1 //===- Promotion.cpp - Implementation of linalg Promotion -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Promotion pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Arith/IR/Arith.h" 14 #include "mlir/Dialect/Arith/Utils/Utils.h" 15 #include "mlir/Dialect/Complex/IR/Complex.h" 16 #include "mlir/Dialect/Func/IR/FuncOps.h" 17 #include "mlir/Dialect/GPU/IR/GPUDialect.h" 18 #include "mlir/Dialect/Linalg/IR/Linalg.h" 19 #include "mlir/Dialect/Linalg/Passes.h" 20 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 21 #include "mlir/Dialect/SCF/IR/SCF.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineExprVisitor.h" 24 #include "mlir/IR/AffineMap.h" 25 #include "mlir/IR/ImplicitLocOpBuilder.h" 26 #include "mlir/Interfaces/ValueBoundsOpInterface.h" 27 #include "mlir/Support/LLVM.h" 28 #include "mlir/Transforms/FoldUtils.h" 29 #include "llvm/ADT/MapVector.h" 30 #include "llvm/ADT/SmallBitVector.h" 31 #include "llvm/ADT/TypeSwitch.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 35 using namespace mlir; 36 using namespace mlir::linalg; 37 using namespace mlir::scf; 38 39 using llvm::MapVector; 40 41 #define DEBUG_TYPE "linalg-promotion" 42 43 /// Alloc a new buffer of `size` * `width` i8; where `width` is given by the 44 /// data `layout` for `elementType`. 45 /// Use AllocOp or AllocaOp depending on `options`. 46 /// Take an optional alignment. 47 static Value allocBuffer(ImplicitLocOpBuilder &b, 48 const LinalgPromotionOptions &options, 49 Type elementType, Value allocSize, DataLayout &layout, 50 std::optional<unsigned> alignment = std::nullopt) { 51 auto width = layout.getTypeSize(elementType); 52 53 IntegerAttr alignmentAttr; 54 if (alignment.has_value()) 55 alignmentAttr = b.getI64IntegerAttr(alignment.value()); 56 57 // Static buffer. 58 if (auto cst = allocSize.getDefiningOp<arith::ConstantIndexOp>()) { 59 auto staticBufferType = 60 MemRefType::get(width * cst.value(), b.getIntegerType(8)); 61 if (options.useAlloca) { 62 return b.createOrFold<memref::AllocaOp>(staticBufferType, ValueRange{}, 63 alignmentAttr); 64 } 65 return b.createOrFold<memref::AllocOp>(staticBufferType, ValueRange{}, 66 alignmentAttr); 67 } 68 69 // Fallback dynamic buffer. 70 auto dynamicBufferType = 71 MemRefType::get(ShapedType::kDynamic, b.getIntegerType(8)); 72 Value mul = b.createOrFold<arith::MulIOp>( 73 b.create<arith::ConstantIndexOp>(width), allocSize); 74 if (options.useAlloca) 75 return b.create<memref::AllocaOp>(dynamicBufferType, mul, alignmentAttr); 76 return b.create<memref::AllocOp>(dynamicBufferType, mul, alignmentAttr); 77 } 78 79 /// Default allocation callback function. This allocates a promoted buffer when 80 /// no call back to do so is provided. The default is to allocate a 81 /// memref<..xi8> and return a view to get a memref type of shape 82 /// boundingSubViewSize. 83 static std::optional<Value> defaultAllocBufferCallBack( 84 const LinalgPromotionOptions &options, OpBuilder &builder, 85 memref::SubViewOp subView, ArrayRef<Value> boundingSubViewSize, 86 std::optional<unsigned> alignment, DataLayout &layout) { 87 ShapedType viewType = subView.getType(); 88 ImplicitLocOpBuilder b(subView.getLoc(), builder); 89 auto zero = b.createOrFold<arith::ConstantIndexOp>(0); 90 auto one = b.createOrFold<arith::ConstantIndexOp>(1); 91 92 Value allocSize = one; 93 for (const auto &size : llvm::enumerate(boundingSubViewSize)) 94 allocSize = b.createOrFold<arith::MulIOp>(allocSize, size.value()); 95 Value buffer = allocBuffer(b, options, viewType.getElementType(), allocSize, 96 layout, alignment); 97 SmallVector<int64_t, 4> dynSizes(boundingSubViewSize.size(), 98 ShapedType::kDynamic); 99 Value view = b.createOrFold<memref::ViewOp>( 100 MemRefType::get(dynSizes, viewType.getElementType()), buffer, zero, 101 boundingSubViewSize); 102 return view; 103 } 104 105 /// Default implementation of deallocation of the buffer use for promotion. It 106 /// expects to get the same value that the default allocation method returned, 107 /// i.e. result of a ViewOp. 108 static LogicalResult 109 defaultDeallocBufferCallBack(const LinalgPromotionOptions &options, 110 OpBuilder &b, Value fullLocalView) { 111 if (!options.useAlloca) { 112 auto viewOp = cast<memref::ViewOp>(fullLocalView.getDefiningOp()); 113 b.create<memref::DeallocOp>(viewOp.getSource().getLoc(), 114 viewOp.getSource()); 115 } 116 return success(); 117 } 118 119 namespace { 120 121 /// Helper struct that captures the information required to apply the 122 /// transformation on each op. This bridges the abstraction gap with the 123 /// user-facing API which exposes positional arguments to control which operands 124 /// are promoted. 125 struct LinalgOpInstancePromotionOptions { 126 LinalgOpInstancePromotionOptions(LinalgOp op, 127 const LinalgPromotionOptions &options); 128 /// SubViews to promote. 129 MapVector<int64_t, Value> subViews; 130 /// True if the full view should be used for the promoted buffer. 131 DenseMap<Value, bool> useFullTileBuffers; 132 133 /// Callback functions for allocation and deallocation of promoted buffers, as 134 /// well as to copy the data into and out of these buffers. 135 AllocBufferCallbackFn allocationFn; 136 DeallocBufferCallbackFn deallocationFn; 137 CopyCallbackFn copyInFn; 138 CopyCallbackFn copyOutFn; 139 140 /// Alignment of promoted buffer. 141 std::optional<unsigned> alignment; 142 }; 143 } // namespace 144 145 LinalgOpInstancePromotionOptions::LinalgOpInstancePromotionOptions( 146 LinalgOp linalgOp, const LinalgPromotionOptions &options) 147 : subViews(), alignment(options.alignment) { 148 assert(linalgOp.hasBufferSemantics() && "revisit usage of shaped operand"); 149 auto vUseFullTileBuffers = 150 options.useFullTileBuffers.value_or(llvm::SmallBitVector()); 151 vUseFullTileBuffers.resize(linalgOp->getNumOperands(), 152 options.useFullTileBuffersDefault); 153 154 for (OpOperand &opOperand : linalgOp->getOpOperands()) { 155 int64_t operandNumber = opOperand.getOperandNumber(); 156 if (options.operandsToPromote && 157 !options.operandsToPromote->count(operandNumber)) 158 continue; 159 Operation *op = opOperand.get().getDefiningOp(); 160 if (auto sv = dyn_cast_or_null<memref::SubViewOp>(op)) { 161 subViews[operandNumber] = sv; 162 useFullTileBuffers[sv] = vUseFullTileBuffers[operandNumber]; 163 } 164 } 165 166 if (options.allocationFn) { 167 allocationFn = *options.allocationFn; 168 } else { 169 allocationFn = [&](OpBuilder &b, memref::SubViewOp subViewOp, 170 ArrayRef<Value> boundingSubViewSize, 171 DataLayout &layout) -> std::optional<Value> { 172 return defaultAllocBufferCallBack(options, b, subViewOp, 173 boundingSubViewSize, alignment, layout); 174 }; 175 } 176 177 if (options.deallocationFn) { 178 deallocationFn = *options.deallocationFn; 179 } else { 180 deallocationFn = [&](OpBuilder &b, Value buffer) { 181 return defaultDeallocBufferCallBack(options, b, buffer); 182 }; 183 } 184 185 // Save the loc because `linalgOp` goes out of scope. 186 Location loc = linalgOp.getLoc(); 187 auto defaultCopyCallBack = [loc](OpBuilder &b, Value src, 188 Value dst) -> LogicalResult { 189 b.create<memref::CopyOp>(loc, src, dst); 190 return success(); 191 }; 192 copyInFn = (options.copyInFn ? *(options.copyInFn) : defaultCopyCallBack); 193 copyOutFn = (options.copyOutFn ? *(options.copyOutFn) : defaultCopyCallBack); 194 } 195 196 // Performs promotion of a `subView` into a local buffer of the size of the 197 // *ranges* of the `subView`. This produces a buffer whose size may be bigger 198 // than the actual size of the `subView` at the boundaries. 199 // This is related to the full/partial tile problem. 200 // Returns a PromotionInfo containing a `buffer`, `fullLocalView` and 201 // `partialLocalView` such that: 202 // * `buffer` is always the size of the full tile. 203 // * `fullLocalView` is a dense contiguous view into that buffer. 204 // * `partialLocalView` is a dense non-contiguous slice of `fullLocalView` 205 // that corresponds to the size of `subView` and accounting for boundary 206 // effects. 207 // The point of the full tile buffer is that constant static tile sizes are 208 // folded and result in a buffer type with statically known size and alignment 209 // properties. 210 // To account for general boundary effects, padding must be performed on the 211 // boundary tiles. For now this is done with an unconditional `fill` op followed 212 // by a partial `copy` op. 213 FailureOr<PromotionInfo> mlir::linalg::promoteSubviewAsNewBuffer( 214 OpBuilder &b, Location loc, memref::SubViewOp subView, 215 const AllocBufferCallbackFn &allocationFn, DataLayout &layout) { 216 auto viewType = subView.getType(); 217 auto rank = viewType.getRank(); 218 SmallVector<Value, 4> fullSizes; 219 SmallVector<OpFoldResult> partialSizes; 220 fullSizes.reserve(rank); 221 partialSizes.reserve(rank); 222 llvm::SmallBitVector droppedDims = subView.getDroppedDims(); 223 int64_t resultDimIdx = 0; 224 for (const auto &en : llvm::enumerate(subView.getOrCreateRanges(b, loc))) { 225 if (droppedDims[en.index()]) 226 continue; 227 auto rangeValue = en.value(); 228 // Try to extract a tight constant. If the size is known statically, no need 229 // to look for the bound. 230 LLVM_DEBUG(llvm::dbgs() << "Extract tightest: " << rangeValue.size << "\n"); 231 Value size; 232 if (auto attr = llvm::dyn_cast_if_present<Attribute>(rangeValue.size)) { 233 size = getValueOrCreateConstantIndexOp(b, loc, rangeValue.size); 234 } else { 235 Value materializedSize = 236 getValueOrCreateConstantIndexOp(b, loc, rangeValue.size); 237 FailureOr<int64_t> upperBound = 238 ValueBoundsConstraintSet::computeConstantBound( 239 presburger::BoundType::UB, materializedSize, /*dim=*/std::nullopt, 240 /*stopCondition=*/nullptr, /*closedUB=*/true); 241 size = failed(upperBound) 242 ? materializedSize 243 : b.create<arith::ConstantIndexOp>(loc, *upperBound); 244 } 245 LLVM_DEBUG(llvm::dbgs() << "Extracted tightest: " << size << "\n"); 246 fullSizes.push_back(size); 247 partialSizes.push_back( 248 b.createOrFold<memref::DimOp>(loc, subView, resultDimIdx++)); 249 } 250 SmallVector<int64_t, 4> dynSizes(fullSizes.size(), ShapedType::kDynamic); 251 // If a callback is not specified, then use the default implementation for 252 // allocating the promoted buffer. 253 std::optional<Value> fullLocalView = 254 allocationFn(b, subView, fullSizes, layout); 255 if (!fullLocalView) 256 return failure(); 257 SmallVector<OpFoldResult, 4> zeros(fullSizes.size(), b.getIndexAttr(0)); 258 SmallVector<OpFoldResult, 4> ones(fullSizes.size(), b.getIndexAttr(1)); 259 auto partialLocalView = b.createOrFold<memref::SubViewOp>( 260 loc, *fullLocalView, zeros, partialSizes, ones); 261 return PromotionInfo{*fullLocalView, partialLocalView}; 262 } 263 264 static FailureOr<MapVector<int64_t, PromotionInfo>> 265 promoteSubViews(ImplicitLocOpBuilder &b, 266 LinalgOpInstancePromotionOptions options, DataLayout &layout) { 267 if (options.subViews.empty()) 268 return failure(); 269 270 MapVector<int64_t, PromotionInfo> promotionInfoMap; 271 272 for (auto v : options.subViews) { 273 memref::SubViewOp subView = 274 cast<memref::SubViewOp>(v.second.getDefiningOp()); 275 auto promotionInfo = promoteSubviewAsNewBuffer( 276 b, b.getLoc(), subView, options.allocationFn, layout); 277 if (failed(promotionInfo)) 278 return failure(); 279 promotionInfoMap[v.first] = *promotionInfo; 280 281 // Only fill the buffer if the full local view is used 282 if (!options.useFullTileBuffers[v.second]) 283 continue; 284 Type subviewEltType = subView.getType().getElementType(); 285 Value fillVal = 286 llvm::TypeSwitch<Type, Value>(subviewEltType) 287 .Case([&](FloatType t) { 288 return b.create<arith::ConstantOp>(FloatAttr::get(t, 0.0)); 289 }) 290 .Case([&](IntegerType t) { 291 return b.create<arith::ConstantOp>(IntegerAttr::get(t, 0)); 292 }) 293 .Case([&](ComplexType t) { 294 Value tmp; 295 if (auto et = dyn_cast<FloatType>(t.getElementType())) 296 tmp = b.create<arith::ConstantOp>(FloatAttr::get(et, 0.0)); 297 else if (auto et = cast<IntegerType>(t.getElementType())) 298 tmp = b.create<arith::ConstantOp>(IntegerAttr::get(et, 0)); 299 return b.create<complex::CreateOp>(t, tmp, tmp); 300 }) 301 .Default([](auto) { return Value(); }); 302 if (!fillVal) 303 return failure(); 304 b.create<linalg::FillOp>(fillVal, promotionInfo->fullLocalView); 305 } 306 307 // Copy data into the promoted buffers. Use callback if provided. 308 for (auto v : options.subViews) { 309 auto info = promotionInfoMap.find(v.first); 310 if (info == promotionInfoMap.end()) 311 continue; 312 if (failed(options.copyInFn( 313 b, cast<memref::SubViewOp>(v.second.getDefiningOp()), 314 info->second.partialLocalView))) 315 return failure(); 316 } 317 return promotionInfoMap; 318 } 319 320 static FailureOr<LinalgOp> 321 promoteSubViews(ImplicitLocOpBuilder &b, LinalgOp op, 322 LinalgOpInstancePromotionOptions options, DataLayout &layout) { 323 assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); 324 325 // 1. Promote the specified views and use them in the new op. 326 auto promotedBuffersAndViews = promoteSubViews(b, options, layout); 327 if (failed(promotedBuffersAndViews) || 328 promotedBuffersAndViews->size() != options.subViews.size()) 329 return failure(); 330 331 // 2. Append all other operands as they appear, this enforces that such 332 // operands are not views. This is to support cases such as FillOp taking 333 // extra scalars etc. Keep a reference to output buffers; 334 SmallVector<Value, 8> opViews; 335 opViews.reserve(op->getNumOperands()); 336 SmallVector<std::pair<Value, Value>, 8> writebackViews; 337 writebackViews.reserve(promotedBuffersAndViews->size()); 338 for (OpOperand &opOperand : op->getOpOperands()) { 339 int64_t operandNumber = opOperand.getOperandNumber(); 340 if (options.subViews.count(operandNumber) != 0) { 341 if (options.useFullTileBuffers[opOperand.get()]) 342 opViews.push_back( 343 (*promotedBuffersAndViews)[operandNumber].fullLocalView); 344 else 345 opViews.push_back( 346 (*promotedBuffersAndViews)[operandNumber].partialLocalView); 347 if (operandNumber >= op.getNumDpsInputs()) 348 writebackViews.emplace_back(std::make_pair( 349 opOperand.get(), 350 (*promotedBuffersAndViews)[operandNumber].partialLocalView)); 351 } else { 352 opViews.push_back(opOperand.get()); 353 } 354 } 355 op->setOperands(0, opViews.size(), opViews); 356 357 OpBuilder::InsertionGuard guard(b); 358 b.setInsertionPointAfter(op); 359 // 3. Emit write-back for the promoted output views: copy the partial view. 360 for (auto viewAndPartialLocalView : writebackViews) { 361 if (failed(options.copyOutFn(b, viewAndPartialLocalView.second, 362 viewAndPartialLocalView.first))) 363 return failure(); 364 } 365 366 // 4. Dealloc all local buffers. 367 for (const auto &pi : *promotedBuffersAndViews) 368 (void)options.deallocationFn(b, pi.second.fullLocalView); 369 return op; 370 } 371 372 LogicalResult 373 mlir::linalg::promoteSubviewsPrecondition(Operation *op, 374 LinalgPromotionOptions options) { 375 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 376 // Transformation applies to buffers only. 377 if (!linalgOp || !linalgOp.hasBufferSemantics()) 378 return failure(); 379 // Check that at least one of the requested operands is indeed a subview. 380 for (OpOperand &opOperand : linalgOp->getOpOperands()) { 381 auto sv = 382 isa_and_nonnull<memref::SubViewOp>(opOperand.get().getDefiningOp()); 383 if (sv) { 384 if (!options.operandsToPromote || 385 options.operandsToPromote->count(opOperand.getOperandNumber())) 386 return success(); 387 } 388 } 389 // TODO: Check all subviews requested are bound by a static constant. 390 // TODO: Check that the total footprint fits within a given size. 391 return failure(); 392 } 393 394 FailureOr<LinalgOp> 395 mlir::linalg::promoteSubViews(OpBuilder &builder, LinalgOp linalgOp, 396 const LinalgPromotionOptions &options) { 397 LinalgOpInstancePromotionOptions linalgOptions(linalgOp, options); 398 auto layout = DataLayout::closest(linalgOp); 399 ImplicitLocOpBuilder b(linalgOp.getLoc(), builder); 400 auto res = ::promoteSubViews(b, linalgOp, linalgOptions, layout); 401 if (failed(res)) 402 return failure(); 403 return res; 404 } 405 406 /// Allocate the given subview to a memory address space in GPU by creating a 407 /// allocation operation and setting the memref type address space to desired 408 /// address space. 409 static std::optional<Value> allocateSubviewGPUMemoryInAddressSpace( 410 OpBuilder &builder, memref::SubViewOp subview, ArrayRef<Value> sizeBounds, 411 gpu::AddressSpace addressSpace) { 412 OpBuilder::InsertionGuard guard(builder); 413 414 func::FuncOp funcOp = subview->getParentOfType<func::FuncOp>(); 415 if (!funcOp) 416 return std::nullopt; 417 418 // The subview size bounds are expected to be constant; they specify the shape 419 // of the allocation. 420 SmallVector<int64_t> shape; 421 for (Value bound : sizeBounds) { 422 APInt value; 423 if (!matchPattern(bound, m_ConstantInt(&value))) 424 return std::nullopt; 425 shape.push_back(value.getSExtValue()); 426 } 427 428 builder.setInsertionPoint(&funcOp.front(), funcOp.front().begin()); 429 auto type = MemRefType::get( 430 shape, subview.getType().getElementType(), MemRefLayoutAttrInterface{}, 431 gpu::AddressSpaceAttr::get(builder.getContext(), addressSpace)); 432 Value buffer; 433 if (addressSpace == gpu::GPUDialect::getWorkgroupAddressSpace()) { 434 buffer = builder.create<memref::AllocOp>(funcOp.getLoc(), type); 435 } else if (addressSpace == gpu::GPUDialect::getPrivateAddressSpace()) { 436 buffer = builder.create<memref::AllocaOp>(funcOp.getLoc(), type); 437 } else { 438 return std::nullopt; 439 } 440 return buffer; 441 } 442 443 /// Allocate the subview in the GPU workgroup memory. 444 std::optional<Value> mlir::linalg::allocateWorkgroupMemory( 445 OpBuilder &builder, memref::SubViewOp subview, ArrayRef<Value> sizeBounds, 446 DataLayout &) { 447 return allocateSubviewGPUMemoryInAddressSpace( 448 builder, subview, sizeBounds, 449 gpu::GPUDialect::getWorkgroupAddressSpace()); 450 } 451 452 /// In case of GPU group memory there is no need to deallocate. 453 LogicalResult mlir::linalg::deallocateWorkgroupMemory(OpBuilder &, 454 Value /*buffer*/) { 455 return success(); 456 } 457 458 /// Create Memref copy operations and add gpu barrier guards before and after 459 /// the copy operation to ensure data integrity. 460 LogicalResult mlir::linalg::copyToWorkgroupMemory(OpBuilder &b, Value src, 461 Value dst) { 462 b.create<gpu::BarrierOp>(src.getLoc()); 463 Operation *copyOp = b.create<memref::CopyOp>(src.getLoc(), src, dst); 464 b.create<gpu::BarrierOp>(copyOp->getLoc()); 465 return success(); 466 } 467 468 /// Allocate the subview in the GPU private memory. 469 std::optional<Value> mlir::linalg::allocateGPUPrivateMemory( 470 OpBuilder &builder, memref::SubViewOp subview, ArrayRef<Value> sizeBounds, 471 DataLayout &) { 472 return allocateSubviewGPUMemoryInAddressSpace( 473 builder, subview, sizeBounds, gpu::GPUDialect::getPrivateAddressSpace()); 474 } 475 476 /// Normal copy to between src and dst. 477 LogicalResult mlir::linalg::copyToGPUPrivateMemory(OpBuilder &b, Value src, 478 Value dst) { 479 b.create<memref::CopyOp>(src.getLoc(), src, dst); 480 return success(); 481 } 482 483 /// In case of GPU private memory there is no need to deallocate since the 484 /// memory is freed when going outside of the scope. 485 LogicalResult mlir::linalg::deallocateGPUPrivateMemory(OpBuilder &, 486 Value /*buffer*/) { 487 return success(); 488 } 489