valid conv/pooling op. 3672 // If (region has 2 ops (reduction + yield) or 3 ops (extension + reduction 3673 // + yield) and rhs is not used) then it is the body of a pooling 3674 // If conv, check for single `mul` predecessor. The `mul` operands must be 3675 // block arguments or extension of block arguments. 3676 // Otherwise, check for one or zero `ext` predecessor. The `ext` operands 3677 // must be block arguments or extension of block arguments. 3678 bool setOperKind(Operation *reduceOp) { 3679 int numBlockArguments = 3680 llvm::count_if(reduceOp->getOperands(), llvm::IsaPred<BlockArgument>); 3681 switch (numBlockArguments) { 3682 case 1: { 3683 // Will be convolution if feeder is a MulOp. 3684 // Otherwise, if it can be pooling. 3685 auto feedValIt = llvm::find_if_not(reduceOp->getOperands(), 3686 llvm::IsaPred<BlockArgument>); 3687 Operation *feedOp = (*feedValIt).getDefiningOp(); 3688 if (isCastOfBlockArgument(feedOp)) { 3689 oper = Pool; 3690 isPoolExt = true; 3691 poolExtOp = feedOp->getName().getIdentifier(); 3692 } else if (!(isa<arith::MulIOp, arith::MulFOp>(feedOp) && 3693 llvm::all_of(feedOp->getOperands(), [](Value v) { 3694 if (isa<BlockArgument>(v)) 3695 return true; 3696 if (Operation *op = v.getDefiningOp()) 3697 return isCastOfBlockArgument(op); 3698 return false; 3699 }))) { 3700 return false; 3701 } 3702 return true; 3703 } 3704 case 2: 3705 // Must be pooling 3706 oper = Pool; 3707 isPoolExt = false; 3708 return true; 3709 default: 3710 return false; 3711 } 3712 } 3713 }; 3714 } // namespace 3715 3716 /// Helper function to vectorize a LinalgOp with convolution semantics. 3717 // TODO: extend the generic vectorization to support windows and drop this. 3718 static FailureOr<Operation *> vectorizeConvolution( 3719 RewriterBase &rewriter, LinalgOp op, ArrayRef<int64_t> inputVecSizes, 3720 ArrayRef<bool> inputScalableVecDims, bool flatten1DDepthwiseConv) { 3721 // The ConvolutionOpInterface gives us guarantees of existence for 3722 // strides/dilations. However, we do not need to rely on those, we can 3723 // simply use them if present, otherwise use the default and let the generic 3724 // conv. matcher in the ConvGenerator succeed or fail. 3725 auto strides = op->getAttrOfType<DenseIntElementsAttr>("strides"); 3726 auto dilations = op->getAttrOfType<DenseIntElementsAttr>("dilations"); 3727 auto stride = strides ? *strides.getValues<uint64_t>().begin() : 1; 3728 auto dilation = dilations ? *dilations.getValues<uint64_t>().begin() : 1; 3729 Conv1DGenerator e(rewriter, op, stride, dilation); 3730 auto res = e.generateNonChanneledConv(); 3731 if (succeeded(res)) 3732 return res; 3733 res = e.generateNwcConv(); 3734 if (succeeded(res)) 3735 return res; 3736 res = e.generateNcwConv(); 3737 if (succeeded(res)) 3738 return res; 3739 res = e.generateNwcPooling(); 3740 if (succeeded(res)) 3741 return res; 3742 res = e.generateNcwPooling(); 3743 if (succeeded(res)) 3744 return res; 3745 3746 // Only depthwise 1D NWC convs are left - these can be vectorized using masks 3747 // and scalable vectors. Note that ATM the only dim that can be dynamic (i.e. 3748 // masked/scalable) is the channel dim (i.e. the trailing dim). 3749 uint64_t vecChDimSize = ShapedType::kDynamic; 3750 bool vecChDimScalableFlag = false; 3751 if (!inputVecSizes.empty()) { 3752 // Only use the input vector size corresponding to the channel dim. Other 3753 // vector dims will be inferred from the Ops. 3754 assert((isa<linalg::DepthwiseConv1DNwcWcOp>(*op) || 3755 isa<linalg::DepthwiseConv1DNcwCwOp>(*op)) && 3756 "Not a 1D depthwise conv!"); 3757 size_t chDimIdx = 3758 TypeSwitch<Operation *, size_t>(op) 3759 .Case<linalg::DepthwiseConv1DNwcWcOp>([](auto conv) { return 2; }) 3760 .Case<linalg::DepthwiseConv1DNcwCwOp>([](auto conv) { return 1; }); 3761 3762 vecChDimSize = inputVecSizes[chDimIdx]; 3763 vecChDimScalableFlag = inputScalableVecDims[chDimIdx]; 3764 } 3765 return e.generateDilatedConv(vecChDimSize, vecChDimScalableFlag, 3766 flatten1DDepthwiseConv); 3767 } 3768 3769 struct VectorizeConvolution : public OpInterfaceRewritePattern<LinalgOp> { 3770 using OpInterfaceRewritePattern::OpInterfaceRewritePattern; 3771 3772 LogicalResult matchAndRewrite(LinalgOp op, 3773 PatternRewriter &rewriter) const override { 3774 FailureOr<Operation *> resultOrFail = vectorizeConvolution(rewriter, op); 3775 if (failed(resultOrFail)) 3776 return failure(); 3777 Operation *newOp = *resultOrFail; 3778 if (newOp->getNumResults() == 0) { 3779 rewriter.eraseOp(op.getOperation()); 3780 return success(); 3781 } 3782 assert(newOp->getNumResults() == 1 && "expected single result"); 3783 rewriter.replaceOp(op.getOperation(), newOp->getResult(0)); 3784 return success(); 3785 } 3786 }; 3787 3788 void mlir::linalg::populateConvolutionVectorizationPatterns( 3789 RewritePatternSet &patterns, PatternBenefit benefit) { 3790 patterns.add<VectorizeConvolution>(patterns.getContext(), benefit); 3791 } 3792