1 //===- Promotion.cpp - Implementation of linalg Promotion -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Promotion pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Arith/IR/Arith.h" 14 #include "mlir/Dialect/Arith/Utils/Utils.h" 15 #include "mlir/Dialect/Complex/IR/Complex.h" 16 #include "mlir/Dialect/Func/IR/FuncOps.h" 17 #include "mlir/Dialect/GPU/IR/GPUDialect.h" 18 #include "mlir/Dialect/Linalg/IR/Linalg.h" 19 #include "mlir/Dialect/Linalg/Passes.h" 20 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 21 #include "mlir/Dialect/SCF/IR/SCF.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineExprVisitor.h" 24 #include "mlir/IR/AffineMap.h" 25 #include "mlir/IR/ImplicitLocOpBuilder.h" 26 #include "mlir/Support/LLVM.h" 27 #include "mlir/Transforms/FoldUtils.h" 28 #include "llvm/ADT/MapVector.h" 29 #include "llvm/ADT/SmallBitVector.h" 30 #include "llvm/ADT/TypeSwitch.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 34 using namespace mlir; 35 using namespace mlir::linalg; 36 using namespace mlir::scf; 37 38 using llvm::MapVector; 39 40 #define DEBUG_TYPE "linalg-promotion" 41 42 /// Alloc a new buffer of `size` * `width` i8; where `width` is given by the 43 /// data `layout` for `elementType`. 44 /// Use AllocOp or AllocaOp depending on `options`. 45 /// Take an optional alignment. 46 static Value allocBuffer(ImplicitLocOpBuilder &b, 47 const LinalgPromotionOptions &options, 48 Type elementType, Value allocSize, DataLayout &layout, 49 std::optional<unsigned> alignment = std::nullopt) { 50 auto width = layout.getTypeSize(elementType); 51 52 IntegerAttr alignmentAttr; 53 if (alignment.has_value()) 54 alignmentAttr = b.getI64IntegerAttr(alignment.value()); 55 56 // Static buffer. 57 if (auto cst = allocSize.getDefiningOp<arith::ConstantIndexOp>()) { 58 auto staticBufferType = 59 MemRefType::get(width * cst.value(), b.getIntegerType(8)); 60 if (options.useAlloca) { 61 return b.createOrFold<memref::AllocaOp>(staticBufferType, ValueRange{}, 62 alignmentAttr); 63 } 64 return b.createOrFold<memref::AllocOp>(staticBufferType, ValueRange{}, 65 alignmentAttr); 66 } 67 68 // Fallback dynamic buffer. 69 auto dynamicBufferType = 70 MemRefType::get(ShapedType::kDynamic, b.getIntegerType(8)); 71 Value mul = b.createOrFold<arith::MulIOp>( 72 b.create<arith::ConstantIndexOp>(width), allocSize); 73 if (options.useAlloca) 74 return b.create<memref::AllocaOp>(dynamicBufferType, mul, alignmentAttr); 75 return b.create<memref::AllocOp>(dynamicBufferType, mul, alignmentAttr); 76 } 77 78 /// Default allocation callback function. This allocates a promoted buffer when 79 /// no call back to do so is provided. The default is to allocate a 80 /// memref<..xi8> and return a view to get a memref type of shape 81 /// boundingSubViewSize. 82 static std::optional<Value> defaultAllocBufferCallBack( 83 const LinalgPromotionOptions &options, OpBuilder &builder, 84 memref::SubViewOp subView, ArrayRef<Value> boundingSubViewSize, 85 std::optional<unsigned> alignment, DataLayout &layout) { 86 ShapedType viewType = subView.getType(); 87 ImplicitLocOpBuilder b(subView.getLoc(), builder); 88 auto zero = b.createOrFold<arith::ConstantIndexOp>(0); 89 auto one = b.createOrFold<arith::ConstantIndexOp>(1); 90 91 Value allocSize = one; 92 for (const auto &size : llvm::enumerate(boundingSubViewSize)) 93 allocSize = b.createOrFold<arith::MulIOp>(allocSize, size.value()); 94 Value buffer = allocBuffer(b, options, viewType.getElementType(), allocSize, 95 layout, alignment); 96 SmallVector<int64_t, 4> dynSizes(boundingSubViewSize.size(), 97 ShapedType::kDynamic); 98 Value view = b.createOrFold<memref::ViewOp>( 99 MemRefType::get(dynSizes, viewType.getElementType()), buffer, zero, 100 boundingSubViewSize); 101 return view; 102 } 103 104 /// Default implementation of deallocation of the buffer use for promotion. It 105 /// expects to get the same value that the default allocation method returned, 106 /// i.e. result of a ViewOp. 107 static LogicalResult 108 defaultDeallocBufferCallBack(const LinalgPromotionOptions &options, 109 OpBuilder &b, Value fullLocalView) { 110 if (!options.useAlloca) { 111 auto viewOp = cast<memref::ViewOp>(fullLocalView.getDefiningOp()); 112 b.create<memref::DeallocOp>(viewOp.getSource().getLoc(), 113 viewOp.getSource()); 114 } 115 return success(); 116 } 117 118 namespace { 119 120 /// Helper struct that captures the information required to apply the 121 /// transformation on each op. This bridges the abstraction gap with the 122 /// user-facing API which exposes positional arguments to control which operands 123 /// are promoted. 124 struct LinalgOpInstancePromotionOptions { 125 LinalgOpInstancePromotionOptions(LinalgOp op, 126 const LinalgPromotionOptions &options); 127 /// SubViews to promote. 128 MapVector<int64_t, Value> subViews; 129 /// True if the full view should be used for the promoted buffer. 130 DenseMap<Value, bool> useFullTileBuffers; 131 132 /// Callback functions for allocation and deallocation of promoted buffers, as 133 /// well as to copy the data into and out of these buffers. 134 AllocBufferCallbackFn allocationFn; 135 DeallocBufferCallbackFn deallocationFn; 136 CopyCallbackFn copyInFn; 137 CopyCallbackFn copyOutFn; 138 139 /// Alignment of promoted buffer. 140 std::optional<unsigned> alignment; 141 }; 142 } // namespace 143 144 LinalgOpInstancePromotionOptions::LinalgOpInstancePromotionOptions( 145 LinalgOp linalgOp, const LinalgPromotionOptions &options) 146 : subViews(), alignment(options.alignment) { 147 assert(linalgOp.hasBufferSemantics() && "revisit usage of shaped operand"); 148 auto vUseFullTileBuffers = 149 options.useFullTileBuffers.value_or(llvm::SmallBitVector()); 150 vUseFullTileBuffers.resize(linalgOp->getNumOperands(), 151 options.useFullTileBuffersDefault); 152 153 for (OpOperand &opOperand : linalgOp->getOpOperands()) { 154 int64_t operandNumber = opOperand.getOperandNumber(); 155 if (options.operandsToPromote && 156 !options.operandsToPromote->count(operandNumber)) 157 continue; 158 Operation *op = opOperand.get().getDefiningOp(); 159 if (auto sv = dyn_cast_or_null<memref::SubViewOp>(op)) { 160 subViews[operandNumber] = sv; 161 useFullTileBuffers[sv] = vUseFullTileBuffers[operandNumber]; 162 } 163 } 164 165 if (options.allocationFn) { 166 allocationFn = *options.allocationFn; 167 } else { 168 allocationFn = [&](OpBuilder &b, memref::SubViewOp subViewOp, 169 ArrayRef<Value> boundingSubViewSize, 170 DataLayout &layout) -> std::optional<Value> { 171 return defaultAllocBufferCallBack(options, b, subViewOp, 172 boundingSubViewSize, alignment, layout); 173 }; 174 } 175 176 if (options.deallocationFn) { 177 deallocationFn = *options.deallocationFn; 178 } else { 179 deallocationFn = [&](OpBuilder &b, Value buffer) { 180 return defaultDeallocBufferCallBack(options, b, buffer); 181 }; 182 } 183 184 // Save the loc because `linalgOp` goes out of scope. 185 Location loc = linalgOp.getLoc(); 186 auto defaultCopyCallBack = [loc](OpBuilder &b, Value src, 187 Value dst) -> LogicalResult { 188 b.create<memref::CopyOp>(loc, src, dst); 189 return success(); 190 }; 191 copyInFn = (options.copyInFn ? *(options.copyInFn) : defaultCopyCallBack); 192 copyOutFn = (options.copyOutFn ? *(options.copyOutFn) : defaultCopyCallBack); 193 } 194 195 // Performs promotion of a `subView` into a local buffer of the size of the 196 // *ranges* of the `subView`. This produces a buffer whose size may be bigger 197 // than the actual size of the `subView` at the boundaries. 198 // This is related to the full/partial tile problem. 199 // Returns a PromotionInfo containing a `buffer`, `fullLocalView` and 200 // `partialLocalView` such that: 201 // * `buffer` is always the size of the full tile. 202 // * `fullLocalView` is a dense contiguous view into that buffer. 203 // * `partialLocalView` is a dense non-contiguous slice of `fullLocalView` 204 // that corresponds to the size of `subView` and accounting for boundary 205 // effects. 206 // The point of the full tile buffer is that constant static tile sizes are 207 // folded and result in a buffer type with statically known size and alignment 208 // properties. 209 // To account for general boundary effects, padding must be performed on the 210 // boundary tiles. For now this is done with an unconditional `fill` op followed 211 // by a partial `copy` op. 212 FailureOr<PromotionInfo> mlir::linalg::promoteSubviewAsNewBuffer( 213 OpBuilder &b, Location loc, memref::SubViewOp subView, 214 const AllocBufferCallbackFn &allocationFn, DataLayout &layout) { 215 auto viewType = subView.getType(); 216 auto rank = viewType.getRank(); 217 SmallVector<Value, 4> fullSizes; 218 SmallVector<OpFoldResult> partialSizes; 219 fullSizes.reserve(rank); 220 partialSizes.reserve(rank); 221 llvm::SmallBitVector droppedDims = subView.getDroppedDims(); 222 int64_t resultDimIdx = 0; 223 for (const auto &en : llvm::enumerate(subView.getOrCreateRanges(b, loc))) { 224 if (droppedDims[en.index()]) 225 continue; 226 auto rangeValue = en.value(); 227 // Try to extract a tight constant. If the size is known statically, no need 228 // to look for the bound. 229 LLVM_DEBUG(llvm::dbgs() << "Extract tightest: " << rangeValue.size << "\n"); 230 Value size; 231 if (auto attr = rangeValue.size.dyn_cast<Attribute>()) { 232 size = getValueOrCreateConstantIndexOp(b, loc, rangeValue.size); 233 } else { 234 Value materializedSize = 235 getValueOrCreateConstantIndexOp(b, loc, rangeValue.size); 236 FailureOr<int64_t> upperBound = 237 getConstantUpperBoundForIndex(materializedSize); 238 size = failed(upperBound) 239 ? materializedSize 240 : b.create<arith::ConstantIndexOp>(loc, *upperBound); 241 } 242 LLVM_DEBUG(llvm::dbgs() << "Extracted tightest: " << size << "\n"); 243 fullSizes.push_back(size); 244 partialSizes.push_back( 245 b.createOrFold<memref::DimOp>(loc, subView, resultDimIdx++)); 246 } 247 SmallVector<int64_t, 4> dynSizes(fullSizes.size(), ShapedType::kDynamic); 248 // If a callback is not specified, then use the default implementation for 249 // allocating the promoted buffer. 250 std::optional<Value> fullLocalView = 251 allocationFn(b, subView, fullSizes, layout); 252 if (!fullLocalView) 253 return failure(); 254 SmallVector<OpFoldResult, 4> zeros(fullSizes.size(), b.getIndexAttr(0)); 255 SmallVector<OpFoldResult, 4> ones(fullSizes.size(), b.getIndexAttr(1)); 256 auto partialLocalView = b.createOrFold<memref::SubViewOp>( 257 loc, *fullLocalView, zeros, partialSizes, ones); 258 return PromotionInfo{*fullLocalView, partialLocalView}; 259 } 260 261 static FailureOr<MapVector<int64_t, PromotionInfo>> 262 promoteSubViews(ImplicitLocOpBuilder &b, 263 LinalgOpInstancePromotionOptions options, DataLayout &layout) { 264 if (options.subViews.empty()) 265 return failure(); 266 267 MapVector<int64_t, PromotionInfo> promotionInfoMap; 268 269 for (auto v : options.subViews) { 270 memref::SubViewOp subView = 271 cast<memref::SubViewOp>(v.second.getDefiningOp()); 272 auto promotionInfo = promoteSubviewAsNewBuffer( 273 b, b.getLoc(), subView, options.allocationFn, layout); 274 if (failed(promotionInfo)) 275 return failure(); 276 promotionInfoMap[v.first] = *promotionInfo; 277 278 // Only fill the buffer if the full local view is used 279 if (!options.useFullTileBuffers[v.second]) 280 continue; 281 Type subviewEltType = subView.getType().getElementType(); 282 Value fillVal = 283 llvm::TypeSwitch<Type, Value>(subviewEltType) 284 .Case([&](FloatType t) { 285 return b.create<arith::ConstantOp>(FloatAttr::get(t, 0.0)); 286 }) 287 .Case([&](IntegerType t) { 288 return b.create<arith::ConstantOp>(IntegerAttr::get(t, 0)); 289 }) 290 .Case([&](ComplexType t) { 291 Value tmp; 292 if (auto et = t.getElementType().dyn_cast<FloatType>()) 293 tmp = b.create<arith::ConstantOp>(FloatAttr::get(et, 0.0)); 294 else if (auto et = t.getElementType().cast<IntegerType>()) 295 tmp = b.create<arith::ConstantOp>(IntegerAttr::get(et, 0)); 296 return b.create<complex::CreateOp>(t, tmp, tmp); 297 }) 298 .Default([](auto) { return Value(); }); 299 if (!fillVal) 300 return failure(); 301 b.create<linalg::FillOp>(fillVal, promotionInfo->fullLocalView); 302 } 303 304 // Copy data into the promoted buffers. Use callback if provided. 305 for (auto v : options.subViews) { 306 auto info = promotionInfoMap.find(v.first); 307 if (info == promotionInfoMap.end()) 308 continue; 309 if (failed(options.copyInFn( 310 b, cast<memref::SubViewOp>(v.second.getDefiningOp()), 311 info->second.partialLocalView))) 312 return failure(); 313 } 314 return promotionInfoMap; 315 } 316 317 static FailureOr<LinalgOp> 318 promoteSubViews(ImplicitLocOpBuilder &b, LinalgOp op, 319 LinalgOpInstancePromotionOptions options, DataLayout &layout) { 320 assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); 321 322 // 1. Promote the specified views and use them in the new op. 323 auto promotedBuffersAndViews = promoteSubViews(b, options, layout); 324 if (failed(promotedBuffersAndViews) || 325 promotedBuffersAndViews->size() != options.subViews.size()) 326 return failure(); 327 328 // 2. Append all other operands as they appear, this enforces that such 329 // operands are not views. This is to support cases such as FillOp taking 330 // extra scalars etc. Keep a reference to output buffers; 331 SmallVector<Value, 8> opViews; 332 opViews.reserve(op->getNumOperands()); 333 SmallVector<std::pair<Value, Value>, 8> writebackViews; 334 writebackViews.reserve(promotedBuffersAndViews->size()); 335 for (OpOperand &opOperand : op->getOpOperands()) { 336 int64_t operandNumber = opOperand.getOperandNumber(); 337 if (options.subViews.count(operandNumber) != 0) { 338 if (options.useFullTileBuffers[opOperand.get()]) 339 opViews.push_back( 340 (*promotedBuffersAndViews)[operandNumber].fullLocalView); 341 else 342 opViews.push_back( 343 (*promotedBuffersAndViews)[operandNumber].partialLocalView); 344 if (operandNumber >= op.getNumDpsInputs()) 345 writebackViews.emplace_back(std::make_pair( 346 opOperand.get(), 347 (*promotedBuffersAndViews)[operandNumber].partialLocalView)); 348 } else { 349 opViews.push_back(opOperand.get()); 350 } 351 } 352 op->setOperands(0, opViews.size(), opViews); 353 354 OpBuilder::InsertionGuard guard(b); 355 b.setInsertionPointAfter(op); 356 // 3. Emit write-back for the promoted output views: copy the partial view. 357 for (auto viewAndPartialLocalView : writebackViews) { 358 if (failed(options.copyOutFn(b, viewAndPartialLocalView.second, 359 viewAndPartialLocalView.first))) 360 return failure(); 361 } 362 363 // 4. Dealloc all local buffers. 364 for (const auto &pi : *promotedBuffersAndViews) 365 (void)options.deallocationFn(b, pi.second.fullLocalView); 366 return op; 367 } 368 369 LogicalResult 370 mlir::linalg::promoteSubviewsPrecondition(Operation *op, 371 LinalgPromotionOptions options) { 372 LinalgOp linalgOp = dyn_cast<LinalgOp>(op); 373 // Transformation applies to buffers only. 374 if (!linalgOp || !linalgOp.hasBufferSemantics()) 375 return failure(); 376 // Check that at least one of the requested operands is indeed a subview. 377 for (OpOperand &opOperand : linalgOp->getOpOperands()) { 378 auto sv = 379 isa_and_nonnull<memref::SubViewOp>(opOperand.get().getDefiningOp()); 380 if (sv) { 381 if (!options.operandsToPromote || 382 options.operandsToPromote->count(opOperand.getOperandNumber())) 383 return success(); 384 } 385 } 386 // TODO: Check all subviews requested are bound by a static constant. 387 // TODO: Check that the total footprint fits within a given size. 388 return failure(); 389 } 390 391 FailureOr<LinalgOp> 392 mlir::linalg::promoteSubViews(OpBuilder &builder, LinalgOp linalgOp, 393 const LinalgPromotionOptions &options) { 394 LinalgOpInstancePromotionOptions linalgOptions(linalgOp, options); 395 auto layout = DataLayout::closest(linalgOp); 396 ImplicitLocOpBuilder b(linalgOp.getLoc(), builder); 397 auto res = ::promoteSubViews(b, linalgOp, linalgOptions, layout); 398 if (failed(res)) 399 return failure(); 400 return res; 401 } 402 403 /// Allocate the given subview to a memory address space in GPU by creating a 404 /// allocation operation and setting the memref type address space to desired 405 /// address space. 406 static std::optional<Value> allocateSubviewGPUMemoryInAddressSpace( 407 OpBuilder &builder, memref::SubViewOp subview, ArrayRef<Value> sizeBounds, 408 gpu::AddressSpace addressSpace) { 409 OpBuilder::InsertionGuard guard(builder); 410 411 func::FuncOp funcOp = subview->getParentOfType<func::FuncOp>(); 412 if (!funcOp) 413 return std::nullopt; 414 415 // The subview size bounds are expected to be constant; they specify the shape 416 // of the allocation. 417 SmallVector<int64_t> shape; 418 for (Value bound : sizeBounds) { 419 APInt value; 420 if (!matchPattern(bound, m_ConstantInt(&value))) 421 return std::nullopt; 422 shape.push_back(value.getSExtValue()); 423 } 424 425 builder.setInsertionPoint(&funcOp.front(), funcOp.front().begin()); 426 auto type = MemRefType::get( 427 shape, subview.getType().getElementType(), MemRefLayoutAttrInterface{}, 428 gpu::AddressSpaceAttr::get(builder.getContext(), addressSpace)); 429 Value buffer; 430 if (addressSpace == gpu::GPUDialect::getWorkgroupAddressSpace()) { 431 buffer = builder.create<memref::AllocOp>(funcOp.getLoc(), type); 432 } else if (addressSpace == gpu::GPUDialect::getPrivateAddressSpace()) { 433 buffer = builder.create<memref::AllocaOp>(funcOp.getLoc(), type); 434 } else { 435 return std::nullopt; 436 } 437 return buffer; 438 } 439 440 /// Allocate the subview in the GPU workgroup memory. 441 std::optional<Value> mlir::linalg::allocateWorkgroupMemory( 442 OpBuilder &builder, memref::SubViewOp subview, ArrayRef<Value> sizeBounds, 443 DataLayout &) { 444 return allocateSubviewGPUMemoryInAddressSpace( 445 builder, subview, sizeBounds, 446 gpu::GPUDialect::getWorkgroupAddressSpace()); 447 } 448 449 /// In case of GPU group memory there is no need to deallocate. 450 LogicalResult mlir::linalg::deallocateWorkgroupMemory(OpBuilder &, 451 Value /*buffer*/) { 452 return success(); 453 } 454 455 /// Create Memref copy operations and add gpu barrier guards before and after 456 /// the copy operation to ensure data integrity. 457 LogicalResult mlir::linalg::copyToWorkgroupMemory(OpBuilder &b, Value src, 458 Value dst) { 459 b.create<gpu::BarrierOp>(src.getLoc()); 460 Operation *copyOp = b.create<memref::CopyOp>(src.getLoc(), src, dst); 461 b.create<gpu::BarrierOp>(copyOp->getLoc()); 462 return success(); 463 } 464 465 /// Allocate the subview in the GPU private memory. 466 std::optional<Value> mlir::linalg::allocateGPUPrivateMemory( 467 OpBuilder &builder, memref::SubViewOp subview, ArrayRef<Value> sizeBounds, 468 DataLayout &) { 469 return allocateSubviewGPUMemoryInAddressSpace( 470 builder, subview, sizeBounds, gpu::GPUDialect::getPrivateAddressSpace()); 471 } 472 473 /// Normal copy to between src and dst. 474 LogicalResult mlir::linalg::copyToGPUPrivateMemory(OpBuilder &b, Value src, 475 Value dst) { 476 b.create<memref::CopyOp>(src.getLoc(), src, dst); 477 return success(); 478 } 479 480 /// In case of GPU private memory there is no need to deallocate since the 481 /// memory is freed when going outside of the scope. 482 LogicalResult mlir::linalg::deallocateGPUPrivateMemory(OpBuilder &, 483 Value /*buffer*/) { 484 return success(); 485 } 486