1 //===- Fusion.cpp - Implementation of linalg Fusion -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Fusion pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Affine/IR/AffineOps.h" 15 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 17 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 18 #include "mlir/Dialect/Linalg/Passes.h" 19 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 20 #include "mlir/Dialect/Linalg/Utils/Utils.h" 21 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 22 #include "mlir/IR/AffineExpr.h" 23 #include "mlir/IR/AffineMap.h" 24 #include "mlir/IR/Dominance.h" 25 #include "mlir/Support/LLVM.h" 26 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 27 #include "llvm/ADT/MapVector.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 31 #include <set> 32 33 #define DEBUG_TYPE "linalg-fusion" 34 35 using namespace mlir; 36 using namespace mlir::edsc; 37 using namespace mlir::edsc::intrinsics; 38 using namespace mlir::linalg; 39 40 using llvm::dbgs; 41 42 /// Implements a simple high-level fusion pass on linalg structured operations. 43 /// 44 /// In each block, linalg ops are processed in reverse textual order. 45 /// Given a linalg op `O`, fusion occurs by: 46 /// 1. inspecting the linalg ops that write into the views read by `O`. There 47 /// are 2 cases: 48 /// a) buffer case: use the SSA value of the views and a simple alias 49 /// analysis on subview ops to determine producer-consumer dependences; 50 /// b) tensor case: use SSA use-def chains on subtensor ops; 51 /// 2. greedily fuse the linalg ops that produce the subview/subtensor. 52 /// 3. inspect the fused ops and determine whether they have other remaining 53 /// LinalgOp uses. If not, then erase the original producing linalg op. 54 /// 55 /// More advanced use cases, analyses as well as profitability heuristics are 56 /// left for future work. 57 58 // Fill `offset`, `sizes` and `strides` used to iterate over the shape indexed 59 // by `permutationMap`. 60 static void inferShapeComponents(AffineMap permutationMap, 61 ArrayRef<Range> loopRanges, 62 SmallVectorImpl<Value> &offsets, 63 SmallVectorImpl<Value> &sizes, 64 SmallVectorImpl<Value> &strides) { 65 assert(permutationMap.isProjectedPermutation() && 66 "expected some subset of a permutation map"); 67 SmallVector<Range, 4> shapeRanges(permutationMap.getNumResults()); 68 unsigned idx = 0; 69 for (AffineExpr e : permutationMap.getResults()) { 70 // loopToOperandRangesMaps are permutations-only, just swap indices. 71 unsigned loopPos = e.cast<AffineDimExpr>().getPosition(); 72 shapeRanges[idx++] = loopRanges[loopPos]; 73 } 74 // Construct a new subshape for the tile. 75 unsigned rank = shapeRanges.size(); 76 offsets.reserve(rank); 77 sizes.reserve(rank); 78 strides.reserve(rank); 79 for (auto r : shapeRanges) { 80 offsets.push_back(r.offset); 81 sizes.push_back(r.size); 82 strides.push_back(r.stride); 83 } 84 } 85 86 // Return a cloned version of `op` that operates on `loopRanges`, assumed to be 87 // a subset of the original loop ranges of `op`. 88 // This is achieved by applying the `loopToOperandRangesMaps` permutation maps 89 // to the `loopRanges` in order to obtain view ranges. 90 static LinalgOp cloneWithLoopRanges(OpBuilder &b, Location loc, LinalgOp op, 91 ArrayRef<Range> loopRanges) { 92 SmallVector<Value, 8> clonedShapes; 93 clonedShapes.reserve(op.getNumShapedOperands()); 94 95 // Iterate over the shape operands in order. 96 // Extract the subranges from the linearized ranges. 97 for (auto en : llvm::enumerate(op.getShapedOperands())) { 98 unsigned shapedOperandIdx = en.index(); 99 AffineMap map = op.getIndexingMap(shapedOperandIdx); 100 LLVM_DEBUG(llvm::dbgs() << "shapedOperandIdx: " << shapedOperandIdx 101 << " with indexingMap: " << map << "\n"); 102 SmallVector<Value, 4> offsets, sizes, strides; 103 inferShapeComponents(map, loopRanges, offsets, sizes, strides); 104 Value shape = en.value(); 105 Value sub = shape.getType().isa<MemRefType>() 106 ? b.create<SubViewOp>(loc, shape, offsets, sizes, strides) 107 .getResult() 108 : b.create<SubTensorOp>(loc, shape, offsets, sizes, strides) 109 .getResult(); 110 clonedShapes.push_back(sub); 111 } 112 // Append the other operands. 113 auto operands = op.getAssumedNonShapedOperands(); 114 clonedShapes.append(operands.begin(), operands.end()); 115 116 // Iterate over the results in order. 117 // Extract the subtensor type from the linearized range. 118 // Since we do not enforce any canonicalizations on the fly, this is always 119 // fully dynamic at construction time. 120 SmallVector<Type, 4> resultTypes; 121 resultTypes.reserve(op.getOperation()->getNumResults()); 122 for (RankedTensorType t : op.getOutputTensorTypes()) { 123 unsigned rank = t.getRank(); 124 SmallVector<int64_t, 4> staticOffsetsVector( 125 rank, ShapedType::kDynamicStrideOrOffset); 126 SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamicSize); 127 SmallVector<int64_t, 4> staticStridesVector( 128 rank, ShapedType::kDynamicStrideOrOffset); 129 resultTypes.push_back(SubTensorOp::inferResultType( 130 t.cast<RankedTensorType>(), staticOffsetsVector, staticSizesVector, 131 staticStridesVector)); 132 } 133 134 Operation *clonedOp = op.clone(b, loc, resultTypes, clonedShapes); 135 // When the producer is an IndexedGenericOp, we have to transform its block 136 // IV arguments according to the tiling of the consumer, i.e. offset them by 137 // the values computed in `loopRanges`. 138 if (auto indexedGenericOp = dyn_cast<IndexedGenericOp>(clonedOp)) { 139 auto &block = indexedGenericOp.region().front(); 140 OpBuilder::InsertionGuard g(b); 141 b.setInsertionPointToStart(&block); 142 for (unsigned i = 0, e = indexedGenericOp.getNumLoops(); i < e; ++i) { 143 Value oldIndex = block.getArgument(i); 144 // TODO: replace by an affine_apply. 145 AddIOp newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex, 146 loopRanges[i].offset); 147 oldIndex.replaceAllUsesExcept(newIndex, 148 SmallPtrSet<Operation *, 1>{newIndex}); 149 } 150 } 151 152 return clonedOp; 153 } 154 155 struct ShapeDimension { 156 Value shape; 157 unsigned dimension; 158 }; 159 160 // Given an `op`, returns the first (`shape`, `dimension`) pair that identifies 161 // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps 162 // guarantees at least one such dimension is found. If multiple candidates exist 163 // they must agree by construction (i.e. have the same size) and we just return 164 // the first one. 165 static ShapeDimension getShapeDefiningLoopRange(LinalgOp op, 166 unsigned loopDepth) { 167 auto maps = op.indexing_maps(); 168 // Iterate over the inputs and outputs in order. 169 // Extract the subranges from the linearized ranges. 170 SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers()); 171 for (auto en : llvm::enumerate(ios)) { 172 unsigned idx = en.index(); 173 auto map = maps[idx].cast<AffineMapAttr>().getValue(); 174 LLVM_DEBUG(llvm::dbgs() 175 << "getShapeDefiningLoopRange I/O idx: " << idx << "\n"); 176 LLVM_DEBUG(llvm::dbgs() 177 << "getShapeDefiningLoopRange map: " << map << "\n"); 178 Value shape = en.value(); 179 SmallVector<Value, 8> shapeRanges(map.getNumResults(), nullptr); 180 for (auto en2 : llvm::enumerate(map.getResults())) { 181 auto dimExpr = en2.value().dyn_cast<AffineDimExpr>(); 182 if (!dimExpr) 183 continue; 184 if (loopDepth == en2.value().cast<AffineDimExpr>().getPosition()) { 185 LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: " 186 << loopDepth << "\n"); 187 LLVM_DEBUG(llvm::dbgs() 188 << "getShapeDefiningLoopRange shape: " << shape << "\n"); 189 return ShapeDimension{shape, static_cast<unsigned>(en2.index())}; 190 } 191 } 192 } 193 llvm_unreachable("Expect to be able to extract a shape defining loop range"); 194 } 195 196 /// Fuse the producer by cloning the `producer`. The `fusedLoopsAndRanges` 197 /// provides the loop range information for the fused loops. The rest are 198 /// obtained from the producer itself, since they are not tiled + fused. 199 static LinalgOp fuse(OpBuilder &b, LinalgOp producer, 200 const DenseMap<unsigned, Range> &fusedLoopsAndRanges) { 201 202 unsigned nPar = producer.getNumParallelLoops(); 203 unsigned nRed = producer.getNumReductionLoops(); 204 unsigned nWin = producer.getNumWindowLoops(); 205 SmallVector<Range, 8> loopRanges(nPar + nRed + nWin); 206 for (auto fusedLoops : fusedLoopsAndRanges) 207 loopRanges[fusedLoops.first] = fusedLoops.second; 208 209 // Iterate over all dimensions. For the dimensions not identified by the 210 // producer map for `producerIdx`, we need to explicitly compute the shape 211 // that defines the loop ranges using the `producer`. 212 for (unsigned i = 0, nLoops = loopRanges.size(); i < nLoops; ++i) { 213 if (loopRanges[i].offset) 214 LLVM_DEBUG(llvm::dbgs() 215 << "existing LoopRange: " << loopRanges[i] << "\n"); 216 else { 217 auto shapeDim = getShapeDefiningLoopRange(producer, i); 218 loopRanges[i] = Range{std_constant_index(0), 219 std_dim(shapeDim.shape, shapeDim.dimension), 220 std_constant_index(1)}; 221 LLVM_DEBUG(llvm::dbgs() << "new LoopRange: " << loopRanges[i] << "\n"); 222 } 223 } 224 225 return cloneWithLoopRanges(b, producer.getLoc(), producer, loopRanges); 226 } 227 228 /// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is 229 /// expected to be defined by a subview op or a subtensor op. 230 static Range getRangeFromOperandShape(OpBuilder &b, Location loc, 231 Value shapedOperand, unsigned dim) { 232 Operation *shapeProducingOp = shapedOperand.getDefiningOp(); 233 if (auto subViewOp = dyn_cast<SubViewOp>(shapeProducingOp)) 234 return subViewOp.getOrCreateRanges(b, loc)[dim]; 235 if (auto subTensorOp = dyn_cast<SubTensorOp>(shapeProducingOp)) 236 return subTensorOp.getOrCreateRanges(b, loc)[dim]; 237 llvm_unreachable("SubviewOp or SubTensorOp expected"); 238 } 239 240 /// Fuses the producer of `producerIdx` into the loop immediately enclosing 241 /// `consumer`. This is achieved by "recomputing" the `producer` at the time it 242 /// is needed just before the `consumer. 243 /// 244 /// Depending on the type of `consumer.getShapedOperand(consumerIdx)`, there are 245 /// 2 cases: 246 /// 1. Buffer case: `producerIdx` is the index of the buffer in 247 /// `producer.getOutputBuffers()`. 248 /// 2. Tensor case: `producerIdx` is the index of the tensor in 249 /// `producer.getResults()`. 250 static LinalgOp fuse(OpBuilder &b, LinalgOp producer, unsigned producerIdx, 251 LinalgOp consumer, unsigned consumerIdx) { 252 AffineMap producerMap = producer.getOutputIndexingMap(producerIdx); 253 LLVM_DEBUG(llvm::dbgs() << "Producer Idx: " << producerIdx 254 << ", producer map: " << producerMap << "\n"); 255 DenseMap<unsigned, Range> fusedLoopsAndRanges; 256 Location loc = consumer.getLoc(); 257 Value shapedOperand = consumer.getShapedOperand(consumerIdx); 258 for (auto en : llvm::enumerate(producerMap.getResults())) { 259 unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition(); 260 fusedLoopsAndRanges[posInProducerLoop] = 261 getRangeFromOperandShape(b, loc, shapedOperand, en.index()); 262 } 263 return fuse(b, producer, fusedLoopsAndRanges); 264 } 265 266 // Encode structural fusion safety preconditions. 267 // Some of these will be lifted in the future with better analysis. 268 static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView, 269 LinalgOp consumer) { 270 assert(producer.hasBufferSemantics() && 271 "expected linalg op with buffer semantics"); 272 assert(consumer.hasBufferSemantics() && 273 "expected linalg op with buffer semantics"); 274 if (producer.getNumOutputs() != 1) { 275 LLVM_DEBUG(llvm::dbgs() << "\nNot structurally fusable (multi-output)"); 276 return false; 277 } 278 // Only fuse when the producer block dominates. 279 DominanceInfo dom(producer.getOperation()); 280 if (!dom.dominates(producer.getOperation()->getBlock(), 281 consumer.getOperation()->getBlock())) { 282 LLVM_DEBUG( 283 llvm::dbgs() 284 << "\nNot structurally fusable (producer block does not dominate)"); 285 return false; 286 } 287 return true; 288 } 289 290 bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph, 291 LinalgOp consumer, 292 Value consumedView, 293 LinalgOp producer) { 294 assert(producer.hasBufferSemantics() && 295 "expected linalg op with buffer semantics"); 296 assert(consumer.hasBufferSemantics() && 297 "expected linalg op with buffer semantics"); 298 // Make some simple structural checks that alleviate the need for more 299 // complex analyses. 300 if (!isStructurallyFusableProducer(producer, consumedView, consumer)) { 301 LLVM_DEBUG(llvm::dbgs() << "\n***Not static last write due to structure:\t" 302 << *producer.getOperation()); 303 return false; 304 } 305 // Check for any interleaved write to consumedView. 306 if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) { 307 LLVM_DEBUG(llvm::dbgs() << "\n***Not fusable due to interleaved write:\t" 308 << *producer.getOperation()); 309 return false; 310 } 311 return true; 312 } 313 314 bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph, 315 LinalgOp consumer, Value consumedView, 316 LinalgOp producer) { 317 assert(producer.hasBufferSemantics() && 318 "expected linalg op with buffer semantics"); 319 assert(consumer.hasBufferSemantics() && 320 "expected linalg op with buffer semantics"); 321 if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer)) 322 return false; 323 // Check for any fusion-preventing dependence to any shape read/written that 324 // would violate dependences. 325 if (!graph.findCoveringDependences(producer, consumer).empty()) { 326 LLVM_DEBUG(llvm::dbgs() 327 << "\n***Not fusable due to an interleaved dependence:\t" 328 << *producer.getOperation()); 329 return false; 330 } 331 if (auto convOp = dyn_cast<linalg::ConvOp>(producer.getOperation())) { 332 // TODO: add a level of indirection to linalg.generic. 333 if (convOp.padding()) 334 return false; 335 } 336 if (auto convOp = dyn_cast<linalg::ConvOp>(consumer.getOperation())) { 337 // TODO: add a level of indirection to linalg.generic. 338 if (convOp.padding()) 339 return false; 340 } 341 return true; 342 } 343 344 static bool isSameSubView(Value a, Value b) { 345 if (a == b) 346 return true; 347 auto sva = a.getDefiningOp<SubViewOp>(); 348 auto svb = b.getDefiningOp<SubViewOp>(); 349 if (!sva || !svb) 350 return false; 351 if (!isSameSubView(sva.getViewSource(), svb.getViewSource())) 352 return false; 353 if (sva.getType() != svb.getType()) 354 return false; 355 if (sva.getNumOperands() != svb.getNumOperands()) 356 return false; 357 if (sva.static_offsets() != svb.static_offsets()) 358 return false; 359 if (sva.static_sizes() != svb.static_sizes()) 360 return false; 361 if (sva.static_strides() != svb.static_strides()) 362 return false; 363 /// Skip the "source" operand. 364 for (unsigned idx = 1, e = sva.getNumOperands(); idx != e; ++idx) 365 if (sva.getOperand(idx) != svb.getOperand(idx)) 366 return false; 367 return true; 368 } 369 370 static Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> 371 findFusableProducer(LinalgOp consumer, unsigned consumerIdx, 372 const LinalgDependenceGraph &dependenceGraph) { 373 // Only consider RAW and WAW atm. 374 for (auto depType : { 375 LinalgDependenceGraph::DependenceType::RAW, 376 LinalgDependenceGraph::DependenceType::WAW, 377 }) { 378 for (auto dependence : llvm::make_filter_range( 379 dependenceGraph.getDependencesInto(consumer, depType), 380 [consumerIdx]( 381 LinalgDependenceGraph::LinalgDependenceGraphElem elem) { 382 return elem.indexingOpView.operandIndex == consumerIdx; 383 })) { 384 auto producer = cast<LinalgOp>(dependence.dependentOpView.op); 385 386 // Check that the dependence is indeed on the input `consumerIdx` view. 387 auto consumedView = 388 consumer.getBuffer(dependence.indexingOpView.operandIndex); 389 if (!isSameSubView(consumer.getBuffer(consumerIdx), consumedView)) 390 continue; 391 392 // Consumer consumes this view, `isStructurallyFusableProducer` also 393 // checks whether it is a strict subview of the producer view. 394 auto producedView = 395 producer.getBuffer(dependence.dependentOpView.operandIndex); 396 LLVM_DEBUG(llvm::dbgs() 397 << "\n" 398 << LinalgDependenceGraph::getDependenceTypeStr(depType) 399 << "producer: " << *producer.getOperation() 400 << " view: " << producedView << " output index: " 401 << dependence.dependentOpView.operandIndex - 402 producer.getNumInputs() 403 << "\n"); 404 (void)producedView; 405 406 // Simple fusability checks. 407 if (!isFusableInto(dependenceGraph, consumer, consumedView, producer)) 408 continue; 409 410 return dependence; 411 } 412 } 413 return {}; 414 } 415 416 Optional<FusionInfo> 417 mlir::linalg::fuseProducerOfBuffer(OpBuilder &b, LinalgOp consumer, 418 unsigned consumerIdx, 419 const LinalgDependenceGraph &graph) { 420 Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependence = 421 findFusableProducer(consumer, consumerIdx, graph); 422 if (!fusableDependence) 423 return {}; 424 425 LinalgOp producerOp = cast<LinalgOp>(fusableDependence->dependentOpView.op); 426 // If producer is already in the same block as consumer, we are done. 427 if (consumer.getOperation()->getBlock() == 428 producerOp.getOperation()->getBlock()) 429 return {}; 430 431 unsigned producerIdx = fusableDependence->dependentOpView.operandIndex - 432 producerOp.getNumInputs(); 433 Value consumerView = consumer.getShapedOperand(consumerIdx); 434 435 // Must be a subview or a slice to guarantee there are loops we can fuse 436 // into. 437 auto subView = consumerView.getDefiningOp<SubViewOp>(); 438 auto slice = consumerView.getDefiningOp<SliceOp>(); 439 if (!subView && !slice) { 440 LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subview or slice)"); 441 return {}; 442 } 443 444 // Fuse `producer` just before `consumer`. 445 OpBuilder::InsertionGuard g(b); 446 b.setInsertionPoint(consumer.getOperation()); 447 ScopedContext scope(b, consumer.getLoc()); 448 LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumer << "\n"); 449 450 auto fusedProducer = fuse(b, producerOp, producerIdx, consumer, consumerIdx); 451 return FusionInfo{producerOp, fusedProducer}; 452 } 453 454 /// Walk back use-def chain through scf::For yields. 455 /// Sets `producer` and `outputIndex` if it finds a producer LinalgOp 456 static void getProducerOfTensor(Value tensor, LinalgOp &producer, 457 unsigned &outputIndex) { 458 if (!tensor.getType().isa<RankedTensorType>()) 459 return; 460 461 while (true) { 462 if (auto linalgOp = tensor.getDefiningOp<LinalgOp>()) { 463 producer = linalgOp; 464 outputIndex = tensor.cast<OpResult>().getResultNumber(); 465 return; 466 } 467 if (auto subTensorOp = tensor.getDefiningOp<SubTensorOp>()) { 468 tensor = subTensorOp.source(); 469 continue; 470 } 471 if (auto blockArg = tensor.dyn_cast<BlockArgument>()) { 472 if (auto forOp = blockArg.getDefiningOp<scf::ForOp>()) { 473 tensor = forOp.getResult(blockArg.getArgNumber()); 474 continue; 475 } 476 } 477 return; 478 } 479 } 480 481 Optional<FusionInfo> mlir::linalg::fuseProducerOfTensor(OpBuilder &b, 482 LinalgOp consumer, 483 unsigned consumerIdx) { 484 Value inputTensor = consumer.getInput(consumerIdx); 485 LinalgOp producerOp; 486 unsigned producerIdx; 487 getProducerOfTensor(inputTensor, producerOp, producerIdx); 488 489 // Must be a subtensor to guarantee there are loops we can fuse into. 490 auto subTensor = inputTensor.getDefiningOp<SubTensorOp>(); 491 if (!subTensor || !producerOp) { 492 LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subtensor)"); 493 return {}; 494 } 495 496 // If producer is already in the same block as consumer, we are done. 497 if (consumer.getOperation()->getBlock() == 498 producerOp.getOperation()->getBlock()) 499 return {}; 500 501 // Insert fused `producer` just before `consumer`. 502 OpBuilder::InsertionGuard g(b); 503 b.setInsertionPoint(consumer.getOperation()); 504 ScopedContext scope(b, consumer.getLoc()); 505 LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumer << "\n"); 506 LinalgOp fusedProducer = 507 fuse(b, producerOp, producerIdx, consumer, consumerIdx); 508 509 // Replace use. 510 // Canonicalizations are not guaranteed to have happened before constructing 511 // `fusedProducer`. In the tensor case this can result in temporary type 512 // mismatches. Insert a `tensor_cast` op to propagate the transformation 513 // invariant that types are compatible. 514 Value def = fusedProducer.getOperation()->getResult(producerIdx); 515 OpOperand &use = consumer.getOperation()->getOpOperand(consumerIdx); 516 Type consumerType = use.get().getType(); 517 if (consumerType != def.getType()) 518 def = b.create<TensorCastOp>(fusedProducer.getLoc(), consumerType, def); 519 use.set(def); 520 return FusionInfo{producerOp, fusedProducer}; 521 } 522 523 /// Prune all dimensions that are of reduction iterator type from `map`. 524 static AffineMap pruneReductionDimsFromMap(ArrayRef<Attribute> iteratorTypes, 525 AffineMap map) { 526 SmallVector<unsigned, 2> projectedDims; 527 for (auto attr : llvm::enumerate(iteratorTypes)) { 528 if (!isParallelIterator(attr.value())) 529 projectedDims.push_back(attr.index()); 530 } 531 return getProjectedMap(map, projectedDims); 532 } 533 534 using FusableOpDependencesTy = llvm::MapVector< 535 Operation *, 536 SmallVector<LinalgDependenceGraph::LinalgDependenceGraphElem, 1>>; 537 538 /// Returns the mapping from iterations in the consumer that write to the same 539 /// location as the iterations in the producer. To do so use 540 /// - indexing map of the fused view in the consumer : consumerIndexMap 541 /// - indexing map of the fused view in the producer : producerIndexMap 542 /// consumerLoopToProducerLoop = 543 /// inverse(producerIndexMap).compose(consumerIndexMap) 544 static Optional<AffineMap> getConsumerLoopToProducerLoopMap( 545 LinalgDependenceGraph::LinalgDependenceGraphElem dependence) { 546 auto producer = cast<LinalgOp>(dependence.dependentOpView.op); 547 AffineMap producerIndexingMap = 548 producer.getIndexingMap(dependence.dependentOpView.operandIndex); 549 auto consumer = cast<LinalgOp>(dependence.indexingOpView.op); 550 AffineMap consumerIndexingMap = 551 consumer.getIndexingMap(dependence.indexingOpView.operandIndex); 552 553 AffineMap prunedProducerIndexingMap = pruneReductionDimsFromMap( 554 producer.iterator_types().getValue(), producerIndexingMap); 555 if (!prunedProducerIndexingMap.isPermutation()) 556 return None; 557 558 if (consumerIndexingMap.getNumResults() != 559 prunedProducerIndexingMap.getNumResults()) 560 return None; 561 562 LLVM_DEBUG({ 563 llvm::dbgs() << "\t producerMap : "; 564 producerIndexingMap.print(llvm::dbgs()); 565 llvm::dbgs() << " pruned : "; 566 prunedProducerIndexingMap.print(llvm::dbgs()); 567 llvm::dbgs() << "\n"; 568 llvm::dbgs() << "\t consumerMap : "; 569 consumerIndexingMap.print(llvm::dbgs()); 570 llvm::dbgs() << "\n"; 571 }); 572 573 AffineMap invProducerIndexMap = inversePermutation(prunedProducerIndexingMap); 574 if (!invProducerIndexMap) 575 return None; 576 577 return invProducerIndexMap.compose(consumerIndexingMap); 578 } 579 580 /// Given a projected permutation `map`, returns true if the map changes the 581 /// order in which the fused loop dimension appear. 582 static bool doesTransposeAccess(AffineMap map, 583 const std::set<unsigned> &fusableLoops) { 584 Optional<unsigned> lastFusableLoop; 585 for (unsigned pos : llvm::map_range(map.getResults(), [](AffineExpr expr) { 586 return expr.cast<AffineDimExpr>().getPosition(); 587 })) { 588 if (!fusableLoops.count(pos)) 589 continue; 590 if (!lastFusableLoop) { 591 lastFusableLoop = pos; 592 continue; 593 } 594 if (pos <= lastFusableLoop.getValue()) 595 return true; 596 lastFusableLoop = pos; 597 } 598 return false; 599 } 600 601 /// Returns the positions of the loop in `op` that can be tiled based on the 602 /// operations that are to be fused with it. For example, in a 603 /// 604 /// linalg.matmul ins(%a, %b : ...) outs(%c : ...) 605 /// 606 /// if the producer of %a needs to be fused with this op, only the `i` loop of 607 /// the matmul can be tiled while fusing. If producer of %a, and %b are to be 608 /// fused, then no loops can be tiled while fusing. The conditions used are: 609 /// 1. Only parallel loops can be used for tile + fuse. Find the number of 610 /// common outer parallel loops between the op and its producers being fused. 611 /// 2. Of the parallel loops only some can be fused. Only those loops can be 612 /// fused such where the fusable loops iteration space only touches one tile 613 /// of the fused operation. This is because the producer (which is writing 614 /// the fused subview) has update semantics. 615 /// 616 /// Since an inverse computation is needed, we need to consider the projection 617 /// of the producerIndexMap w.r.t the parallel loops. The actual fusable loops 618 /// are the dimensions of the consumerLoopToProducerLoop map that correspond to 619 /// parallel loops and appear in the result of the map 620 /// 621 /// Example 1: 622 /// linalg.fill(%c, %cst) 623 /// linalg.matmul ins(%a, %b) outs(%c) 624 /// Number of parallel loops : 2 625 /// producerIndexMap = affine_map<(i, j) ->(i , j)> 626 /// consumerIndexMap = affine_map<(i, j, k) -> (i, j)> 627 /// consumerLoopToProducerLoop = affine_map<(i, j, k) -> (i, j)> 628 /// Fused dimensions : i, j 629 /// 630 /// Example 2: 631 /// linalg.matmul ins(%a, %b) outs(%c) 632 /// linalg.generic {indexing_maps = [affine_map<(i, j) -> (j, i)>, ... 633 /// iterator_types = ["parallel", "parallel"]} 634 /// ins(%c) ... 635 /// 636 /// Number of parallel loops = 2: 637 /// producerIndexMap (projected to parallel loops) = 638 /// affine_map<(i, j) -> (i, j)> 639 /// consumerLoopToProducerLoop2 = affine_map<(i, j) -> (j, i)> 640 /// Fused dimensions : i, j 641 /// 642 /// Example 3: 643 /// linalg.copy(%s, %b) 644 /// linalg.matmul ins(%a, %b) outs(%c) 645 /// 646 /// Number of parallel loops = 2 647 /// produceIndexMap : affine_map<(i, j) -> (i, j)> 648 /// consumerLoopToProduceLoops = affine_map<(i, j, k) -> (k, j)> 649 /// submap with only parallel loops = affine_map<(i, j) -> (j)> 650 /// Fused dimensions : j 651 static std::set<unsigned> 652 collectFusableLoops(ArrayRef<LinalgOp> ops, 653 const FusableOpDependencesTy &fusableDependences) { 654 assert(!ops.empty()); 655 auto getNumOuterParallelLoops = [](LinalgOp linalgOp) { 656 return linalgOp.iterator_types() 657 .getValue() 658 .take_while([](Attribute attr) -> bool { 659 return attr.cast<StringAttr>().getValue() == 660 getParallelIteratorTypeName(); 661 }) 662 .size(); 663 }; 664 665 size_t numOuterParallelLoops = getNumOuterParallelLoops(ops.back()); 666 for (auto op : ops.drop_back()) { 667 numOuterParallelLoops = 668 std::min(numOuterParallelLoops, getNumOuterParallelLoops(op)); 669 } 670 671 std::set<unsigned> fusableLoops; 672 auto range = llvm::seq<unsigned>(0, numOuterParallelLoops); 673 fusableLoops.insert(range.begin(), range.end()); 674 675 for (auto op : reverse(ops)) { 676 for (auto dependence : fusableDependences.lookup(op)) { 677 LLVM_DEBUG({ 678 llvm::dbgs() << "\t fusable :"; 679 for (unsigned i : fusableLoops) 680 llvm::dbgs() << " " << i; 681 llvm::dbgs() << "\n"; 682 }); 683 684 Optional<AffineMap> consumerLoopToProducerLoop = 685 getConsumerLoopToProducerLoopMap(dependence); 686 if (!consumerLoopToProducerLoop) { 687 op.emitRemark("failed to get map from consumer loop to producer loop"); 688 return {}; 689 } 690 // todo: This condition is only an implementation limitation. When fusing 691 // the operation, if the accesses in the producer/consumer are transposes 692 // of each other, the loop bounds for the tiled producer can be 693 // manipulated accordingly. This requires some additional bookkeeping in 694 // the implementation of tile+fuse that is defered to later. 695 if (doesTransposeAccess(*consumerLoopToProducerLoop, fusableLoops)) { 696 op.emitRemark("unhandled fusion when fusion requires permutation"); 697 return {}; 698 } 699 700 std::set<unsigned> candidates; 701 for (AffineExpr expr : consumerLoopToProducerLoop->getResults()) { 702 unsigned position = expr.cast<AffineDimExpr>().getPosition(); 703 if (fusableLoops.count(position)) 704 candidates.insert(position); 705 } 706 LLVM_DEBUG({ 707 llvm::dbgs() << "\t candidates :"; 708 for (unsigned i : candidates) 709 llvm::dbgs() << " " << i; 710 llvm::dbgs() << "\n"; 711 }); 712 if (candidates.empty()) 713 return {}; 714 std::swap(candidates, fusableLoops); 715 } 716 } 717 718 return fusableLoops; 719 } 720 721 /// Find all dependences that are to be fusable. 722 static FusableOpDependencesTy 723 findAllFusableDependences(ArrayRef<LinalgOp> ops, 724 const LinalgDependenceGraph &dependenceGraph) { 725 FusableOpDependencesTy fusableDependences; 726 // TODO: Currently fusion would not be legal if the fusable dependence is to 727 // the same producer but different indexing map in the consumer. Fix this, but 728 // in the meanwhile disallow such a fusion. 729 DenseMap<Operation *, AffineMap> fusedProducerIndexingMap; 730 for (LinalgOp op : reverse(ops)) { 731 for (auto operandIndex : 732 llvm::seq<unsigned>(0, op.getNumInputsAndOutputBuffers())) { 733 Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> 734 fusableDependence = 735 findFusableProducer(op, operandIndex, dependenceGraph); 736 if (!fusableDependence) 737 continue; 738 LinalgOp producerOp = 739 cast<LinalgOp>(fusableDependence->dependentOpView.op); 740 // Do not fuse dependences that are to operations not in the same basic 741 // block. This avoid moving fused operations across loops that might 742 // themselves carry dependency making the fusion illegal. 743 if (producerOp.getOperation()->getBlock() != 744 op.getOperation()->getBlock()) { 745 op.emitRemark("unhandled fusion of ops in different basic blocks"); 746 return FusableOpDependencesTy{}; 747 } 748 // Make sure that the indexing map of the view used for fusion in the 749 // producer is a projected permutation. 750 unsigned producerIdx = fusableDependence->dependentOpView.operandIndex; 751 AffineMap producerMap = producerOp.getIndexingMap(producerIdx); 752 if (!producerMap.isProjectedPermutation()) { 753 op.emitRemark( 754 "unhandled non permutation indexing map for fused view in " 755 "producer for operand at index ") 756 << operandIndex; 757 return FusableOpDependencesTy{}; 758 } 759 760 unsigned consumerIdx = fusableDependence->indexingOpView.operandIndex; 761 AffineMap consumerMap = op.getIndexingMap(consumerIdx); 762 if (!consumerMap.isProjectedPermutation()) { 763 op.emitRemark( 764 "unhandled case where indexing map for fused view in the consumer " 765 "is " 766 "not a projected permuration while fusing at index ") 767 << operandIndex; 768 return FusableOpDependencesTy{}; 769 } 770 771 // Check if the producer is already a fusion candidate. Cannot fuse this 772 // dependence if it has a different indexing map when used in the 773 // consumer. 774 if (fusedProducerIndexingMap.count(producerOp.getOperation()) && 775 fusedProducerIndexingMap[producerOp.getOperation()] != consumerMap) { 776 op.emitRemark( 777 "unhandled fusion to the same producer but with different " 778 "indexing maps"); 779 return FusableOpDependencesTy{}; 780 } 781 fusedProducerIndexingMap[producerOp.getOperation()] = consumerMap; 782 783 fusableDependences[producerOp.getOperation()].push_back( 784 *fusableDependence); 785 } 786 } 787 return fusableDependences; 788 } 789 790 static bool isZero(Value v) { 791 if (auto cst = v.getDefiningOp<ConstantIndexOp>()) 792 return cst.getValue() == 0; 793 return false; 794 } 795 796 /// Tile the fused loops in the root operation, by setting the tile sizes for 797 /// all other loops to zero (those will be tiled later). 798 static Optional<TiledLinalgOp> tileRootOperation( 799 OpBuilder &builder, LinalgOp op, ArrayRef<Value> tileSizeVector, 800 const LinalgTilingOptions &options, const std::set<unsigned> &fusedLoops) { 801 SmallVector<Value, 4> tileSizes(tileSizeVector.begin(), tileSizeVector.end()); 802 auto zero = std_constant_index(0); 803 for (unsigned i = 0, e = tileSizes.size(); i != e; ++i) 804 if (!fusedLoops.count(i)) 805 tileSizes[i] = zero; 806 LinalgTilingOptions tileFusedLoopsOptions = options; 807 tileFusedLoopsOptions.setTileSizes(tileSizes); 808 return tileLinalgOp(builder, op, tileFusedLoopsOptions); 809 } 810 811 /// Fuse the operations in `fusionCandidates` with `tiledOp`. Latter is expected 812 /// to be a tiled operation such that it is valid to fuse all operations in 813 /// `fusionCandidates`, i.e. move the operation within the inter-tile loops of 814 /// `tiledOp`. 815 static SmallVector<LinalgOp, 1> 816 fuseOperations(OpBuilder &builder, LinalgOp tiledOp, 817 ArrayRef<LinalgOp> fusionCandidates, 818 const FusableOpDependencesTy &fusableDependences, 819 const std::set<unsigned> &fusedLoops) { 820 OpBuilder::InsertionGuard guard(builder); 821 builder.setInsertionPoint(tiledOp); 822 DenseMap<unsigned, Range> fusedLoopsAndRanges; 823 for (unsigned loop : fusedLoops) { 824 ShapeDimension shapeDim = getShapeDefiningLoopRange(tiledOp, loop); 825 fusedLoopsAndRanges[loop] = getRangeFromOperandShape( 826 builder, tiledOp.getLoc(), shapeDim.shape, shapeDim.dimension); 827 } 828 SmallVector<LinalgOp, 1> fusedOps(fusionCandidates.size()); 829 for (auto candidate : enumerate(llvm::reverse(fusionCandidates))) { 830 LinalgOp fusedOp = fuse(builder, candidate.value(), fusedLoopsAndRanges); 831 fusedOps[fusionCandidates.size() - candidate.index() - 1] = fusedOp; 832 builder.setInsertionPoint(fusedOp); 833 } 834 return fusedOps; 835 } 836 837 template <typename LoopType> 838 static Optional<TiledAndFusedLinalgOps> 839 tileAndFuseLinalgOpsImpl(OpBuilder &builder, ArrayRef<LinalgOp> ops, 840 const LinalgDependenceGraph &dependenceGraph, 841 const LinalgTilingOptions &tilingOptions) { 842 if (ops.empty()) 843 return llvm::None; 844 LinalgOp rootOp = ops.back(); 845 for (auto op : enumerate(ops)) { 846 // TODO: Nothing in the fusion of sequence of ops is specific to 847 // buffers. This check can be removed after it is tested on tensors. 848 LinalgOp linalgOp = op.value(); 849 if (!linalgOp.hasBufferSemantics()) { 850 linalgOp.emitError("tile and fuse only tested for buffer operation"); 851 return llvm::None; 852 } 853 } 854 // TODO: Support interchange with tile + fuse. This might actually help do 855 // better fusion. 856 if (!tilingOptions.interchangeVector.empty()) { 857 rootOp.emitError("unable to handle tile and fuse with interchange"); 858 return llvm::None; 859 } 860 861 OpBuilder::InsertionGuard guard(builder); 862 builder.setInsertionPoint(rootOp); 863 ScopedContext scope(builder, rootOp.getLoc()); 864 865 // Find all the producers. 866 FusableOpDependencesTy fusableDependences = 867 findAllFusableDependences(ops, dependenceGraph); 868 if (fusableDependences.empty()) 869 return llvm::None; 870 871 TiledAndFusedLinalgOps ret; 872 // Find the loops that can be tiled and fused. 873 ret.fusedLoopDims = collectFusableLoops(ops, fusableDependences); 874 875 // If there are no fusable dependences or there are no tile+fusable loops, 876 // just return. 877 if (ret.fusedLoopDims.empty()) { 878 return llvm::None; 879 } 880 881 // Tile the fused loops in the last operation in the list. 882 SmallVector<Value, 4> tileSizeVector = 883 tilingOptions.tileSizeComputationFunction(builder, rootOp); 884 Optional<TiledLinalgOp> tiledRootOp = tileRootOperation( 885 builder, rootOp, tileSizeVector, tilingOptions, ret.fusedLoopDims); 886 if (!tiledRootOp) { 887 rootOp.emitError("failed to tile the fused loops"); 888 return llvm::None; 889 } 890 ret.op = tiledRootOp->op; 891 ret.fusedLoops.assign(tiledRootOp->loops.begin(), tiledRootOp->loops.end()); 892 893 // Fuse the other operations into the fused inter-tile loops produced above. 894 ret.fusedProducers = fuseOperations(builder, ret.op, ops.drop_back(), 895 fusableDependences, ret.fusedLoopDims); 896 return ret; 897 } 898 899 Optional<TiledAndFusedLinalgOps> 900 mlir::linalg::tileAndFuseLinalgOps(OpBuilder &builder, ArrayRef<LinalgOp> ops, 901 const LinalgDependenceGraph &dependenceGraph, 902 const LinalgTilingOptions &tilingOptions) { 903 switch (tilingOptions.loopType) { 904 case LinalgTilingLoopType::Loops: 905 return tileAndFuseLinalgOpsImpl<scf::ForOp>(builder, ops, dependenceGraph, 906 tilingOptions); 907 case LinalgTilingLoopType::ParallelLoops: 908 return tileAndFuseLinalgOpsImpl<scf::ParallelOp>( 909 builder, ops, dependenceGraph, tilingOptions); 910 default:; 911 } 912 return llvm::None; 913 } 914