1 //===- Fusion.cpp - Implementation of linalg Fusion -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Fusion pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Affine/IR/AffineOps.h" 15 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 17 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 18 #include "mlir/Dialect/Linalg/Passes.h" 19 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 20 #include "mlir/Dialect/Linalg/Utils/Utils.h" 21 #include "mlir/Dialect/MemRef/IR/MemRef.h" 22 #include "mlir/Dialect/Tensor/IR/Tensor.h" 23 #include "mlir/IR/AffineExpr.h" 24 #include "mlir/IR/AffineMap.h" 25 #include "mlir/IR/Dominance.h" 26 #include "mlir/Support/LLVM.h" 27 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 28 #include "mlir/Transforms/RegionUtils.h" 29 #include "llvm/ADT/MapVector.h" 30 #include "llvm/ADT/ScopeExit.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 34 #include <set> 35 36 #define DEBUG_TYPE "linalg-fusion" 37 38 using namespace mlir; 39 using namespace mlir::linalg; 40 41 using llvm::dbgs; 42 43 /// Implements a simple high-level fusion pass on linalg structured operations. 44 /// 45 /// In each block, linalg ops are processed in reverse textual order. 46 /// Given a linalg op `O`, fusion occurs by: 47 /// 1. inspecting the linalg ops that write into the views read by `O`. There 48 /// are 2 cases: 49 /// a) buffer case: use the SSA value of the views and a simple alias 50 /// analysis on subview ops to determine producer-consumer dependences; 51 /// b) tensor case: use SSA use-def chains on extract_slice ops; 52 /// 2. greedily fuse the linalg ops that produce the subview/extract_slice. 53 /// 3. inspect the fused ops and determine whether they have other remaining 54 /// LinalgOp uses. If not, then erase the original producing linalg op. 55 /// 56 /// More advanced use cases, analyses as well as profitability heuristics are 57 /// left for future work. 58 59 struct ShapeDimension { 60 Value shape; 61 unsigned dimension; 62 }; 63 64 // Given an `op`, returns the first (`shape`, `dimension`) pair that identifies 65 // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps 66 // guarantees at least one such dimension is found. If multiple candidates exist 67 // they must agree by construction (i.e. have the same size) and we just return 68 // the first one. 69 static ShapeDimension 70 getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth, 71 bool fromSubViewOpOnly = false) { 72 // Iterate over the inputs and outputs in order. 73 // Extract the subranges from the linearized ranges. 74 for (OpOperand *opOperand : op.getInputAndOutputOperands()) { 75 // The method `getRangeFromOperandShape` requires using SubViewOp or 76 // ExtractSliceOps. If the value isn't defined from there continue. 77 // todo: The method should be adapted to get the values from 78 // `ViewInterface`. The interface needs a `getOrCreateRanges` method which 79 // currently returns a `linalg.range`. The fix here is to move this op to 80 // `std` dialect and add the method to `ViewInterface`. 81 if (fromSubViewOpOnly && 82 !isa_and_nonnull<memref::SubViewOp, tensor::ExtractSliceOp>( 83 opOperand->get().getDefiningOp())) 84 continue; 85 86 AffineMap map = op.getTiedIndexingMap(opOperand); 87 LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange I/O idx: " 88 << opOperand->getOperandNumber() << "\n"); 89 LLVM_DEBUG(llvm::dbgs() 90 << "getShapeDefiningLoopRange map: " << map << "\n"); 91 SmallVector<Value, 8> shapeRanges(map.getNumResults(), nullptr); 92 for (auto en : llvm::enumerate(map.getResults())) { 93 auto dimExpr = en.value().dyn_cast<AffineDimExpr>(); 94 if (!dimExpr) 95 continue; 96 if (loopDepth == en.value().cast<AffineDimExpr>().getPosition()) { 97 LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: " 98 << loopDepth << "\n"); 99 LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange shape: " 100 << opOperand->get() << "\n"); 101 return ShapeDimension{opOperand->get(), 102 static_cast<unsigned>(en.index())}; 103 } 104 } 105 } 106 llvm_unreachable("Expect to be able to extract a shape defining loop range"); 107 } 108 109 // Return tiled operands for the fused producer op. When fusing into 110 // `linalg.tiled_loop` one has to update `input` and `output` arguments of the 111 // loop correspondingly. 112 // Each input tensor of the producer op has to be added to `inputs` of the 113 // `tiled_loop` if it is not present there already. Each output tensor has to 114 // be added either to `inputs` or to `outputs` of `linalg.tiled_loop` depending 115 // on whether the correponding result is an input or an output to the loop. 116 // 117 // NOTE: This way of updating the arguments of the `tiled_loop` assumes that the 118 // intermediate result is not used by any other operation but the consumer. A 119 // more generic way is to append all missing output tensors of the producer to 120 // the tiled loop outputs and hence modify the number of the results, since we 121 // would need to add the intermediate results to `linalg.yield`. After that a 122 // canonicalization pass would move the unused output args of the `tiled_loop` 123 // to the `input` section. 124 static SmallVector<Value> getTiledOperands(OpBuilder &b, LinalgOp producer) { 125 auto tiledLoop = dyn_cast<TiledLoopOp>(b.getBlock()->getParentOp()); 126 if (!tiledLoop) 127 return producer.getInputAndOutputOperands(); 128 129 SmallVector<Value> tiledOperands; 130 assert(producer.hasTensorSemantics() && 131 "only fusion on tensors is currently supported for TiledLinalgOp"); 132 133 for (OpOperand *producerInput : producer.getInputOperands()) { 134 OpOperand *addedInput = tiledLoop.findInputOperand(producerInput->get()); 135 if (addedInput == nullptr) 136 addedInput = &tiledLoop.appendInputOperand(b, producerInput->get()); 137 BlockArgument addedBlockArg = tiledLoop.getTiedBlockArgument(*addedInput); 138 tiledOperands.push_back(addedBlockArg); 139 } 140 for (OpOperand *producerOutput : producer.getOutputOperands()) { 141 OpResult result = producer.getTiedOpResult(producerOutput); 142 OpOperand *resultInputOperand = tiledLoop.findInputOperand(result); 143 OpOperand *resultOutputOperand = tiledLoop.findOutputOperand(result); 144 assert((resultInputOperand != nullptr) ^ (resultOutputOperand != nullptr) && 145 "The result should be present in `input` or `output` args of " 146 "`tiled_loop"); 147 148 bool isInput = resultInputOperand; 149 int opNumber = isInput ? resultInputOperand->getOperandNumber() 150 : resultOutputOperand->getOperandNumber(); 151 152 OpOperand *addedOutput = tiledLoop.findOutputOperand(producerOutput->get()); 153 if (addedOutput == nullptr) 154 addedOutput = 155 isInput ? &tiledLoop.appendInputOperand(b, producerOutput->get()) 156 : &tiledLoop.appendOutputOperand(b, producerOutput->get()); 157 158 OpOperand &resultOperand = tiledLoop->getOpOperand(opNumber); 159 auto addedBlockArg = tiledLoop.getTiedBlockArgument(*addedOutput); 160 auto resultOperandBlockArg = tiledLoop.getTiedBlockArgument(resultOperand); 161 resultOperandBlockArg.replaceAllUsesWith(addedBlockArg); 162 tiledLoop.eraseOperand(b, resultOperand); 163 tiledOperands.push_back(addedBlockArg); 164 } 165 return tiledOperands; 166 } 167 168 /// Fuses the producer by cloning the `producer`. The `fusedLoopsAndRanges` 169 /// provides the loop range information for the fused loops. The rest are 170 /// obtained from the producer itself, since they are not tiled + fused. 171 static LinalgOp fuse(OpBuilder &b, LinalgOp producer, 172 const DenseMap<unsigned, Range> &fusedLoopsAndRanges) { 173 SmallVector<Value, 8> ivs, tileSizes, sizeBounds; 174 SmallVector<Range, 8> loopRanges; 175 Location loc = producer.getLoc(); 176 auto zero = b.create<ConstantIndexOp>(loc, 0); 177 auto one = b.create<ConstantIndexOp>(loc, 1); 178 179 for (unsigned i = 0, e = producer.getNumLoops(); i < e; ++i) { 180 auto shapeDim = getShapeDefiningLoopRange(producer, i); 181 Value dim = createOrFoldDimOp(b, loc, shapeDim.shape, shapeDim.dimension); 182 sizeBounds.push_back(dim); 183 auto it = fusedLoopsAndRanges.find(i); 184 if (it != fusedLoopsAndRanges.end()) { 185 ivs.push_back(it->second.offset); 186 tileSizes.push_back(it->second.size); 187 loopRanges.push_back(it->second); 188 LLVM_DEBUG(llvm::dbgs() << "tiled loop#" << i << " with LoopRange " 189 << loopRanges.back() << "\n"); 190 } else { 191 tileSizes.push_back(zero); 192 loopRanges.push_back(Range{zero, dim, one}); 193 LLVM_DEBUG(llvm::dbgs() << "full loop#" << i << " with LoopRange " 194 << loopRanges.back() << "\n"); 195 } 196 } 197 198 SmallVector<Value, 8> clonedShapes; 199 clonedShapes.reserve(producer.getNumInputsAndOutputs()); 200 201 // Compute subranges for all tensor input/output operands. 202 clonedShapes.append(makeTiledShapes(b, loc, producer, 203 getTiledOperands(b, producer), ivs, 204 tileSizes, sizeBounds)); 205 206 // Iterate over the results in order. 207 // Extract the subtensor type from the linearized range. 208 // Since we do not enforce any canonicalizations on the fly, this is always 209 // fully dynamic at construction time. 210 SmallVector<Type, 4> resultTypes; 211 resultTypes.reserve(producer->getNumResults()); 212 for (RankedTensorType t : producer.getOutputTensorTypes()) { 213 unsigned rank = t.getRank(); 214 SmallVector<int64_t, 4> staticOffsetsVector( 215 rank, ShapedType::kDynamicStrideOrOffset); 216 SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamicSize); 217 SmallVector<int64_t, 4> staticStridesVector( 218 rank, ShapedType::kDynamicStrideOrOffset); 219 resultTypes.push_back(tensor::ExtractSliceOp::inferResultType( 220 t.cast<RankedTensorType>(), staticOffsetsVector, staticSizesVector, 221 staticStridesVector)); 222 } 223 224 Operation *clonedOp = producer.clone(b, loc, resultTypes, clonedShapes); 225 // When the producer has index semantics, we have to transform the indices of 226 // the producer according to the tiling of the consumer, i.e. offset them by 227 // the values computed in `loopRanges`. 228 if (producer.hasIndexSemantics()) { 229 assert(clonedOp->getNumRegions() == 1 && 230 clonedOp->getRegion(0).getBlocks().size() == 1 && 231 "expected producer to have one block."); 232 // Shift all indices by the tile offset. 233 Block &block = clonedOp->getRegion(0).front(); 234 for (IndexOp indexOp : block.getOps<IndexOp>()) { 235 OpBuilder::InsertionGuard g(b); 236 b.setInsertionPointAfter(indexOp); 237 AffineExpr index, offset; 238 bindDims(b.getContext(), index, offset); 239 AffineApplyOp applyOp = b.create<AffineApplyOp>( 240 indexOp.getLoc(), index + offset, 241 ValueRange{indexOp.getResult(), loopRanges[indexOp.dim()].offset}); 242 indexOp.getResult().replaceAllUsesExcept(applyOp, applyOp); 243 } 244 } 245 246 return clonedOp; 247 } 248 249 /// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is 250 /// expected to be defined by a subview op or an extract_slice op. 251 static Range getRangeFromOperandShape(OpBuilder &b, Location loc, 252 Value shapedOperand, unsigned dim) { 253 Operation *shapeProducingOp = shapedOperand.getDefiningOp(); 254 if (auto subViewOp = dyn_cast<memref::SubViewOp>(shapeProducingOp)) 255 return subViewOp.getOrCreateRanges(b, loc)[dim]; 256 if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(shapeProducingOp)) 257 return sliceOp.getOrCreateRanges(b, loc)[dim]; 258 llvm_unreachable("SubviewOp or ExtractSliceOp expected"); 259 } 260 261 /// Fuses the producer into the loop immediately enclosing the consumer. 262 /// This is achieved by "recomputing" the producer at the time it 263 /// is needed just before the consumer. 264 static LinalgOp fuse(OpBuilder &b, LinalgOp producerOp, AffineMap producerMap, 265 OpOperand &consumerOpOperand) { 266 LLVM_DEBUG(llvm::dbgs() << "Producer map: " << producerMap << "\n"); 267 DenseMap<unsigned, Range> fusedLoopsAndRanges; 268 Value shapedOperand = consumerOpOperand.get(); 269 for (auto en : llvm::enumerate(producerMap.getResults())) { 270 unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition(); 271 fusedLoopsAndRanges[posInProducerLoop] = getRangeFromOperandShape( 272 b, consumerOpOperand.getOwner()->getLoc(), shapedOperand, en.index()); 273 } 274 return fuse(b, producerOp, fusedLoopsAndRanges); 275 } 276 277 // Encode structural fusion safety preconditions. 278 // Some of these will be lifted in the future with better analysis. 279 static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView, 280 LinalgOp consumer) { 281 assert(producer.hasBufferSemantics() && 282 "expected linalg op with buffer semantics"); 283 assert(consumer.hasBufferSemantics() && 284 "expected linalg op with buffer semantics"); 285 if (producer.getNumOutputs() != 1) { 286 LLVM_DEBUG(llvm::dbgs() << "\nNot structurally fusable (multi-output)"); 287 return false; 288 } 289 // Only fuse when the producer block dominates. 290 DominanceInfo dom(producer.getOperation()); 291 if (!dom.dominates(producer->getBlock(), consumer->getBlock())) { 292 LLVM_DEBUG( 293 llvm::dbgs() 294 << "\nNot structurally fusable (producer block does not dominate)"); 295 return false; 296 } 297 return true; 298 } 299 300 bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph, 301 LinalgOp consumer, 302 Value consumedView, 303 LinalgOp producer) { 304 assert(producer.hasBufferSemantics() && 305 "expected linalg op with buffer semantics"); 306 assert(consumer.hasBufferSemantics() && 307 "expected linalg op with buffer semantics"); 308 // Make some simple structural checks that alleviate the need for more 309 // complex analyses. 310 if (!isStructurallyFusableProducer(producer, consumedView, consumer)) { 311 LLVM_DEBUG(llvm::dbgs() << "\n***Not static last write due to structure:\t" 312 << *producer.getOperation()); 313 return false; 314 } 315 // Check for any interleaved write to consumedView. 316 if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) { 317 LLVM_DEBUG(llvm::dbgs() << "\n***Not fusable due to interleaved write:\t" 318 << *producer.getOperation()); 319 return false; 320 } 321 return true; 322 } 323 324 bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph, 325 LinalgOp consumer, Value consumedView, 326 LinalgOp producer) { 327 assert(producer.hasBufferSemantics() && 328 "expected linalg op with buffer semantics"); 329 assert(consumer.hasBufferSemantics() && 330 "expected linalg op with buffer semantics"); 331 if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer)) 332 return false; 333 // Check for any fusion-preventing dependence to any shape read/written that 334 // would violate dependences. 335 if (!graph.findCoveringDependences(producer, consumer).empty()) { 336 LLVM_DEBUG(llvm::dbgs() 337 << "\n***Not fusable due to an interleaved dependence:\t" 338 << *producer.getOperation()); 339 return false; 340 } 341 if (auto convOp = dyn_cast<linalg::ConvOp>(producer.getOperation())) { 342 // TODO: add a level of indirection to linalg.generic. 343 if (convOp.padding()) 344 return false; 345 } 346 if (auto convOp = dyn_cast<linalg::ConvOp>(consumer.getOperation())) { 347 // TODO: add a level of indirection to linalg.generic. 348 if (convOp.padding()) 349 return false; 350 } 351 return true; 352 } 353 354 /// For `consumer` with buffer semantics, find the Linalg operation on buffers 355 /// that is the last writer of `consumerOpOperand`. For now the fusable 356 /// dependence is returned as an instance of the `dependenceGraph`. 357 static Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> 358 findFusableProducer(OpOperand &consumerOpOperand, 359 const LinalgDependenceGraph &dependenceGraph) { 360 LLVM_DEBUG(llvm::dbgs() << "findFusableProducer for: " 361 << consumerOpOperand.get() << " @" 362 << consumerOpOperand.getOperandNumber() << " in " 363 << *consumerOpOperand.getOwner() << "\n"); 364 LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner()); 365 if (!consumerOp) 366 return {}; 367 368 // Only consider RAW and WAW atm. 369 for (auto depType : { 370 LinalgDependenceGraph::DependenceType::RAW, 371 LinalgDependenceGraph::DependenceType::WAW, 372 }) { 373 LLVM_DEBUG(llvm::dbgs() 374 << "Dependencies into: " << *consumerOp.getOperation() << "\n"); 375 for (auto dependence : llvm::make_filter_range( 376 dependenceGraph.getDependencesInto(consumerOp, depType), 377 [&](LinalgDependenceGraph::LinalgDependenceGraphElem elem) { 378 LLVM_DEBUG(llvm::dbgs() << "Inspect dependence btw: " 379 << elem.getIndexingValue() << " and " 380 << elem.getDependentValue() << "\n"); 381 Value v = elem.getIndexingValue(); 382 Optional<unsigned> operandNum = 383 elem.getIndexingOpViewOperandNum(); 384 return isa<LinalgOp>(elem.getDependentOp()) && 385 v == consumerOpOperand.get() && operandNum && 386 operandNum.getValue() == 387 consumerOpOperand.getOperandNumber(); 388 })) { 389 // Consumer consumes this view, `isStructurallyFusableProducer` also 390 // checks whether it is a strict subview of the producer view. 391 auto producer = cast<LinalgOp>(dependence.getDependentOp()); 392 LLVM_DEBUG(llvm::dbgs() 393 << "\n" 394 << LinalgDependenceGraph::getDependenceTypeStr(depType) 395 << "producer: " << *dependence.getDependentOp() 396 << " view: " << dependence.getDependentValue() << "\n"); 397 398 // If the producer and consumer have tensor semantics, the only dependence 399 // between them is through a RAW dependence and they are fusable by 400 // construction. For buffer semantics need additional checks. 401 if (producer.hasBufferSemantics() && consumerOp.hasBufferSemantics() && 402 isFusableInto(dependenceGraph, consumerOp, consumerOpOperand.get(), 403 producer)) 404 return dependence; 405 if (producer.hasTensorSemantics() && consumerOp.hasTensorSemantics()) { 406 assert(dependence.dependenceType == 407 LinalgDependenceGraph::DependenceType::RAW); 408 return dependence; 409 } 410 } 411 } 412 return {}; 413 } 414 415 Optional<FusionInfo> 416 mlir::linalg::fuseProducerOfBuffer(OpBuilder &b, OpOperand &consumerOpOperand, 417 const LinalgDependenceGraph &graph) { 418 Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependence = 419 findFusableProducer(consumerOpOperand, graph); 420 if (!fusableDependence) 421 return llvm::None; 422 423 LinalgOp producerOp = dyn_cast<LinalgOp>(fusableDependence->getDependentOp()); 424 if (!producerOp) 425 return llvm::None; 426 427 // If producer is already in the same block as consumer, we are done. 428 if (consumerOpOperand.get().getParentBlock() == 429 fusableDependence->getDependentValue().getParentBlock()) 430 return llvm::None; 431 432 Optional<AffineMap> producerMap = 433 fusableDependence->getDependentOpViewIndexingMap(); 434 if (!producerMap) 435 return llvm::None; 436 437 // Must be a subview or an extract_slice to guarantee there are loops we can 438 // fuse into. 439 auto subView = consumerOpOperand.get().getDefiningOp<memref::SubViewOp>(); 440 if (!subView) { 441 LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subview)"); 442 return llvm::None; 443 } 444 445 // Fuse `producer` just before `consumer`. 446 OpBuilder::InsertionGuard g(b); 447 b.setInsertionPoint(consumerOpOperand.getOwner()); 448 LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " 449 << *consumerOpOperand.getOwner() << "\n"); 450 451 auto fusedProducer = fuse(b, producerOp, *producerMap, consumerOpOperand); 452 return FusionInfo{producerOp, fusedProducer}; 453 } 454 455 /// Walk back use-def chain through scf::For yields. 456 /// Sets `producer` and `outputIndex` if it finds a producer LinalgOp 457 458 // TODO(ravishankarm, ntv): This can be moved into the dependence graphs 459 // dependence tracking since the dependence tracking is similar to what is done 460 // w.r.t to buffers. 461 static void getProducerOfTensor(Value tensor, OpResult &opResult) { 462 if (!tensor.getType().isa<RankedTensorType>()) 463 return; 464 465 while (true) { 466 LLVM_DEBUG(llvm::dbgs() << "\ngetProducerOfTensor: " << tensor); 467 if (auto linalgOp = tensor.getDefiningOp<LinalgOp>()) { 468 opResult = tensor.cast<OpResult>(); 469 return; 470 } 471 if (auto sliceOp = tensor.getDefiningOp<tensor::ExtractSliceOp>()) { 472 tensor = sliceOp.source(); 473 continue; 474 } 475 if (auto blockArg = tensor.dyn_cast<BlockArgument>()) { 476 if (auto forOp = blockArg.getDefiningOp<scf::ForOp>()) { 477 tensor = *(forOp.getIterOperands().begin() + blockArg.getArgNumber()); 478 continue; 479 } 480 } 481 return; 482 } 483 } 484 485 Optional<FusionInfo> 486 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpOperand &consumerOpOperand) { 487 Value inputTensor = consumerOpOperand.get(); 488 OpResult producerOpResult; 489 getProducerOfTensor(inputTensor, producerOpResult); 490 if (!producerOpResult) { 491 LLVM_DEBUG(llvm::dbgs() << "\nUnable to find producer"); 492 return {}; 493 } 494 return fuseProducerOfTensor(b, producerOpResult, consumerOpOperand); 495 } 496 497 Optional<FusionInfo> 498 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpResult producerOpResult, 499 OpOperand &consumerOpOperand) { 500 auto producerOp = dyn_cast<LinalgOp>(producerOpResult.getOwner()); 501 if (!producerOp) 502 return llvm::None; 503 504 LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner()); 505 if (!consumerOp) 506 return llvm::None; 507 508 Value inputTensor = consumerOpOperand.get(); 509 510 // Must be an extract_slice op to guarantee there are loops we can fuse into. 511 auto sliceOp = inputTensor.getDefiningOp<tensor::ExtractSliceOp>(); 512 if (!sliceOp) { 513 LLVM_DEBUG(llvm::dbgs() 514 << "\nNot fusable, not an extract_slice op: " << inputTensor); 515 return {}; 516 } 517 518 // If producer is already in the same block as consumer, we are done. 519 if (consumerOpOperand.get().getParentBlock() == 520 producerOpResult.getParentBlock()) 521 return {}; 522 523 // Insert fused `producer` just before `consumer`. 524 OpBuilder::InsertionGuard g(b); 525 b.setInsertionPoint(consumerOp); 526 LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumerOp << "\n"); 527 OpOperand *opOperand = 528 producerOp.getOutputOperand(producerOpResult.getResultNumber()); 529 LinalgOp fusedProducer = 530 fuse(b, producerOp, producerOp.getTiedIndexingMap(opOperand), 531 consumerOpOperand); 532 533 // Replace use. 534 // Canonicalizations are not guaranteed to have happened before constructing 535 // `fusedProducer`. In the tensor case this can result in temporary type 536 // mismatches. Insert a `tensor.cast` op to propagate the transformation 537 // invariant that types are compatible. 538 Value def = fusedProducer->getResult(producerOpResult.getResultNumber()); 539 Type consumerType = consumerOpOperand.get().getType(); 540 if (consumerType != def.getType()) 541 def = b.create<tensor::CastOp>(fusedProducer.getLoc(), consumerType, def); 542 consumerOpOperand.set(def); 543 return FusionInfo{cast<LinalgOp>(producerOpResult.getOwner()), fusedProducer}; 544 } 545 546 /// Prune all dimensions that are of reduction iterator type from `map`. 547 static AffineMap pruneReductionDimsFromMap(ArrayRef<Attribute> iteratorTypes, 548 AffineMap map) { 549 llvm::SmallDenseSet<unsigned> projectedDims; 550 for (auto attr : llvm::enumerate(iteratorTypes)) { 551 if (!isParallelIterator(attr.value())) 552 projectedDims.insert(attr.index()); 553 } 554 return getProjectedMap(map, projectedDims); 555 } 556 557 /// Returns the mapping from iterations in the consumer that write to the same 558 /// location as the iterations in the producer. To do so use 559 /// - indexing map of the fused view in the consumer : consumerIndexMap 560 /// - indexing map of the fused view in the producer : producerIndexMap 561 /// consumerLoopToProducerLoop = 562 /// inverse(producerIndexMap).compose(consumerIndexMap) 563 static Optional<AffineMap> getConsumerLoopToProducerLoopMap( 564 LinalgDependenceGraph::LinalgDependenceGraphElem dependence) { 565 auto producer = dyn_cast<LinalgOp>(dependence.getDependentOp()); 566 if (!producer) 567 return None; 568 569 Optional<AffineMap> producerIndexingMap = 570 dependence.getDependentOpViewIndexingMap(); 571 Optional<AffineMap> consumerIndexingMap = 572 dependence.getIndexingOpViewIndexingMap(); 573 if (!producerIndexingMap || !consumerIndexingMap) 574 return None; 575 576 AffineMap prunedProducerIndexingMap = pruneReductionDimsFromMap( 577 producer.iterator_types().getValue(), *producerIndexingMap); 578 if (!prunedProducerIndexingMap.isPermutation()) 579 return None; 580 581 if (consumerIndexingMap->getNumResults() != 582 prunedProducerIndexingMap.getNumResults()) 583 return None; 584 585 LLVM_DEBUG({ 586 llvm::dbgs() << "\t producerMap : "; 587 producerIndexingMap->print(llvm::dbgs()); 588 llvm::dbgs() << " pruned : "; 589 prunedProducerIndexingMap.print(llvm::dbgs()); 590 llvm::dbgs() << "\n"; 591 llvm::dbgs() << "\t consumerMap : "; 592 consumerIndexingMap->print(llvm::dbgs()); 593 llvm::dbgs() << "\n"; 594 }); 595 596 AffineMap invProducerIndexMap = inversePermutation(prunedProducerIndexingMap); 597 if (!invProducerIndexMap) 598 return None; 599 600 return invProducerIndexMap.compose(*consumerIndexingMap); 601 } 602 603 /// Given a projected permutation `map`, returns true if the map changes the 604 /// order in which the fused loop dimension appear. 605 static bool doesTransposeAccess(AffineMap map, 606 const std::set<unsigned> &fusableLoops) { 607 Optional<unsigned> lastFusableLoop; 608 for (unsigned pos : llvm::map_range(map.getResults(), [](AffineExpr expr) { 609 return expr.cast<AffineDimExpr>().getPosition(); 610 })) { 611 if (!fusableLoops.count(pos)) 612 continue; 613 if (!lastFusableLoop) { 614 lastFusableLoop = pos; 615 continue; 616 } 617 if (pos <= lastFusableLoop.getValue()) 618 return true; 619 lastFusableLoop = pos; 620 } 621 return false; 622 } 623 624 /// Returns the positions of the loop in `op` that can be tiled based on the 625 /// operations that are to be fused with it. For example, in a 626 /// 627 /// linalg.matmul ins(%a, %b : ...) outs(%c : ...) 628 /// 629 /// if the producer of %a needs to be fused with this op, only the `i` loop of 630 /// the matmul can be tiled while fusing. If producer of %a, and %b are to be 631 /// fused, then no loops can be tiled while fusing. The conditions used are: 632 /// 1. Only parallel loops can be used for tile + fuse. Find the number of 633 /// common outer parallel loops between the op and its producers being fused. 634 /// 2. Of the parallel loops only some can be fused. Only those loops can be 635 /// fused such where the fusable loops iteration space only touches one tile 636 /// of the fused operation. This is because the producer (which is writing 637 /// the fused subview) has update semantics. 638 /// 639 /// Since an inverse computation is needed, we need to consider the projection 640 /// of the producerIndexMap w.r.t the parallel loops. The actual fusable loops 641 /// are the dimensions of the consumerLoopToProducerLoop map that correspond to 642 /// parallel loops and appear in the result of the map 643 /// 644 /// Example 1: 645 /// linalg.fill(%cst, %c) 646 /// linalg.matmul ins(%a, %b) outs(%c) 647 /// Number of parallel loops : 2 648 /// producerIndexMap = affine_map<(i, j) ->(i , j)> 649 /// consumerIndexMap = affine_map<(i, j, k) -> (i, j)> 650 /// consumerLoopToProducerLoop = affine_map<(i, j, k) -> (i, j)> 651 /// Fused dimensions : i, j 652 /// 653 /// Example 2: 654 /// linalg.matmul ins(%a, %b) outs(%c) 655 /// linalg.generic {indexing_maps = [affine_map<(i, j) -> (j, i)>, ... 656 /// iterator_types = ["parallel", "parallel"]} 657 /// ins(%c) ... 658 /// 659 /// Number of parallel loops = 2: 660 /// producerIndexMap (projected to parallel loops) = 661 /// affine_map<(i, j) -> (i, j)> 662 /// consumerLoopToProducerLoop2 = affine_map<(i, j) -> (j, i)> 663 /// Fused dimensions : i, j 664 /// 665 /// Example 3: 666 /// linalg.copy(%s, %b) 667 /// linalg.matmul ins(%a, %b) outs(%c) 668 /// 669 /// Number of parallel loops = 2 670 /// produceIndexMap : affine_map<(i, j) -> (i, j)> 671 /// consumerLoopToProduceLoops = affine_map<(i, j, k) -> (k, j)> 672 /// submap with only parallel loops = affine_map<(i, j) -> (j)> 673 /// Fused dimensions : j 674 static std::set<unsigned> 675 collectFusableLoops(ArrayRef<LinalgOp> ops, 676 const FusableOpDependencesTy &fusableDependences) { 677 assert(!ops.empty()); 678 auto getNumOuterParallelLoops = [](LinalgOp linalgOp) { 679 return linalgOp.iterator_types() 680 .getValue() 681 .take_while([](Attribute attr) -> bool { 682 return attr.cast<StringAttr>().getValue() == 683 getParallelIteratorTypeName(); 684 }) 685 .size(); 686 }; 687 688 size_t numOuterParallelLoops = getNumOuterParallelLoops(ops.back()); 689 for (auto op : ops.drop_back()) { 690 numOuterParallelLoops = 691 std::min(numOuterParallelLoops, getNumOuterParallelLoops(op)); 692 } 693 694 std::set<unsigned> fusableLoops; 695 auto range = llvm::seq<unsigned>(0, numOuterParallelLoops); 696 fusableLoops.insert(range.begin(), range.end()); 697 698 for (auto op : reverse(ops)) { 699 for (auto dependence : fusableDependences.lookup(op)) { 700 LLVM_DEBUG({ 701 llvm::dbgs() << "\t fusable :"; 702 for (unsigned i : fusableLoops) 703 llvm::dbgs() << " " << i; 704 llvm::dbgs() << "\n"; 705 }); 706 707 Optional<AffineMap> consumerLoopToProducerLoop = 708 getConsumerLoopToProducerLoopMap(dependence); 709 if (!consumerLoopToProducerLoop) { 710 op.emitRemark("failed to get map from consumer loop to producer loop"); 711 return {}; 712 } 713 // todo: This condition is only an implementation limitation. When fusing 714 // the operation, if the accesses in the producer/consumer are transposes 715 // of each other, the loop bounds for the tiled producer can be 716 // manipulated accordingly. This requires some additional bookkeeping in 717 // the implementation of tile+fuse that is deferred to later. 718 if (doesTransposeAccess(*consumerLoopToProducerLoop, fusableLoops)) { 719 op.emitRemark("unhandled fusion when fusion requires permutation"); 720 return {}; 721 } 722 723 std::set<unsigned> candidates; 724 for (AffineExpr expr : consumerLoopToProducerLoop->getResults()) { 725 unsigned position = expr.cast<AffineDimExpr>().getPosition(); 726 if (fusableLoops.count(position)) 727 candidates.insert(position); 728 } 729 LLVM_DEBUG({ 730 llvm::dbgs() << "\t candidates :"; 731 for (unsigned i : candidates) 732 llvm::dbgs() << " " << i; 733 llvm::dbgs() << "\n"; 734 }); 735 if (candidates.empty()) 736 return {}; 737 std::swap(candidates, fusableLoops); 738 } 739 } 740 741 return fusableLoops; 742 } 743 744 /// Find all dependences that are fusable. 745 FusableOpDependencesTy mlir::linalg::findAllFusableDependences( 746 ArrayRef<LinalgOp> ops, const LinalgDependenceGraph &dependenceGraph) { 747 FusableOpDependencesTy fusableDependences; 748 DenseMap<Operation *, SmallVector<AffineMap, 1>> fusedProducerIndexingMap; 749 for (LinalgOp op : reverse(ops)) { 750 for (OpOperand *opOperand : op.getInputAndOutputOperands()) { 751 Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> 752 fusableDependence = findFusableProducer(*opOperand, dependenceGraph); 753 if (!fusableDependence) 754 continue; 755 LinalgOp producerOp = 756 dyn_cast<LinalgOp>(fusableDependence->getDependentOp()); 757 if (!producerOp) 758 continue; 759 // Do not fuse dependences that are to operations not in the same basic 760 // block. This avoid moving fused operations across loops that might 761 // themselves carry dependency making the fusion illegal. 762 if (producerOp->getBlock() != op->getBlock()) 763 continue; 764 765 // Make sure that the indexing map of the view used for fusion in the 766 // producer is a projected permutation. 767 Optional<AffineMap> producerMap = 768 fusableDependence->getDependentOpViewIndexingMap(); 769 Optional<AffineMap> consumerMap = 770 fusableDependence->getIndexingOpViewIndexingMap(); 771 assert( 772 consumerMap && 773 "unable to find indexing map of operand/result of indexing OpView"); 774 fusedProducerIndexingMap[producerOp.getOperation()].push_back( 775 *consumerMap); 776 if (!producerMap || !producerMap->isProjectedPermutation() || 777 !consumerMap->isProjectedPermutation()) 778 continue; 779 780 fusableDependences[producerOp.getOperation()].push_back( 781 *fusableDependence); 782 } 783 } 784 // TODO: Currently fusion would not be legal if the fusable dependence is to 785 // the same producer but different indexing map in the consumer. Fix this, but 786 // in the meanwhile disallow such a fusion. 787 for (auto useIndexingMapsList : fusedProducerIndexingMap) { 788 AffineMap map1 = useIndexingMapsList.second.front(); 789 for (AffineMap map2 : 790 ArrayRef<AffineMap>(useIndexingMapsList.second).drop_front()) { 791 if (map1 != map2) { 792 fusableDependences.erase(useIndexingMapsList.first); 793 break; 794 } 795 } 796 } 797 return fusableDependences; 798 } 799 800 /// Tile the fused loops in the root operation, by setting the tile sizes for 801 /// all other loops to zero (those will be tiled later). 802 static Optional<TiledLinalgOp> 803 tileRootOperation(OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizeVector, 804 const LinalgTilingOptions &options, 805 const std::set<unsigned> &fusedLoops) { 806 SmallVector<Value, 4> tileSizes(tileSizeVector.begin(), tileSizeVector.end()); 807 auto zero = b.create<ConstantIndexOp>(op.getLoc(), 0); 808 for (unsigned i = 0, e = tileSizes.size(); i != e; ++i) 809 if (!fusedLoops.count(i)) 810 tileSizes[i] = zero; 811 LinalgTilingOptions tileFusedLoopsOptions = options; 812 tileFusedLoopsOptions.setTileSizes(tileSizes); 813 return tileLinalgOp(b, op, tileFusedLoopsOptions); 814 } 815 816 /// Fuse the operations in `fusionCandidates` with `tiledOp`. Latter is expected 817 /// to be a tiled operation such that it is valid to fuse all operations in 818 /// `fusionCandidates`, i.e. move the operation within the inter-tile loops of 819 /// `tiledOp`. 820 static SmallVector<LinalgOp, 1> 821 fuseOperations(OpBuilder &b, LinalgOp rootOp, TiledLinalgOp tiledLinalgOp, 822 ArrayRef<LinalgOp> fusionCandidates, 823 const FusableOpDependencesTy &fusableDependences, 824 const std::set<unsigned> &fusedLoops) { 825 LinalgOp tiledOp = tiledLinalgOp.op; 826 OpBuilder::InsertionGuard guard(b); 827 b.setInsertionPoint(tiledOp); 828 829 DenseMap<unsigned, Range> fusedLoopsAndRanges; 830 for (unsigned loop : fusedLoops) { 831 ShapeDimension shapeDim = getShapeDefiningLoopRange(tiledOp, loop, true); 832 fusedLoopsAndRanges[loop] = getRangeFromOperandShape( 833 b, tiledOp.getLoc(), shapeDim.shape, shapeDim.dimension); 834 } 835 836 SmallVector<LinalgOp, 1> fusedOps(fusionCandidates.size()); 837 DenseMap<Operation *, LinalgOp> origOpToFusedOp; 838 origOpToFusedOp[rootOp.getOperation()] = tiledOp; 839 for (auto candidate : enumerate(llvm::reverse(fusionCandidates))) { 840 LinalgOp origOp = candidate.value(); 841 LinalgOp fusedOp = fuse(b, origOp, fusedLoopsAndRanges); 842 origOpToFusedOp[origOp.getOperation()] = fusedOp; 843 fusedOps[fusionCandidates.size() - candidate.index() - 1] = fusedOp; 844 845 // Prepare the builder for the next insertion point. 846 auto guard = llvm::make_scope_exit([&]() { b.setInsertionPoint(fusedOp); }); 847 if (!origOp.hasTensorSemantics()) 848 continue; 849 850 // If the producer consumer operations are linalg operations on tensors, the 851 // dependence is due to value produced (as a return tensor) by the producer 852 // and used in the consumer. The returned value of the fused op needs to be 853 // made the operand of the tiled/fused consumer operation. By construction 854 // the value returned by the producer is the value used by the consumer. 855 for (auto &dependence : fusableDependences.lookup(origOp.getOperation())) { 856 if (dependence.dependenceType != 857 LinalgDependenceGraph::DependenceType::RAW) 858 continue; 859 860 unsigned resultIndex = 861 dependence.getDependentOpViewResultNum().getValue(); 862 LinalgOp consumer = origOpToFusedOp.lookup(dependence.getIndexingOp()); 863 if (!consumer) 864 continue; 865 866 Value replacementValue = fusedOp.getOperation()->getResult(resultIndex); 867 consumer.getOperation()->setOperand( 868 dependence.getIndexingOpViewOperandNum().getValue(), 869 replacementValue); 870 } 871 872 // At this point, all Linalg uses of the tensors produced by `origOp` have 873 // been replaced. However, there may still be "output tensor"-like uses 874 // coming from WAW dependencies. 875 // All these uses are iter_args of the outermost loop (TODO: add a check). 876 // Such iter_args uses serve 2 purposes: 877 // 1. give a shape to the output 878 // 2. encode destructive updates that may be inplaceable by bufferization. 879 // To keep the second type of information while letting the unfused op die 880 // unused, we need to forward the producer output operand. 881 if (auto forOp = dyn_cast<scf::ForOp>(tiledLinalgOp.loops.front())) { 882 for (auto &operand : forOp.getIterOpOperands()) { 883 if (auto opResult = operand.get().dyn_cast<OpResult>()) { 884 if (opResult.getOwner() == origOp) { 885 Value output = 886 origOp.getOutputOperand(opResult.getResultNumber())->get(); 887 assert(output.getType().isa<RankedTensorType>()); 888 operand.set(output); 889 } 890 } 891 } 892 } 893 } 894 return fusedOps; 895 } 896 897 static Optional<TiledAndFusedLinalgOps> 898 tileAndFuseLinalgOpsImpl(OpBuilder &b, ArrayRef<LinalgOp> ops, 899 const LinalgDependenceGraph &dependenceGraph, 900 const LinalgTilingOptions &tilingOptions) { 901 if (ops.size() < 2) 902 return llvm::None; 903 LinalgOp rootOp = ops.back(); 904 if (!llvm::all_of( 905 ops, 906 [](LinalgOp linalgOp) { return linalgOp.hasBufferSemantics(); }) && 907 !llvm::all_of(ops, [](LinalgOp linalgOp) { 908 return linalgOp.hasTensorSemantics(); 909 })) { 910 rootOp.emitError( 911 "unable to fuse operations that have tensor semantics with operations " 912 "that have buffer semantics and viceversa."); 913 return llvm::None; 914 } 915 // TODO: Support interchange with tile + fuse. This might actually help do 916 // better fusion. 917 if (!tilingOptions.interchangeVector.empty()) { 918 rootOp.emitRemark("unable to handle tile and fuse with interchange"); 919 return llvm::None; 920 } 921 922 OpBuilder::InsertionGuard guard(b); 923 b.setInsertionPoint(rootOp); 924 925 // Find all the producers. 926 LLVM_DEBUG(llvm::dbgs() << "findAllFusableDependences\n"); 927 FusableOpDependencesTy fusableDependences = 928 findAllFusableDependences(ops, dependenceGraph); 929 if (fusableDependences.empty()) { 930 LLVM_DEBUG(llvm::dbgs() << "no fusable dependencies found\n"); 931 return llvm::None; 932 } 933 934 TiledAndFusedLinalgOps ret; 935 // Find the loops that can be tiled and fused. 936 LLVM_DEBUG(llvm::dbgs() << "collectFusableLoops\n"); 937 ret.fusedLoopDims = collectFusableLoops(ops, fusableDependences); 938 939 // If there are no fusable dependences or there are no tile+fusable loops, 940 // just return. 941 if (ret.fusedLoopDims.empty()) { 942 LLVM_DEBUG(llvm::dbgs() << "no fusable loops found\n"); 943 return llvm::None; 944 } 945 946 // Tile the fused loops in the last operation in the list. 947 SmallVector<Value, 4> tileSizeVector = 948 tilingOptions.tileSizeComputationFunction(b, rootOp); 949 Optional<TiledLinalgOp> tiledRootOp = tileRootOperation( 950 b, rootOp, tileSizeVector, tilingOptions, ret.fusedLoopDims); 951 if (!tiledRootOp) { 952 rootOp.emitRemark("failed to tile the fused loops"); 953 return llvm::None; 954 } 955 ret.op = tiledRootOp->op; 956 ret.fusedLoops.assign(tiledRootOp->loops.begin(), tiledRootOp->loops.end()); 957 958 // Fuse the other operations into the fused inter-tile loops produced above. 959 ret.fusedProducers = fuseOperations(b, rootOp, *tiledRootOp, ops.drop_back(), 960 fusableDependences, ret.fusedLoopDims); 961 962 return ret; 963 } 964 965 Optional<TiledAndFusedLinalgOps> 966 mlir::linalg::tileAndFuseLinalgOps(OpBuilder &b, ArrayRef<LinalgOp> ops, 967 const LinalgDependenceGraph &dependenceGraph, 968 const LinalgTilingOptions &tilingOptions) { 969 switch (tilingOptions.loopType) { 970 case LinalgTilingLoopType::Loops: 971 case LinalgTilingLoopType::ParallelLoops: 972 case LinalgTilingLoopType::TiledLoops: 973 return tileAndFuseLinalgOpsImpl(b, ops, dependenceGraph, tilingOptions); 974 default:; 975 } 976 return llvm::None; 977 } 978