xref: /llvm-project/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp (revision e9482ed1942a0b020dbb49df62259fc7b77a9060)
1 //===- Fusion.cpp - Implementation of linalg Fusion -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Fusion pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Analysis/Dominance.h"
14 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
15 #include "mlir/Dialect/Linalg/EDSC/Intrinsics.h"
16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
17 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
18 #include "mlir/Dialect/Linalg/Passes.h"
19 #include "mlir/Dialect/Linalg/Utils/Utils.h"
20 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
21 #include "mlir/IR/AffineExpr.h"
22 #include "mlir/IR/AffineMap.h"
23 #include "mlir/IR/OpImplementation.h"
24 #include "mlir/IR/PatternMatch.h"
25 #include "mlir/Pass/Pass.h"
26 #include "mlir/Support/LLVM.h"
27 #include "mlir/Support/STLExtras.h"
28 #include "mlir/Transforms/FoldUtils.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 
33 #define DEBUG_TYPE "linalg-fusion"
34 
35 using namespace mlir;
36 using namespace mlir::edsc;
37 using namespace mlir::edsc::intrinsics;
38 using namespace mlir::linalg;
39 
40 using folded_std_constant_index = folded::ValueBuilder<ConstantIndexOp>;
41 
42 using llvm::dbgs;
43 
44 /// Implements a simple high-level fusion pass of linalg library operations.
45 ///
46 /// In each block, linalg ops are processed in reverse textual order.
47 /// Given a linalg op `O`, fusion occurs by:
48 ///   1. inspecting the linalg ops that write into the views read by `O`. This
49 ///      uses the SSA value of the views and a simple subview/slice analysis to
50 ///      determine producer-consumer dependences;
51 ///   2. greedily fuse the linalg ops that produce subview
52 ///   3. inspect the fused ops and determine whether they have other remaining
53 ///      LinalgOp uses. If not, then erase the original producing linalg op.
54 ///
55 /// More advanced use cases, analyses as well as profitability heuristics are
56 /// left for future work.
57 
58 // Return a cloned version of `op` that operates on `loopRanges`, assumed to be
59 // a subset of the original loop ranges of `op`.
60 // This is achieved by applying the `loopToOperandRangesMaps` permutation maps
61 // to the `loopRanges` in order to obtain view ranges.
62 static LinalgOp cloneWithLoopRanges(OpBuilder &b, Location loc, LinalgOp op,
63                                     ArrayRef<SubViewOp::Range> loopRanges) {
64   assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
65   auto maps = op.indexing_maps();
66   SmallVector<Value, 8> clonedViews;
67   clonedViews.reserve(op.getNumInputsAndOutputs());
68   // Iterate over the inputs and outputs in order.
69   // Extract the subranges from the linearized ranges.
70   SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers());
71   for (auto en : llvm::enumerate(ios)) {
72     unsigned idx = en.index();
73     auto map = maps[idx].cast<AffineMapAttr>().getValue();
74     LLVM_DEBUG(dbgs() << "map: " << map << "\n");
75     Value view = en.value();
76     SmallVector<SubViewOp::Range, 4> viewRanges(map.getNumResults());
77     for (auto en2 : llvm::enumerate(map.getResults())) {
78       unsigned d = en2.index();
79       // loopToOperandRangesMaps are permutations-only.
80       unsigned loopPos = en2.value().cast<AffineDimExpr>().getPosition();
81       viewRanges[d] = loopRanges[loopPos];
82       LLVM_DEBUG(dbgs() << "\ni,j: " << en.index() << ", " << en2.index()
83                         << "\t"
84                         << "loopPos: " << loopPos << "\t" << viewRanges[d]);
85     }
86     // Construct a new subview for the tile.
87     unsigned rank = viewRanges.size();
88     SmallVector<Value, 4> offsets, sizes, strides;
89     offsets.reserve(rank);
90     sizes.reserve(rank);
91     strides.reserve(rank);
92     for (auto r : viewRanges) {
93       offsets.push_back(r.offset);
94       sizes.push_back(r.size);
95       strides.push_back(r.stride);
96     }
97     clonedViews.push_back(
98         b.create<SubViewOp>(loc, view, offsets, sizes, strides));
99   }
100   auto operands = getAssumedNonViewOperands(op);
101   clonedViews.append(operands.begin(), operands.end());
102   return op.clone(b, loc, clonedViews);
103 }
104 
105 struct ViewDimension {
106   Value view;
107   unsigned dimension;
108 };
109 
110 // Given an `op`, returns the first (`view`, `dimension`) pair that identifies
111 // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps
112 // guarantees at least one such dimension is found. If multiple candidates exist
113 // they must agree by construction (i.e. have the same size) and we just return
114 // the first one.
115 static ViewDimension getViewDefiningLoopRange(LinalgOp op, unsigned loopDepth) {
116   assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
117   auto maps = op.indexing_maps();
118   // Iterate over the inputs and outputs in order.
119   // Extract the subranges from the linearized ranges.
120   SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers());
121   for (auto en : llvm::enumerate(ios)) {
122     unsigned idx = en.index();
123     auto map = maps[idx].cast<AffineMapAttr>().getValue();
124     LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange I/O idx: " << idx << "\n");
125     LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange map: " << map << "\n");
126     Value view = en.value();
127     SmallVector<Value, 8> viewRanges(map.getNumResults(), nullptr);
128     for (auto en2 : llvm::enumerate(map.getResults())) {
129       if (loopDepth == en2.value().cast<AffineDimExpr>().getPosition()) {
130         LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange loopDepth: " << loopDepth
131                           << "\n");
132         LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange view: " << view << "\n");
133         return ViewDimension{view, static_cast<unsigned>(en2.index())};
134       }
135     }
136   }
137   llvm_unreachable("Expect to be able to extract a view defining loop range");
138 }
139 
140 static LinalgOp fuse(Value producedView, LinalgOp producer, LinalgOp consumer,
141                      unsigned consumerIdx, unsigned producerIdx,
142                      OperationFolder *folder) {
143   assert(producer.hasBufferSemantics() &&
144          "expected linalg op with buffer semantics");
145   assert(consumer.hasBufferSemantics() &&
146          "expected linalg op with buffer semantics");
147 
148   if (auto convOp = dyn_cast<linalg::ConvOp>(producer.getOperation())) {
149     // TODO(ntv): add a level of indirection to linalg.generic.
150     if (convOp.padding())
151       llvm_unreachable("Unexpected conv with padding");
152   }
153   if (auto convOp = dyn_cast<linalg::ConvOp>(consumer.getOperation())) {
154     // TODO(ntv): add a level of indirection to linalg.generic.
155     if (convOp.padding())
156       llvm_unreachable("Unexpected conv with padding");
157   }
158 
159   auto subView = dyn_cast_or_null<SubViewOp>(
160       consumer.getInput(consumerIdx).getDefiningOp());
161   auto slice =
162       dyn_cast_or_null<SliceOp>(consumer.getInput(consumerIdx).getDefiningOp());
163   assert(subView || slice);
164   (void)subView;
165   (void)slice;
166 
167   // loopToOperandRangesMaps are permutations-only by construction:
168   //   we can always identify a data dimension with a (at least one) loop
169   //   dimension.
170   AffineMap producerMap =
171       producer.indexing_maps()[producer.getNumInputs() + producerIdx]
172           .cast<AffineMapAttr>()
173           .getValue();
174   LLVM_DEBUG(dbgs() << "Producer Idx: " << producerIdx
175                     << ", producer map: " << producerMap << "\n");
176 
177   unsigned nPar = producer.getNumParallelLoops();
178   unsigned nRed = producer.getNumReductionLoops();
179   unsigned nWin = producer.getNumWindowLoops();
180   SmallVector<SubViewOp::Range, 8> loopRanges(nPar + nRed + nWin);
181 
182   // Iterate over dimensions identified by the producer map for `producerIdx`.
183   // This defines a subset of the loop ranges that we need to complete later.
184   for (auto en : llvm::enumerate(producerMap.getResults())) {
185     unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition();
186     loopRanges[posInProducerLoop] = subView.getRanges()[en.index()];
187   }
188 
189   OpBuilder b(consumer.getOperation());
190   auto loc = consumer.getLoc();
191   // Iterate over all dimensions. For the dimensions not identified by the
192   // producer map for `producerIdx`, we need to explicitly compute the view that
193   // defines the loop ranges using the `producer`.
194   for (unsigned i = 0, nLoops = loopRanges.size(); i < nLoops; ++i) {
195     if (loopRanges[i].offset)
196       LLVM_DEBUG(llvm::dbgs()
197                  << "existing LoopRange: " << loopRanges[i] << "\n");
198     else {
199       auto viewDim = getViewDefiningLoopRange(producer, i);
200       loopRanges[i] = SubViewOp::Range{folded_std_constant_index(folder, 0),
201                                        std_dim(viewDim.view, viewDim.dimension),
202                                        folded_std_constant_index(folder, 1)};
203       LLVM_DEBUG(llvm::dbgs() << "new LoopRange: " << loopRanges[i] << "\n");
204     }
205   }
206 
207   return cloneWithLoopRanges(b, loc, producer, loopRanges);
208 }
209 
210 // Encode structural fusion safety preconditions.
211 // Some of these will be lifted in the future with better analysis.
212 static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView,
213                                           LinalgOp consumer) {
214   assert(producer.hasBufferSemantics() &&
215          "expected linalg op with buffer semantics");
216   assert(consumer.hasBufferSemantics() &&
217          "expected linalg op with buffer semantics");
218   if (producer.getNumOutputs() != 1) {
219     LLVM_DEBUG(dbgs() << "\nNot structurally fusable (multi-output)");
220     return false;
221   }
222   // Only fuse when the producer block dominates.
223   DominanceInfo dom(producer.getOperation());
224   if (!dom.dominates(producer.getOperation()->getBlock(),
225                      consumer.getOperation()->getBlock())) {
226     LLVM_DEBUG(
227         dbgs()
228         << "\nNot structurally fusable (producer block does not dominate)");
229     return false;
230   }
231   return true;
232 }
233 
234 bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph,
235                                              LinalgOp consumer,
236                                              Value consumedView,
237                                              LinalgOp producer) {
238   assert(producer.hasBufferSemantics() &&
239          "expected linalg op with buffer semantics");
240   assert(consumer.hasBufferSemantics() &&
241          "expected linalg op with buffer semantics");
242   // Make some simple structural checks that alleviate the need for more
243   // complex analyses.
244   if (!isStructurallyFusableProducer(producer, consumedView, consumer)) {
245     LLVM_DEBUG(dbgs() << "\n***Not static last write due to structure:\t"
246                       << *producer.getOperation());
247     return false;
248   }
249   // Check for any interleaved write to consumedView.
250   if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) {
251     LLVM_DEBUG(dbgs() << "\n***Not fusable due to interleaved write:\t"
252                       << *producer.getOperation());
253     return false;
254   }
255   return true;
256 }
257 
258 bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph,
259                                  LinalgOp consumer, Value consumedView,
260                                  LinalgOp producer) {
261   assert(producer.hasBufferSemantics() &&
262          "expected linalg op with buffer semantics");
263   assert(consumer.hasBufferSemantics() &&
264          "expected linalg op with buffer semantics");
265   if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer))
266     return false;
267   // Check for any fusion-preventing dependence to any view read/written that
268   // would violate dependences.
269   if (!graph.findCoveringDependences(producer, consumer).empty()) {
270     LLVM_DEBUG(dbgs() << "\n***Not fusable due to an interleaved dependence:\t"
271                       << *producer.getOperation());
272     return false;
273   }
274   return true;
275 }
276 
277 // Only consider RAW atm.
278 Optional<FusionInfo> mlir::linalg::fuseProducerOf(
279     OpBuilder &b, LinalgOp consumer, unsigned consumerIdx,
280     const LinalgDependenceGraph &graph, OperationFolder *folder) {
281   assert(consumer.hasBufferSemantics() &&
282          "expected linalg op with buffer semantics");
283   LLVM_DEBUG(dbgs() << "\nStart examining consumer: "
284                     << *consumer.getOperation());
285   for (auto dependence : graph.getDependencesInto(
286            consumer, LinalgDependenceGraph::DependenceType::RAW)) {
287     LLVM_DEBUG(dbgs() << "\n***Consider producer:\t"
288                       << *dependence.dependentOpView.op << "\n");
289     auto producer = cast<LinalgOp>(dependence.dependentOpView.op);
290     if (isa<linalg::IndexedGenericOp>(dependence.dependentOpView.op)) {
291       LLVM_DEBUG(dbgs() << "Not fusing indexed_generic producer");
292       continue;
293     }
294 
295     // Check that the dependence is indeed on the input `consumerIdx` view.
296     auto consumedView = dependence.indexingView;
297     if (consumer.getInput(consumerIdx) != consumedView)
298       continue;
299 
300     // Consumer consumes this view, `isStructurallyFusableProducer` also checks
301     // whether it is a strict subview of the producer view.
302     auto producedView = dependence.dependentOpView.view;
303     auto producerIdx = producer.getIndexOfOutputBuffer(producedView).getValue();
304     // `consumerIdx` and `producerIdx` exist by construction.
305     LLVM_DEBUG(dbgs() << "\nRAW producer: " << *producer.getOperation()
306                       << " view: " << producedView
307                       << " output index: " << producerIdx);
308 
309     // Must be a subview or a slice to guarantee there are loops we can fuse
310     // into.
311     auto subView = dyn_cast_or_null<SubViewOp>(consumedView.getDefiningOp());
312     auto slice = dyn_cast_or_null<SliceOp>(consumedView.getDefiningOp());
313     if (!subView && !slice) {
314       LLVM_DEBUG(dbgs() << "\nNot fusable (not a subview or slice)");
315       continue;
316     }
317 
318     // Simple fusability checks.
319     if (!isFusableInto(graph, consumer, consumedView, producer))
320       continue;
321 
322     // Fuse `producer` just before `consumer`.
323     OpBuilder::InsertionGuard g(b);
324     b.setInsertionPoint(consumer.getOperation());
325     ScopedContext scope(b, consumer.getLoc());
326     LLVM_DEBUG(dbgs() << "Fuse into consumer: " << *consumer << "\n");
327     auto fusedProducer = fuse(producedView, producer, consumer, consumerIdx,
328                               producerIdx, folder);
329 
330     return FusionInfo{producer, fusedProducer};
331   }
332   return llvm::None;
333 }
334 
335 /// Checks if two Generic ops are fusible, when one is a producer and another is
336 /// a consumer (with the result of the producer being the `consumerIdx` operand
337 /// of the consumer).
338 static bool areTensorOpsFusible(LinalgOp producer, LinalgOp consumer,
339                                 unsigned consumerIdx) {
340   // Verify that the producer and consumer are ops on tensors.
341   if (!producer.hasTensorSemantics() || !consumer.hasTensorSemantics())
342     return false;
343 
344   auto producerOp = dyn_cast<linalg::GenericOp>(producer.getOperation());
345   auto consumerOp = dyn_cast<linalg::GenericOp>(consumer.getOperation());
346   // Verify that
347   // - the producer and consumers are generic ops,
348   // - only handle cases where the producer has a single return value,
349   // - the producer return value should be the same as argument at `consumerIdx`
350   //   of the consumer,
351   // - the producer has all "parallel" iterator type.
352   // - only handle ops that use regions for specifying the scalar operations.
353   if (!producerOp || !consumerOp || producerOp.getNumOutputs() != 1 ||
354       producerOp.getResult(0) != consumerOp.getOperand(consumerIdx) ||
355       producerOp.getNumParallelLoops() != producerOp.getNumLoops() ||
356       producerOp.fun() || consumerOp.fun())
357     return false;
358 
359   // Get the consumer index map. The number of results of the consumer index map
360   // must match the number of loops of the producer.
361   AffineMap consumerIndexMap = consumerOp.getIndexingMap(consumerIdx);
362   if (consumerIndexMap.getNumResults() != producerOp.getNumLoops())
363     return false;
364 
365   // Finally the index_map for the result must be invertible. For now just
366   // verify it is a permutation.
367   AffineMap producerResultIndexMap = producerOp.getOutputIndexingMap(0);
368   return producerResultIndexMap.isPermutation();
369 }
370 
371 /// Computes the indexing maps for arguments of a producer generic op when the
372 /// result of the producer is fused with the consumer.
373 /// - consumerIndexMap is the indexing_map for the argument in the consumer op
374 ///   that is the result of the producer op.
375 /// - invProducerResultIndexMap is the inverse of the indexing_map for the
376 ///   result in the producer op.
377 /// - producerArgIndexMap is the indexing_map of the argument of the producer
378 ///   op.
379 /// The result is the indexing_map to use for the producer argument when the
380 /// producer and consumer ops are fused.
381 static AffineMap computeProducerArgMap(AffineMap consumerIndexMap,
382                                        AffineMap invProducerResultIndexMap,
383                                        AffineMap producerArgIndexMap) {
384   // t1 is map from producer result tensor index -> producer arg tensor index.
385   auto t1 = producerArgIndexMap.compose(invProducerResultIndexMap);
386   // The return is map from consumer loop -> producer arg tensor index,
387   // i.e. indexing_map for the producer argument in the fused operation.
388   return t1.compose(consumerIndexMap);
389 }
390 
391 Optional<LinalgOp> mlir::linalg::fuseTensorOps(OpBuilder &b, LinalgOp producer,
392                                                LinalgOp consumer,
393                                                unsigned consumerIdx,
394                                                OperationFolder *folder) {
395   if (!areTensorOpsFusible(producer, consumer, consumerIdx))
396     return {};
397 
398   MLIRContext *context = b.getContext();
399   auto producerOp = cast<linalg::GenericOp>(producer.getOperation());
400   auto consumerOp = cast<linalg::GenericOp>(consumer.getOperation());
401   AffineMap consumerIndexMap = consumerOp.getIndexingMap(consumerIdx);
402   AffineMap invProducerResultIndexMap =
403       inversePermutation(producerOp.getOutputIndexingMap(0));
404 
405   // Compute the fused op operandslist by replacing the operand corresponding to
406   // the result of the producer, with the operands of the producer.
407   unsigned fusedArgsIn =
408       producerOp.getNumInputs() + consumerOp.getNumInputs() - 1;
409   auto fusedArgsOut = consumerOp.getNumOutputs();
410   SmallVector<Value, 2> fusedOperandsList(consumerOp.getOperands());
411   fusedOperandsList.erase(std::next(fusedOperandsList.begin(), consumerIdx));
412   fusedOperandsList.reserve(fusedArgsIn + fusedArgsOut);
413   fusedOperandsList.insert(
414       std::next(fusedOperandsList.begin(), consumerIdx),
415       producerOp.operand_begin(),
416       std::next(producerOp.operand_begin(), producerOp.getNumInputs()));
417 
418   // Compute the fused indexing_maps of the operands/results of the fused op.
419   SmallVector<Attribute, 2> fusedIndexingMapAttrs;
420   fusedIndexingMapAttrs.reserve(fusedArgsIn + fusedArgsOut);
421   fusedIndexingMapAttrs.append(consumerOp.indexing_maps().begin(),
422                                consumerOp.indexing_maps().end());
423   fusedIndexingMapAttrs.erase(
424       std::next(fusedIndexingMapAttrs.begin(), consumerIdx));
425   auto *insertPos = std::next(fusedIndexingMapAttrs.begin(), consumerIdx);
426   for (auto producerArgIndexAttr :
427        llvm::enumerate(producerOp.indexing_maps())) {
428     if (producerArgIndexAttr.index() == producerOp.getNumInputs())
429       break;
430     auto composedIndexMap = computeProducerArgMap(
431         consumerIndexMap, invProducerResultIndexMap,
432         producerArgIndexAttr.value().cast<AffineMapAttr>().getValue());
433     insertPos = std::next(fusedIndexingMapAttrs.insert(
434         insertPos, AffineMapAttr::get(composedIndexMap)));
435   }
436 
437   // Generate the fused op.
438   auto fusedLinalgOp = b.create<GenericOp>(
439       UnknownLoc::get(context), consumerOp.getResultTypes(), fusedOperandsList,
440       b.getI64IntegerAttr(fusedArgsIn), b.getI64IntegerAttr(fusedArgsOut),
441       b.getArrayAttr(fusedIndexingMapAttrs), consumerOp.iterator_types(),
442       /*doc=*/nullptr,
443       /*fun=*/nullptr,
444       /*library_call=*/nullptr);
445 
446   // Build the region of the fused op.
447   auto &fusedOpRegion = fusedLinalgOp.region();
448   Block &producerOpBlock = producerOp.region().front();
449   Block &consumerOpBlock = consumerOp.region().front();
450   Block *fusedBlock = new Block();
451   fusedOpRegion.push_back(fusedBlock);
452   BlockAndValueMapping mapper;
453   // Map the arguments for the unmodified args from the consumer.
454   for (auto consumerOpArg : llvm::enumerate(consumerOpBlock.getArguments())) {
455     if (consumerOpArg.index() == consumerIdx) {
456       // Map the arguments for the args from the producer.
457       for (auto producerOpArg : producerOpBlock.getArguments())
458         mapper.map(producerOpArg,
459                    fusedBlock->addArgument(producerOpArg.getType()));
460       continue;
461     }
462     mapper.map(consumerOpArg.value(),
463                fusedBlock->addArgument(consumerOpArg.value().getType()));
464   }
465 
466   // Add operations from producer (except the yield operation) to the fused op.
467   for (auto &op : producerOpBlock.getOperations()) {
468     if (auto yieldOp = dyn_cast<YieldOp>(op)) {
469       // Lookup the value the yield operation is mapped to.
470       Value yieldVal = yieldOp.getOperand(0);
471       auto clonedVal = mapper.lookup(yieldVal);
472       mapper.map(consumerOpBlock.getArgument(consumerIdx), clonedVal);
473       continue;
474     }
475     fusedBlock->push_back(op.clone(mapper));
476   }
477   for (auto &op : consumerOpBlock.getOperations())
478     fusedBlock->push_back(op.clone(mapper));
479 
480   return cast<LinalgOp>(fusedLinalgOp.getOperation());
481 }
482 
483 static void fuseLinalgOpsGreedily(FuncOp f) {
484   LLVM_DEBUG(f.print(dbgs() << "\nBefore linalg-fusion: \n"));
485 
486   OpBuilder b(f);
487   OperationFolder folder(f.getContext());
488   DenseSet<Operation *> eraseSet;
489 
490   // Save original Linalg ops, we only want to make a pass over those.
491   SmallVector<Operation *, 8> linalgOps;
492   f.walk([&](LinalgOp op) {
493     if (op.hasBufferSemantics())
494       linalgOps.push_back(op);
495   });
496 
497   // TODO(pifon, ntv): LinalgDependenceGraph should be able to update itself.
498   // The current naive and expensive reconstruction of the graph should be
499   // removed.
500   for (auto *op : llvm::reverse(linalgOps)) {
501     for (unsigned id = 0, e = LinalgOp(op).getNumInputs(); id < e; ++id) {
502       linalg::Aliases aliases;
503       linalg::LinalgDependenceGraph graph(aliases, linalgOps);
504       if (auto info = fuseProducerOf(b, op, id, graph, &folder)) {
505         auto *originalOp = info->originalProducer.getOperation();
506         eraseSet.insert(originalOp);
507         auto *originalOpInLinalgOpsVector =
508             std::find(linalgOps.begin(), linalgOps.end(), originalOp);
509         *originalOpInLinalgOpsVector = info->fusedProducer.getOperation();
510       }
511     }
512   }
513   // The `fuseProducerOf` function performs structural checks and in particular
514   // that no covering read or write exist between the consumer and the producer.
515   // As a consequence, the only fusions that may occur preserve subsequent
516   // dependences and are guaranteed by construction to produce the whole view.
517   // We may thus erase the producer once it is fused.
518   for (auto *e : eraseSet)
519     e->erase();
520   LLVM_DEBUG(f.print(dbgs() << "\nAfter linalg-fusion: \n"));
521 }
522 
523 namespace {
524 
525 /// Patterns to fuse a generic op, with the producer of its operands.
526 struct FuseGenericTensorOps : public OpRewritePattern<GenericOp> {
527   using OpRewritePattern<GenericOp>::OpRewritePattern;
528 
529   LogicalResult matchAndRewrite(GenericOp op,
530                                 PatternRewriter &rewriter) const override {
531     if (!op.hasTensorSemantics())
532       return failure();
533 
534     // Find the first operand that is defined by another generic op on tensors.
535     for (auto operand : llvm::enumerate(op.getOperation()->getOperands())) {
536       auto definingOp =
537           dyn_cast_or_null<GenericOp>(operand.value().getDefiningOp());
538       if (!definingOp || !definingOp.hasTensorSemantics())
539         continue;
540       auto fusedOp =
541           fuseTensorOps(rewriter, cast<LinalgOp>(definingOp.getOperation()),
542                         cast<LinalgOp>(op.getOperation()), operand.index());
543       if (!fusedOp)
544         continue;
545       rewriter.replaceOp(op, fusedOp.getValue().getOperation()->getResults());
546       return success();
547     }
548     return failure();
549   }
550 };
551 
552 /// Pass that fuses generic ops on tensors. Used only for testing.
553 struct FusionOfTensorOpsPass : public OperationPass<FusionOfTensorOpsPass> {
554   void runOnOperation() override {
555     OwningRewritePatternList patterns;
556     Operation *op = getOperation();
557     patterns.insert<FuseGenericTensorOps>(op->getContext());
558     applyPatternsGreedily(op->getRegions(), patterns);
559   };
560 };
561 
562 struct LinalgFusionPass : public FunctionPass<LinalgFusionPass> {
563   void runOnFunction() override { fuseLinalgOpsGreedily(getFunction()); }
564 };
565 } // namespace
566 
567 std::unique_ptr<OpPassBase<FuncOp>> mlir::createLinalgFusionPass() {
568   return std::make_unique<LinalgFusionPass>();
569 }
570 
571 static PassRegistration<LinalgFusionPass>
572     pass("linalg-fusion", "Fuse operations in the linalg dialect");
573 
574 static PassRegistration<FusionOfTensorOpsPass>
575     tensorOpsPass("linalg-fusion-for-tensor-ops",
576                   "Fuse operations on RankedTensorType in linalg dialect");
577