1 //===- Fusion.cpp - Implementation of linalg Fusion -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Fusion pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 15 #include "mlir/Dialect/Linalg/EDSC/FoldedIntrinsics.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 17 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 18 #include "mlir/Dialect/Linalg/Passes.h" 19 #include "mlir/Dialect/Linalg/Utils/Utils.h" 20 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" 21 #include "mlir/IR/AffineExpr.h" 22 #include "mlir/IR/AffineMap.h" 23 #include "mlir/IR/Dominance.h" 24 #include "mlir/IR/PatternMatch.h" 25 #include "mlir/Support/LLVM.h" 26 #include "mlir/Transforms/FoldUtils.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/Debug.h" 30 31 #define DEBUG_TYPE "linalg-fusion" 32 33 using namespace mlir; 34 using namespace mlir::edsc; 35 using namespace mlir::edsc::intrinsics; 36 using namespace mlir::linalg; 37 38 using folded_std_constant_index = FoldedValueBuilder<ConstantIndexOp>; 39 40 using llvm::dbgs; 41 42 /// Implements a simple high-level fusion pass of linalg library operations. 43 /// 44 /// In each block, linalg ops are processed in reverse textual order. 45 /// Given a linalg op `O`, fusion occurs by: 46 /// 1. inspecting the linalg ops that write into the views read by `O`. This 47 /// uses the SSA value of the views and a simple subview/slice analysis to 48 /// determine producer-consumer dependences; 49 /// 2. greedily fuse the linalg ops that produce subview 50 /// 3. inspect the fused ops and determine whether they have other remaining 51 /// LinalgOp uses. If not, then erase the original producing linalg op. 52 /// 53 /// More advanced use cases, analyses as well as profitability heuristics are 54 /// left for future work. 55 56 // Return a cloned version of `op` that operates on `loopRanges`, assumed to be 57 // a subset of the original loop ranges of `op`. 58 // This is achieved by applying the `loopToOperandRangesMaps` permutation maps 59 // to the `loopRanges` in order to obtain view ranges. 60 static LinalgOp cloneWithLoopRanges(OpBuilder &b, Location loc, LinalgOp op, 61 ArrayRef<SubViewOp::Range> loopRanges) { 62 assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); 63 auto maps = op.indexing_maps(); 64 SmallVector<Value, 8> clonedViews; 65 clonedViews.reserve(op.getNumInputsAndOutputs()); 66 // Iterate over the inputs and outputs in order. 67 // Extract the subranges from the linearized ranges. 68 SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers()); 69 for (auto en : llvm::enumerate(ios)) { 70 unsigned idx = en.index(); 71 auto map = maps[idx].cast<AffineMapAttr>().getValue(); 72 LLVM_DEBUG(dbgs() << "map: " << map << "\n"); 73 Value view = en.value(); 74 SmallVector<SubViewOp::Range, 4> viewRanges(map.getNumResults()); 75 for (auto en2 : llvm::enumerate(map.getResults())) { 76 unsigned d = en2.index(); 77 // loopToOperandRangesMaps are permutations-only. 78 unsigned loopPos = en2.value().cast<AffineDimExpr>().getPosition(); 79 viewRanges[d] = loopRanges[loopPos]; 80 LLVM_DEBUG(dbgs() << "\ni,j: " << en.index() << ", " << en2.index() 81 << "\t" 82 << "loopPos: " << loopPos << "\t" << viewRanges[d]); 83 } 84 // Construct a new subview for the tile. 85 unsigned rank = viewRanges.size(); 86 SmallVector<Value, 4> offsets, sizes, strides; 87 offsets.reserve(rank); 88 sizes.reserve(rank); 89 strides.reserve(rank); 90 for (auto r : viewRanges) { 91 offsets.push_back(r.offset); 92 sizes.push_back(r.size); 93 strides.push_back(r.stride); 94 } 95 clonedViews.push_back( 96 b.create<SubViewOp>(loc, view, offsets, sizes, strides)); 97 } 98 auto operands = getAssumedNonViewOperands(op); 99 clonedViews.append(operands.begin(), operands.end()); 100 101 Operation *clonedOp = op.clone(b, loc, clonedViews); 102 // When the producer is an IndexedGenercOp, we have to transform its block 103 // IV arguments according to the tiling of the consumer, i.e. offset them by 104 // the values computed in `loopRanges`. 105 if (auto indexedGenericOp = dyn_cast<IndexedGenericOp>(clonedOp)) { 106 auto &block = indexedGenericOp.region().front(); 107 108 OpBuilder::InsertionGuard g(b); 109 b.setInsertionPointToStart(&block); 110 for (unsigned i = 0, e = indexedGenericOp.getNumLoops(); i < e; ++i) { 111 Value oldIndex = block.getArgument(i); 112 AddIOp newIndex = b.create<AddIOp>(indexedGenericOp.getLoc(), oldIndex, 113 loopRanges[i].offset); 114 oldIndex.replaceAllUsesExcept(newIndex, 115 SmallPtrSet<Operation *, 1>{newIndex}); 116 } 117 } 118 return clonedOp; 119 } 120 121 struct ViewDimension { 122 Value view; 123 unsigned dimension; 124 }; 125 126 // Given an `op`, returns the first (`view`, `dimension`) pair that identifies 127 // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps 128 // guarantees at least one such dimension is found. If multiple candidates exist 129 // they must agree by construction (i.e. have the same size) and we just return 130 // the first one. 131 static ViewDimension getViewDefiningLoopRange(LinalgOp op, unsigned loopDepth) { 132 assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics"); 133 auto maps = op.indexing_maps(); 134 // Iterate over the inputs and outputs in order. 135 // Extract the subranges from the linearized ranges. 136 SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers()); 137 for (auto en : llvm::enumerate(ios)) { 138 unsigned idx = en.index(); 139 auto map = maps[idx].cast<AffineMapAttr>().getValue(); 140 LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange I/O idx: " << idx << "\n"); 141 LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange map: " << map << "\n"); 142 Value view = en.value(); 143 SmallVector<Value, 8> viewRanges(map.getNumResults(), nullptr); 144 for (auto en2 : llvm::enumerate(map.getResults())) { 145 if (loopDepth == en2.value().cast<AffineDimExpr>().getPosition()) { 146 LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange loopDepth: " << loopDepth 147 << "\n"); 148 LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange view: " << view << "\n"); 149 return ViewDimension{view, static_cast<unsigned>(en2.index())}; 150 } 151 } 152 } 153 llvm_unreachable("Expect to be able to extract a view defining loop range"); 154 } 155 156 static LinalgOp fuse(Value producedView, LinalgOp producer, LinalgOp consumer, 157 unsigned consumerIdx, unsigned producerIdx, 158 OperationFolder *folder) { 159 assert(producer.hasBufferSemantics() && 160 "expected linalg op with buffer semantics"); 161 assert(consumer.hasBufferSemantics() && 162 "expected linalg op with buffer semantics"); 163 164 auto subView = dyn_cast_or_null<SubViewOp>( 165 consumer.getBuffer(consumerIdx).getDefiningOp()); 166 auto slice = dyn_cast_or_null<SliceOp>( 167 consumer.getBuffer(consumerIdx).getDefiningOp()); 168 assert(subView || slice); 169 (void)subView; 170 (void)slice; 171 172 // loopToOperandRangesMaps are permutations-only by construction: 173 // we can always identify a data dimension with a (at least one) loop 174 // dimension. 175 AffineMap producerMap = 176 producer.indexing_maps()[producer.getNumInputs() + producerIdx] 177 .cast<AffineMapAttr>() 178 .getValue(); 179 LLVM_DEBUG(dbgs() << "Producer Idx: " << producerIdx 180 << ", producer map: " << producerMap << "\n"); 181 182 unsigned nPar = producer.getNumParallelLoops(); 183 unsigned nRed = producer.getNumReductionLoops(); 184 unsigned nWin = producer.getNumWindowLoops(); 185 SmallVector<SubViewOp::Range, 8> loopRanges(nPar + nRed + nWin); 186 187 OpBuilder b(consumer.getOperation()); 188 auto loc = consumer.getLoc(); 189 // Iterate over dimensions identified by the producer map for `producerIdx`. 190 // This defines a subset of the loop ranges that we need to complete later. 191 for (auto en : llvm::enumerate(producerMap.getResults())) { 192 unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition(); 193 loopRanges[posInProducerLoop] = 194 subView.getOrCreateRanges(b, loc)[en.index()]; 195 } 196 197 // Iterate over all dimensions. For the dimensions not identified by the 198 // producer map for `producerIdx`, we need to explicitly compute the view that 199 // defines the loop ranges using the `producer`. 200 for (unsigned i = 0, nLoops = loopRanges.size(); i < nLoops; ++i) { 201 if (loopRanges[i].offset) 202 LLVM_DEBUG(llvm::dbgs() 203 << "existing LoopRange: " << loopRanges[i] << "\n"); 204 else { 205 auto viewDim = getViewDefiningLoopRange(producer, i); 206 loopRanges[i] = SubViewOp::Range{folded_std_constant_index(folder, 0), 207 std_dim(viewDim.view, viewDim.dimension), 208 folded_std_constant_index(folder, 1)}; 209 LLVM_DEBUG(llvm::dbgs() << "new LoopRange: " << loopRanges[i] << "\n"); 210 } 211 } 212 213 return cloneWithLoopRanges(b, loc, producer, loopRanges); 214 } 215 216 // Encode structural fusion safety preconditions. 217 // Some of these will be lifted in the future with better analysis. 218 static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView, 219 LinalgOp consumer) { 220 assert(producer.hasBufferSemantics() && 221 "expected linalg op with buffer semantics"); 222 assert(consumer.hasBufferSemantics() && 223 "expected linalg op with buffer semantics"); 224 if (producer.getNumOutputs() != 1) { 225 LLVM_DEBUG(dbgs() << "\nNot structurally fusable (multi-output)"); 226 return false; 227 } 228 // Only fuse when the producer block dominates. 229 DominanceInfo dom(producer.getOperation()); 230 if (!dom.dominates(producer.getOperation()->getBlock(), 231 consumer.getOperation()->getBlock())) { 232 LLVM_DEBUG( 233 dbgs() 234 << "\nNot structurally fusable (producer block does not dominate)"); 235 return false; 236 } 237 return true; 238 } 239 240 bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph, 241 LinalgOp consumer, 242 Value consumedView, 243 LinalgOp producer) { 244 assert(producer.hasBufferSemantics() && 245 "expected linalg op with buffer semantics"); 246 assert(consumer.hasBufferSemantics() && 247 "expected linalg op with buffer semantics"); 248 // Make some simple structural checks that alleviate the need for more 249 // complex analyses. 250 if (!isStructurallyFusableProducer(producer, consumedView, consumer)) { 251 LLVM_DEBUG(dbgs() << "\n***Not static last write due to structure:\t" 252 << *producer.getOperation()); 253 return false; 254 } 255 // Check for any interleaved write to consumedView. 256 if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) { 257 LLVM_DEBUG(dbgs() << "\n***Not fusable due to interleaved write:\t" 258 << *producer.getOperation()); 259 return false; 260 } 261 return true; 262 } 263 264 bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph, 265 LinalgOp consumer, Value consumedView, 266 LinalgOp producer) { 267 assert(producer.hasBufferSemantics() && 268 "expected linalg op with buffer semantics"); 269 assert(consumer.hasBufferSemantics() && 270 "expected linalg op with buffer semantics"); 271 if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer)) 272 return false; 273 // Check for any fusion-preventing dependence to any view read/written that 274 // would violate dependences. 275 if (!graph.findCoveringDependences(producer, consumer).empty()) { 276 LLVM_DEBUG(dbgs() << "\n***Not fusable due to an interleaved dependence:\t" 277 << *producer.getOperation()); 278 return false; 279 } 280 if (auto convOp = dyn_cast<linalg::ConvOp>(producer.getOperation())) { 281 // TODO(ntv): add a level of indirection to linalg.generic. 282 if (convOp.padding()) 283 return false; 284 } 285 if (auto convOp = dyn_cast<linalg::ConvOp>(consumer.getOperation())) { 286 // TODO(ntv): add a level of indirection to linalg.generic. 287 if (convOp.padding()) 288 return false; 289 } 290 return true; 291 } 292 293 static Optional<FusionInfo> 294 fuseProducerOfDep(OpBuilder &b, LinalgOp consumer, unsigned consumerIdx, 295 const LinalgDependenceGraph &graph, OperationFolder *folder, 296 LinalgDependenceGraph::DependenceType depType) { 297 assert(consumer.hasBufferSemantics() && 298 "expected linalg op with buffer semantics"); 299 LLVM_DEBUG(dbgs() << "\nStart examining consumer: " 300 << *consumer.getOperation()); 301 for (auto dependence : graph.getDependencesInto(consumer, depType)) { 302 LLVM_DEBUG(dbgs() << "\n***Consider producer:\t" 303 << *dependence.dependentOpView.op << "\n"); 304 auto producer = cast<LinalgOp>(dependence.dependentOpView.op); 305 306 // Check that the dependence is indeed on the input `consumerIdx` view. 307 auto consumedView = dependence.indexingView; 308 if (consumer.getBuffer(consumerIdx) != consumedView) 309 continue; 310 311 // Consumer consumes this view, `isStructurallyFusableProducer` also checks 312 // whether it is a strict subview of the producer view. 313 auto producedView = dependence.dependentOpView.view; 314 auto producerIdx = producer.getIndexOfOutputBuffer(producedView).getValue(); 315 // `consumerIdx` and `producerIdx` exist by construction. 316 LLVM_DEBUG(dbgs() << "\n" 317 << LinalgDependenceGraph::getDependenceTypeStr(depType) 318 << "producer: " << *producer.getOperation() << " view: " 319 << producedView << " output index: " << producerIdx); 320 321 // Must be a subview or a slice to guarantee there are loops we can fuse 322 // into. 323 auto subView = consumedView.getDefiningOp<SubViewOp>(); 324 auto slice = consumedView.getDefiningOp<SliceOp>(); 325 if (!subView && !slice) { 326 LLVM_DEBUG(dbgs() << "\nNot fusable (not a subview or slice)"); 327 continue; 328 } 329 330 // Simple fusability checks. 331 if (!isFusableInto(graph, consumer, consumedView, producer)) 332 continue; 333 334 // Fuse `producer` just before `consumer`. 335 OpBuilder::InsertionGuard g(b); 336 b.setInsertionPoint(consumer.getOperation()); 337 ScopedContext scope(b, consumer.getLoc()); 338 LLVM_DEBUG(dbgs() << "Fuse into consumer: " << *consumer << "\n"); 339 auto fusedProducer = fuse(producedView, producer, consumer, consumerIdx, 340 producerIdx, folder); 341 342 return FusionInfo{producer, fusedProducer}; 343 } 344 return llvm::None; 345 } 346 347 // Only consider RAW and WAW atm. 348 Optional<FusionInfo> mlir::linalg::fuseProducerOf( 349 OpBuilder &b, LinalgOp consumer, unsigned consumerIdx, 350 const LinalgDependenceGraph &graph, OperationFolder *folder) { 351 SmallVector<LinalgDependenceGraph::DependenceType, 4> deps = { 352 LinalgDependenceGraph::DependenceType::RAW, 353 LinalgDependenceGraph::DependenceType::WAW, 354 }; 355 for (auto dep : deps) { 356 if (auto res = 357 fuseProducerOfDep(b, consumer, consumerIdx, graph, folder, dep)) 358 return res; 359 } 360 return llvm::None; 361 } 362 363 static void fuseLinalgOpsGreedily(FuncOp f) { 364 LLVM_DEBUG(f.print(dbgs() << "\nBefore linalg-fusion: \n")); 365 366 OpBuilder b(f); 367 OperationFolder folder(f.getContext()); 368 DenseSet<Operation *> eraseSet; 369 370 // Save original Linalg ops, we only want to make a pass over those. 371 SmallVector<Operation *, 8> linalgOps; 372 f.walk([&](LinalgOp op) { 373 if (op.hasBufferSemantics()) 374 linalgOps.push_back(op); 375 }); 376 377 // TODO(pifon, ntv): LinalgDependenceGraph should be able to update itself. 378 // The current naive and expensive reconstruction of the graph should be 379 // removed. 380 for (auto *op : llvm::reverse(linalgOps)) { 381 for (unsigned id = 0, e = LinalgOp(op).getNumInputsAndOutputBuffers(); 382 id < e; ++id) { 383 linalg::Aliases aliases; 384 linalg::LinalgDependenceGraph graph(aliases, linalgOps); 385 if (auto info = fuseProducerOf(b, op, id, graph, &folder)) { 386 auto *originalOp = info->originalProducer.getOperation(); 387 eraseSet.insert(originalOp); 388 auto *originalOpInLinalgOpsVector = 389 std::find(linalgOps.begin(), linalgOps.end(), originalOp); 390 *originalOpInLinalgOpsVector = info->fusedProducer.getOperation(); 391 } 392 } 393 } 394 // The `fuseProducerOf` function performs structural checks and in particular 395 // that no covering read or write exist between the consumer and the producer. 396 // As a consequence, the only fusions that may occur preserve subsequent 397 // dependences and are guaranteed by construction to produce the whole view. 398 // We may thus erase the producer once it is fused. 399 for (auto *e : eraseSet) 400 e->erase(); 401 LLVM_DEBUG(f.print(dbgs() << "\nAfter linalg-fusion: \n")); 402 } 403 404 //====---------------------------------------------------------------------===// 405 // Fusion on Tensor operation. 406 //====---------------------------------------------------------------------===// 407 408 namespace { 409 410 /// Implementation of fusion of generic ops. 411 struct FuseGenericOpsOnTensors { 412 static bool isFusible(GenericOp producer, GenericOp consumer, 413 unsigned consumerIdx) { 414 // Verify that 415 // - the producer has all "parallel" iterator type. 416 if (producer.getNumParallelLoops() != producer.getNumLoops()) 417 return false; 418 419 // Get the consumer index map. The number of results of the consumer index 420 // map must match the number of loops of the producer. 421 AffineMap consumerIndexMap = consumer.getIndexingMap(consumerIdx); 422 if (consumerIndexMap.getNumResults() != producer.getNumLoops()) 423 return false; 424 425 // Finally the index_map for the result must be invertible. For now just 426 // verify it is a permutation. 427 AffineMap producerResultIndexMap = producer.getOutputIndexingMap(0); 428 return producerResultIndexMap.isPermutation(); 429 } 430 431 static Operation *fuse(GenericOp producer, GenericOp consumer, 432 unsigned consumerIdx, PatternRewriter &rewriter, 433 OperationFolder *folder = nullptr) { 434 if (!isFusible(producer, consumer, consumerIdx)) 435 return nullptr; 436 437 unsigned numFusedOperands = producer.getOperation()->getNumOperands() + 438 consumer.getOperation()->getNumOperands() - 1; 439 440 // Compute the fused operands list, 441 SmallVector<Value, 2> fusedOperands; 442 fusedOperands.reserve(numFusedOperands); 443 auto consumerOperands = consumer.getOperation()->getOperands(); 444 auto producerOperands = producer.getOperation()->getOperands(); 445 fusedOperands.assign(consumerOperands.begin(), 446 std::next(consumerOperands.begin(), consumerIdx)); 447 fusedOperands.append(producerOperands.begin(), producerOperands.end()); 448 fusedOperands.append(std::next(consumerOperands.begin(), consumerIdx + 1), 449 consumerOperands.end()); 450 451 // Compute indexing_maps for the fused operation. The indexing_maps for the 452 // operands of the consumers that arent fused are the same. The 453 // indexing_maps for the producers need to be computed based on the 454 // indexing_map of the operand at consumerIdx in the consumer. 455 SmallVector<Attribute, 4> fusedIndexMaps; 456 auto consumerIndexMaps = consumer.indexing_maps(); 457 fusedIndexMaps.reserve(fusedOperands.size() + consumer.getNumResults()); 458 fusedIndexMaps.assign(consumerIndexMaps.begin(), 459 std::next(consumerIndexMaps.begin(), consumerIdx)); 460 // Compute indexing maps for the producer args in the fused operation. 461 computeProducerOperandIndex( 462 producer, consumer.getInputIndexingMap(consumerIdx), fusedIndexMaps); 463 464 // Append the indexing maps for the remaining consumer operands. 465 fusedIndexMaps.append(std::next(consumerIndexMaps.begin(), consumerIdx + 1), 466 consumerIndexMaps.end()); 467 468 // Generate the fused op. 469 auto fusedOp = rewriter.create<GenericOp>( 470 rewriter.getUnknownLoc(), consumer.getResultTypes(), fusedOperands, 471 rewriter.getI64IntegerAttr(fusedOperands.size()), 472 rewriter.getI64IntegerAttr(consumer.getNumResults()), 473 rewriter.getArrayAttr(fusedIndexMaps), consumer.iterator_types(), 474 /*doc=*/nullptr, 475 /*library_call=*/nullptr); 476 generateFusedRegion(rewriter, fusedOp.region(), producer.region(), 477 consumer.region(), consumerIdx); 478 return fusedOp; 479 } 480 481 private: 482 /// Append to `fusedOpIndexingMapAttrs` the indexing maps for the operands of 483 /// the `producer` to use in the fused operation given the indexing map of the 484 /// result of the producer in the consumer. 485 static void computeProducerOperandIndex( 486 GenericOp producer, AffineMap fusedConsumerArgIndexMap, 487 SmallVectorImpl<Attribute> &fusedOpIndexingMapAttrs) { 488 // The indexing map in the consumer op (fusedConsumerArgIndexMap) is a map 489 // from consumer loop -> consumer arg tensor index/producer result tensor 490 // index. The fused loop is same as the consumer loop. For each producer arg 491 // the indexing map to be computed is a map from consumer loop -> producer 492 // arg tensor index. 493 494 AffineMap producerResultIndexMap = producer.getOutputIndexingMap(0); 495 // producerResultIndexMap is a map from producer loop -> tensor index. 496 // Compute the inverse to get map from tensor index -> producer loop. 497 // The inverse is a map from producer result tensor index -> producer loop. 498 AffineMap invProducerResultIndexMap = 499 inversePermutation(producerResultIndexMap); 500 assert(invProducerResultIndexMap && 501 "expected producer result indexig map to be invertible"); 502 for (unsigned argNum : llvm::seq<unsigned>(0, producer.getNumInputs())) { 503 // argMap is a map from producer loop -> producer arg tensor index. 504 AffineMap argMap = producer.getInputIndexingMap(argNum); 505 506 // Compose argMap with invProducerResultIndexMap to get a map from 507 // producer result tensor index -> producer arg tensor index. 508 AffineMap t1 = argMap.compose(invProducerResultIndexMap); 509 510 // Compose t1 with fusedConsumerArgIndexMap gives an indexing map from 511 // consumer loop/ fused loop -> producer arg tensor index. 512 AffineMap indexingMap = t1.compose(fusedConsumerArgIndexMap); 513 fusedOpIndexingMapAttrs.push_back(AffineMapAttr::get(indexingMap)); 514 } 515 } 516 517 /// Generate the region of the fused operation. The region of the fused op 518 /// must be empty. 519 static void generateFusedRegion(PatternRewriter &rewriter, 520 Region &fusedRegion, Region &producerRegion, 521 Region &consumerRegion, 522 unsigned consumerIdx) { 523 // Build the region of the fused op. 524 Block &producerBlock = producerRegion.front(); 525 Block &consumerBlock = consumerRegion.front(); 526 Block *fusedBlock = new Block(); 527 fusedRegion.push_back(fusedBlock); 528 BlockAndValueMapping mapper; 529 OpBuilder::InsertionGuard guard(rewriter); 530 rewriter.setInsertionPointToStart(fusedBlock); 531 // Map the arguments for the unmodified args from the consumer. 532 for (auto consumerArg : llvm::enumerate(consumerBlock.getArguments())) { 533 if (consumerArg.index() == consumerIdx) { 534 // Map the arguments for the args from the producer. 535 for (auto producerArg : producerBlock.getArguments()) 536 mapper.map(producerArg, 537 fusedBlock->addArgument(producerArg.getType())); 538 continue; 539 } 540 mapper.map(consumerArg.value(), 541 fusedBlock->addArgument(consumerArg.value().getType())); 542 } 543 544 // Add operations from producer (except the yield operation) to the fused 545 // op. 546 for (auto &op : producerBlock.getOperations()) { 547 if (auto yieldOp = dyn_cast<YieldOp>(op)) { 548 // Lookup the value the yield operation is mapped to. 549 Value yieldVal = yieldOp.getOperand(0); 550 auto clonedVal = mapper.lookup(yieldVal); 551 mapper.map(consumerBlock.getArgument(consumerIdx), clonedVal); 552 continue; 553 } 554 rewriter.clone(op, mapper); 555 } 556 for (auto &op : consumerBlock.getOperations()) 557 rewriter.clone(op, mapper); 558 } 559 }; 560 } // namespace 561 562 /// Linearize the expressions in `sourceMap` based on the `reassociationMaps` 563 /// provided, given the shape of the source tensor that corresponds to the 564 /// `sourceMap`. Note that this implicitly assumes that the tensors dimensions 565 /// are "row-major" ordered logically. 566 /// 567 /// For example: 568 /// 569 /// %0 = op ... : tensor<?x?x4x5xf32> 570 /// with output index_map `affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>` 571 /// 572 /// and reshape: 573 /// %1 = linalg.tensor_reshape %0 [affine_map<(i, j, k, l) -> (i)>, 574 /// affine_map<(i, j, k, l) -> (j, k, l)>] : 575 /// tensor<?x?x4x5xf32> into tensor<?x?xf32> 576 /// 577 /// would be rewritten into: 578 /// %0 = op ... : tensor<?x?x4x5xf32> 579 /// with output index_map 580 /// `affine_map<(d0, d1, d2, d3) -> (d0, d1 * 20 + d2 * 5 + d3)>` 581 static AffineMap linearizeCollapsedDims(AffineMap sourceMap, 582 ArrayRef<int64_t> sourceShape, 583 ArrayRef<AffineMap> reassociationMaps) { 584 SmallVector<AffineExpr, 4> resultExprs; 585 resultExprs.reserve(reassociationMaps.size()); 586 ArrayRef<AffineExpr> sourceExprs = sourceMap.getResults(); 587 MLIRContext *context = sourceMap.getContext(); 588 589 // Compute the result exprs based on the reassociation maps. 590 for (AffineMap map : reassociationMaps) { 591 ArrayRef<AffineExpr> collapsedDims = map.getResults(); 592 // Assume that they are in-order and contiguous (already checked in 593 // verifier). 594 assert(!collapsedDims.empty()); 595 unsigned startDim = 596 collapsedDims.front().cast<AffineDimExpr>().getPosition(); 597 AffineExpr linearizedExpr = makeCanonicalStridedLayoutExpr( 598 sourceShape.slice(startDim, collapsedDims.size()), 599 sourceExprs.slice(startDim, collapsedDims.size()), context); 600 resultExprs.push_back(linearizedExpr); 601 } 602 return AffineMap::get(sourceMap.getNumDims(), sourceMap.getNumSymbols(), 603 resultExprs, context); 604 } 605 606 /// Checks if the `reshapeOp` can be fused with it consumer (if `asProducer` is 607 /// true) or its producer (if `asProducer` is false) given the indexing map at 608 /// its use. 609 static bool isTensorReshapeOpFusible(TensorReshapeOp reshapeOp, 610 AffineMap useIndexMap, bool asProducer) { 611 RankedTensorType returnType = reshapeOp.getResultType(); 612 RankedTensorType operandType = reshapeOp.getSrcType(); 613 // Reshape is fusible with its consumer (i.e. reshape as a producer) when its 614 // operand is of lesser rank than the result. Fusing when operand has higher 615 // rank will require use of mods and divs in the indexing maps of the fused op 616 // which would make it non-invertible. Similarly reshape is fused with its 617 // producer (i.e. reshape as consumer) only if the return type has lesser 618 // rank. 619 if ((asProducer && returnType.getRank() < operandType.getRank()) || 620 (!asProducer && operandType.getRank() < returnType.getRank())) 621 return false; 622 return useIndexMap.isIdentity(); 623 } 624 625 namespace { 626 /// Implementation of fusion on tensor ops when producer is a TensorReshapeOp. 627 template <typename LinalgOpTy> struct FuseTensorReshapeOpAsProducer { 628 static bool isFusible(TensorReshapeOp producer, LinalgOpTy consumer, 629 unsigned consumerIdx) { 630 return isTensorReshapeOpFusible( 631 producer, consumer.getInputIndexingMap(consumerIdx), true); 632 } 633 634 static Operation *fuse(TensorReshapeOp producer, LinalgOpTy consumer, 635 unsigned consumerIdx, PatternRewriter &rewriter, 636 OperationFolder *folder = nullptr) { 637 if (!isFusible(producer, consumer, consumerIdx)) 638 return nullptr; 639 640 // Compute the fused operands list, 641 SmallVector<Value, 2> fusedOperands(consumer.operand_begin(), 642 consumer.operand_end()); 643 fusedOperands[consumerIdx] = producer.src(); 644 645 // Compute indexing_maps for the fused operation. The indexing_maps for the 646 // operands of the consumers that arent fused are the same. 647 SmallVector<AffineMap, 4> fusedIndexMaps = 648 llvm::to_vector<4>(llvm::map_range( 649 consumer.indexing_maps(), [](Attribute attr) -> AffineMap { 650 return attr.cast<AffineMapAttr>().getValue(); 651 })); 652 653 // Compute the indexing map to use for the operand of the producer. 654 AffineMap modifiedMap = linearizeCollapsedDims( 655 fusedIndexMaps[consumerIdx], producer.getResultType().getShape(), 656 producer.getReassociationMaps()); 657 for (AffineExpr expr : modifiedMap.getResults()) { 658 if (!expr.isPureAffine()) 659 return nullptr; 660 } 661 fusedIndexMaps[consumerIdx] = modifiedMap; 662 663 // Further check that the resulting index maps can be fused and 664 // inverted. Without this the resultant op is not legal. 665 if (!inversePermutation(concatAffineMaps(fusedIndexMaps))) 666 return nullptr; 667 668 SmallVector<Attribute, 4> indexMapAttrs = llvm::to_vector<4>( 669 llvm::map_range(fusedIndexMaps, [](AffineMap map) -> Attribute { 670 return AffineMapAttr::get(map); 671 })); 672 auto fusedOp = rewriter.create<LinalgOpTy>( 673 rewriter.getUnknownLoc(), consumer.getResultTypes(), fusedOperands, 674 rewriter.getI64IntegerAttr(fusedOperands.size()), 675 rewriter.getI64IntegerAttr(consumer.getNumResults()), 676 rewriter.getArrayAttr(indexMapAttrs), consumer.iterator_types(), 677 /*doc=*/nullptr, 678 /*library_call=*/nullptr); 679 auto &fusedRegion = fusedOp.region(); 680 rewriter.cloneRegionBefore(consumer.region(), fusedRegion, 681 fusedRegion.begin()); 682 return fusedOp; 683 } 684 }; 685 686 /// Implementation of fusion on tensor ops when consumer is a TensorReshapeOp. 687 template <typename LinalgOpTy> struct FuseTensorReshapeOpAsConsumer { 688 static bool isFusible(LinalgOpTy producer, TensorReshapeOp consumer, 689 unsigned consumerIdx) { 690 return isTensorReshapeOpFusible(consumer, producer.getOutputIndexingMap(0), 691 false); 692 } 693 694 static Operation *fuse(LinalgOpTy producer, TensorReshapeOp consumer, 695 unsigned consumerIdx, PatternRewriter &rewriter, 696 OperationFolder *folder = nullptr) { 697 if (!isFusible(producer, consumer, consumerIdx)) 698 return nullptr; 699 700 // The indexing_maps for the operands of the fused operation are same as 701 // those for the operands of the producer. 702 SmallVector<AffineMap, 4> fusedIndexMaps = 703 llvm::to_vector<4>(llvm::map_range( 704 producer.indexing_maps(), [](Attribute attr) -> AffineMap { 705 return attr.cast<AffineMapAttr>().getValue(); 706 })); 707 // Compute the indexing map to use for the operand of the producer. 708 AffineMap modifiedMap = linearizeCollapsedDims( 709 producer.getOutputIndexingMap(0), consumer.getSrcType().getShape(), 710 consumer.getReassociationMaps()); 711 for (AffineExpr expr : modifiedMap.getResults()) { 712 if (!expr.isPureAffine()) 713 return nullptr; 714 } 715 fusedIndexMaps.back() = modifiedMap; 716 717 // Further check that the resulting index maps can be fused and 718 // inverted. Without this the resultant op is not legal. 719 if (!inversePermutation(concatAffineMaps(fusedIndexMaps))) 720 return nullptr; 721 722 SmallVector<Attribute, 4> indexMapAttrs = llvm::to_vector<4>( 723 llvm::map_range(fusedIndexMaps, [](AffineMap map) -> Attribute { 724 return AffineMapAttr::get(map); 725 })); 726 727 auto fusedOp = rewriter.create<LinalgOpTy>( 728 rewriter.getUnknownLoc(), consumer.getResultType(), 729 producer.getOperands(), 730 rewriter.getI64IntegerAttr(producer.getNumOperands()), 731 rewriter.getI64IntegerAttr(1), rewriter.getArrayAttr(indexMapAttrs), 732 producer.iterator_types(), 733 /*doc=*/nullptr, 734 /*library_call=*/nullptr); 735 auto &fusedRegion = fusedOp.region(); 736 rewriter.cloneRegionBefore(producer.region(), fusedRegion, 737 fusedRegion.begin()); 738 return fusedOp; 739 } 740 }; 741 } // namespace 742 743 Operation *mlir::linalg::fuseTensorOps(PatternRewriter &rewriter, 744 Operation *consumer, 745 unsigned consumerIdx, 746 OperationFolder *folder) { 747 if (consumerIdx >= consumer->getNumOperands()) 748 return nullptr; 749 Operation *producer = consumer->getOperand(consumerIdx).getDefiningOp(); 750 if (!producer || producer->getNumResults() != 1) 751 return nullptr; 752 753 // Fuse when consumer is GenericOp. 754 if (GenericOp genericOp = dyn_cast<GenericOp>(consumer)) { 755 if (!genericOp.hasTensorSemantics()) 756 return nullptr; 757 if (auto genericOpProducer = dyn_cast<GenericOp>(producer)) { 758 if (genericOpProducer.hasTensorSemantics()) 759 return FuseGenericOpsOnTensors::fuse(genericOpProducer, genericOp, 760 consumerIdx, rewriter, folder); 761 } else if (auto reshapeOpProducer = dyn_cast<TensorReshapeOp>(producer)) { 762 return FuseTensorReshapeOpAsProducer<GenericOp>::fuse( 763 reshapeOpProducer, genericOp, consumerIdx, rewriter, folder); 764 } 765 return nullptr; 766 } 767 768 // Fuse when consumer is a TensorReshapeOp. 769 if (TensorReshapeOp reshapeOp = dyn_cast<TensorReshapeOp>(consumer)) { 770 if (auto genericOpProducer = dyn_cast<GenericOp>(producer)) { 771 if (genericOpProducer.hasTensorSemantics()) 772 return FuseTensorReshapeOpAsConsumer<GenericOp>::fuse( 773 genericOpProducer, reshapeOp, consumerIdx, rewriter, folder); 774 } 775 return nullptr; 776 } 777 return nullptr; 778 } 779 780 namespace { 781 /// Patterns to fuse a generic op, with the producer of its operands. 782 template <typename LinalgOpTy> 783 struct FuseTensorOps : public OpRewritePattern<LinalgOpTy> { 784 using OpRewritePattern<LinalgOpTy>::OpRewritePattern; 785 786 LogicalResult matchAndRewrite(LinalgOpTy op, 787 PatternRewriter &rewriter) const override { 788 // Find the first operand that is defined by another generic op on tensors. 789 for (auto operandNum : 790 llvm::seq<unsigned>(0, op.getOperation()->getNumOperands())) { 791 Operation *producer = 792 op.getOperation()->getOperand(operandNum).getDefiningOp(); 793 if (Operation *fusedOp = fuseTensorOps(rewriter, op, operandNum)) { 794 rewriter.replaceOp(op, fusedOp->getResults()); 795 if (producer && llvm::all_of(producer->getResults(), 796 [](Value val) { return val.use_empty(); })) 797 rewriter.eraseOp(producer); 798 return success(); 799 } 800 } 801 return failure(); 802 } 803 }; 804 805 /// Pass that fuses generic ops on tensors. Used only for testing. 806 struct FusionOfTensorOpsPass 807 : public LinalgFusionOfTensorOpsBase<FusionOfTensorOpsPass> { 808 void runOnOperation() override { 809 OwningRewritePatternList patterns; 810 Operation *op = getOperation(); 811 populateLinalgTensorOpsFusionPatterns(op->getContext(), patterns); 812 applyPatternsAndFoldGreedily(op->getRegions(), patterns); 813 }; 814 }; 815 816 struct LinalgFusionPass : public LinalgFusionBase<LinalgFusionPass> { 817 void runOnFunction() override { fuseLinalgOpsGreedily(getFunction()); } 818 }; 819 } // namespace 820 821 void mlir::populateLinalgTensorOpsFusionPatterns( 822 MLIRContext *context, OwningRewritePatternList &patterns) { 823 patterns.insert<FuseTensorOps<GenericOp>, FuseTensorOps<TensorReshapeOp>>( 824 context); 825 } 826 827 std::unique_ptr<OperationPass<FuncOp>> mlir::createLinalgFusionPass() { 828 return std::make_unique<LinalgFusionPass>(); 829 } 830 831 std::unique_ptr<Pass> mlir::createLinalgFusionOfTensorOpsPass() { 832 return std::make_unique<FusionOfTensorOpsPass>(); 833 } 834