1 //===- Fusion.cpp - Implementation of linalg Fusion -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Fusion pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Affine/IR/AffineOps.h" 15 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 17 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 18 #include "mlir/Dialect/Linalg/Passes.h" 19 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 20 #include "mlir/Dialect/Linalg/Utils/Utils.h" 21 #include "mlir/Dialect/MemRef/IR/MemRef.h" 22 #include "mlir/Dialect/Tensor/IR/Tensor.h" 23 #include "mlir/IR/AffineExpr.h" 24 #include "mlir/IR/AffineMap.h" 25 #include "mlir/IR/Dominance.h" 26 #include "mlir/Support/LLVM.h" 27 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 28 #include "mlir/Transforms/RegionUtils.h" 29 #include "llvm/ADT/MapVector.h" 30 #include "llvm/ADT/ScopeExit.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 34 #include <set> 35 36 #define DEBUG_TYPE "linalg-fusion" 37 38 using namespace mlir; 39 using namespace mlir::linalg; 40 41 using llvm::dbgs; 42 43 /// Implements a simple high-level fusion pass on linalg structured operations. 44 /// 45 /// In each block, linalg ops are processed in reverse textual order. 46 /// Given a linalg op `O`, fusion occurs by: 47 /// 1. inspecting the linalg ops that write into the views read by `O`. There 48 /// are 2 cases: 49 /// a) buffer case: use the SSA value of the views and a simple alias 50 /// analysis on subview ops to determine producer-consumer dependences; 51 /// b) tensor case: use SSA use-def chains on extract_slice ops; 52 /// 2. greedily fuse the linalg ops that produce the subview/extract_slice. 53 /// 3. inspect the fused ops and determine whether they have other remaining 54 /// LinalgOp uses. If not, then erase the original producing linalg op. 55 /// 56 /// More advanced use cases, analyses as well as profitability heuristics are 57 /// left for future work. 58 59 struct ShapeDimension { 60 Value shape; 61 unsigned dimension; 62 }; 63 64 // Given an `op`, returns the first (`shape`, `dimension`) pair that identifies 65 // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps 66 // guarantees at least one such dimension is found. If multiple candidates exist 67 // they must agree by construction (i.e. have the same size) and we just return 68 // the first one. 69 static ShapeDimension 70 getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth, 71 bool fromSubViewOpOnly = false) { 72 // Iterate over the inputs and outputs in order. 73 // Extract the subranges from the linearized ranges. 74 for (OpOperand *opOperand : op.getInputAndOutputOperands()) { 75 // The method `getRangeFromOperandShape` requires using SubViewOp or 76 // ExtractSliceOps. If the value isn't defined from there continue. 77 // todo: The method should be adapted to get the values from 78 // `ViewInterface`. The interface needs a `getOrCreateRanges` method which 79 // currently returns a `linalg.range`. The fix here is to move this op to 80 // `std` dialect and add the method to `ViewInterface`. 81 if (fromSubViewOpOnly && 82 !isa_and_nonnull<memref::SubViewOp, tensor::ExtractSliceOp>( 83 opOperand->get().getDefiningOp())) 84 continue; 85 86 AffineMap map = op.getTiedIndexingMap(opOperand); 87 LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange I/O idx: " 88 << opOperand->getOperandNumber() << "\n"); 89 LLVM_DEBUG(llvm::dbgs() 90 << "getShapeDefiningLoopRange map: " << map << "\n"); 91 SmallVector<Value, 8> shapeRanges(map.getNumResults(), nullptr); 92 for (auto en : llvm::enumerate(map.getResults())) { 93 auto dimExpr = en.value().dyn_cast<AffineDimExpr>(); 94 if (!dimExpr) 95 continue; 96 if (loopDepth == en.value().cast<AffineDimExpr>().getPosition()) { 97 LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: " 98 << loopDepth << "\n"); 99 LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange shape: " 100 << opOperand->get() << "\n"); 101 return ShapeDimension{opOperand->get(), 102 static_cast<unsigned>(en.index())}; 103 } 104 } 105 } 106 llvm_unreachable("Expect to be able to extract a shape defining loop range"); 107 } 108 109 // Return tiled operands for the fused producer op. When fusing into 110 // `linalg.tiled_loop` one has to update `input` and `output` arguments of the 111 // loop correspondingly. 112 // Each input tensor of the producer op has to be added to `inputs` of the 113 // `tiled_loop` if it is not present there already. Each output tensor has to 114 // be added either to `inputs` or to `outputs` of `linalg.tiled_loop` depending 115 // on whether the correponding result is an input or an output to the loop. 116 // 117 // NOTE: This way of updating the arguments of the `tiled_loop` assumes that the 118 // intermediate result is not used by any other operation but the consumer. A 119 // more generic way is to append all missing output tensors of the producer to 120 // the tiled loop outputs and hence modify the number of the results, since we 121 // would need to add the intermediate results to `linalg.yield`. After that a 122 // canonicalization pass would move the unused output args of the `tiled_loop` 123 // to the `input` section. 124 static SmallVector<Value> getTiledOperands(OpBuilder &b, LinalgOp producer) { 125 auto tiledLoop = dyn_cast<TiledLoopOp>(b.getBlock()->getParentOp()); 126 if (!tiledLoop) 127 return producer.getInputAndOutputOperands(); 128 129 SmallVector<Value> tiledOperands; 130 assert(producer.hasTensorSemantics() && 131 "only fusion on tensors is currently supported for TiledLinalgOp"); 132 133 for (OpOperand *producerInput : producer.getInputOperands()) { 134 OpOperand *addedInput = tiledLoop.findInputOperand(producerInput->get()); 135 if (addedInput == nullptr) 136 addedInput = &tiledLoop.appendInputOperand(b, producerInput->get()); 137 BlockArgument addedBlockArg = tiledLoop.getTiedBlockArgument(*addedInput); 138 tiledOperands.push_back(addedBlockArg); 139 } 140 for (OpOperand *producerOutput : producer.getOutputOperands()) { 141 OpResult result = producer.getTiedOpResult(producerOutput); 142 OpOperand *resultInputOperand = tiledLoop.findInputOperand(result); 143 OpOperand *resultOutputOperand = tiledLoop.findOutputOperand(result); 144 assert((resultInputOperand != nullptr) ^ (resultOutputOperand != nullptr) && 145 "The result should be present in `input` or `output` args of " 146 "`tiled_loop"); 147 148 bool isInput = resultInputOperand; 149 int opNumber = isInput ? resultInputOperand->getOperandNumber() 150 : resultOutputOperand->getOperandNumber(); 151 152 OpOperand *addedOutput = tiledLoop.findOutputOperand(producerOutput->get()); 153 if (addedOutput == nullptr) 154 addedOutput = 155 isInput ? &tiledLoop.appendInputOperand(b, producerOutput->get()) 156 : &tiledLoop.appendOutputOperand(b, producerOutput->get()); 157 158 OpOperand &resultOperand = tiledLoop->getOpOperand(opNumber); 159 auto addedBlockArg = tiledLoop.getTiedBlockArgument(*addedOutput); 160 auto resultOperandBlockArg = tiledLoop.getTiedBlockArgument(resultOperand); 161 resultOperandBlockArg.replaceAllUsesWith(addedBlockArg); 162 tiledLoop.eraseOperand(b, resultOperand); 163 tiledOperands.push_back(addedBlockArg); 164 } 165 return tiledOperands; 166 } 167 168 /// Fuses the producer by cloning the `producer`. The `fusedLoopsAndRanges` 169 /// provides the loop range information for the fused loops. The rest are 170 /// obtained from the producer itself, since they are not tiled + fused. 171 static LinalgOp fuse(OpBuilder &b, LinalgOp producer, 172 const DenseMap<unsigned, Range> &fusedLoopsAndRanges) { 173 SmallVector<Value, 8> ivs, tileSizes, sizeBounds; 174 SmallVector<Range, 8> loopRanges; 175 Location loc = producer.getLoc(); 176 auto zero = b.create<ConstantIndexOp>(loc, 0); 177 auto one = b.create<ConstantIndexOp>(loc, 1); 178 179 for (unsigned i = 0, e = producer.getNumLoops(); i < e; ++i) { 180 auto it = fusedLoopsAndRanges.find(i); 181 if (it != fusedLoopsAndRanges.end()) { 182 ivs.push_back(it->second.offset); 183 tileSizes.push_back(it->second.size); 184 sizeBounds.push_back(nullptr); 185 loopRanges.push_back(it->second); 186 LLVM_DEBUG(llvm::dbgs() << "tiled loop#" << i << " with LoopRange " 187 << loopRanges.back() << "\n"); 188 } else { 189 auto shapeDim = getShapeDefiningLoopRange(producer, i); 190 Value dim = createOrFoldDimOp(b, loc, shapeDim.shape, shapeDim.dimension); 191 tileSizes.push_back(zero); 192 sizeBounds.push_back(dim); 193 loopRanges.push_back(Range{zero, dim, one}); 194 LLVM_DEBUG(llvm::dbgs() << "full loop#" << i << " with LoopRange " 195 << loopRanges.back() << "\n"); 196 } 197 } 198 199 SmallVector<Value, 8> clonedShapes; 200 clonedShapes.reserve(producer.getNumInputsAndOutputs()); 201 202 // Compute subranges for all tensor input/output operands. 203 clonedShapes.append(makeTiledShapes(b, loc, producer, 204 getTiledOperands(b, producer), ivs, 205 tileSizes, sizeBounds)); 206 207 // Iterate over the results in order. 208 // Extract the subtensor type from the linearized range. 209 // Since we do not enforce any canonicalizations on the fly, this is always 210 // fully dynamic at construction time. 211 SmallVector<Type, 4> resultTypes; 212 resultTypes.reserve(producer->getNumResults()); 213 for (RankedTensorType t : producer.getOutputTensorTypes()) { 214 unsigned rank = t.getRank(); 215 SmallVector<int64_t, 4> staticOffsetsVector( 216 rank, ShapedType::kDynamicStrideOrOffset); 217 SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamicSize); 218 SmallVector<int64_t, 4> staticStridesVector( 219 rank, ShapedType::kDynamicStrideOrOffset); 220 resultTypes.push_back(tensor::ExtractSliceOp::inferResultType( 221 t.cast<RankedTensorType>(), staticOffsetsVector, staticSizesVector, 222 staticStridesVector)); 223 } 224 225 Operation *clonedOp = producer.clone(b, loc, resultTypes, clonedShapes); 226 // When the producer has index semantics, we have to transform the indices of 227 // the producer according to the tiling of the consumer, i.e. offset them by 228 // the values computed in `loopRanges`. 229 if (producer.hasIndexSemantics()) { 230 assert(clonedOp->getNumRegions() == 1 && 231 clonedOp->getRegion(0).getBlocks().size() == 1 && 232 "expected producer to have one block."); 233 // Shift all indices by the tile offset. 234 Block &block = clonedOp->getRegion(0).front(); 235 for (IndexOp indexOp : block.getOps<IndexOp>()) { 236 OpBuilder::InsertionGuard g(b); 237 b.setInsertionPointAfter(indexOp); 238 AffineExpr index, offset; 239 bindDims(b.getContext(), index, offset); 240 AffineApplyOp applyOp = b.create<AffineApplyOp>( 241 indexOp.getLoc(), index + offset, 242 ValueRange{indexOp.getResult(), loopRanges[indexOp.dim()].offset}); 243 indexOp.getResult().replaceAllUsesExcept(applyOp, applyOp); 244 } 245 } 246 247 return clonedOp; 248 } 249 250 /// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is 251 /// expected to be defined by a subview op or an extract_slice op. 252 static Range getRangeFromOperandShape(OpBuilder &b, Location loc, 253 Value shapedOperand, unsigned dim) { 254 Operation *shapeProducingOp = shapedOperand.getDefiningOp(); 255 if (auto subViewOp = dyn_cast<memref::SubViewOp>(shapeProducingOp)) 256 return subViewOp.getOrCreateRanges(b, loc)[dim]; 257 if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(shapeProducingOp)) 258 return sliceOp.getOrCreateRanges(b, loc)[dim]; 259 llvm_unreachable("SubviewOp or ExtractSliceOp expected"); 260 } 261 262 /// Fuses the producer into the loop immediately enclosing the consumer. 263 /// This is achieved by "recomputing" the producer at the time it 264 /// is needed just before the consumer. 265 static LinalgOp fuse(OpBuilder &b, LinalgOp producerOp, AffineMap producerMap, 266 OpOperand &consumerOpOperand) { 267 LLVM_DEBUG(llvm::dbgs() << "Producer map: " << producerMap << "\n"); 268 DenseMap<unsigned, Range> fusedLoopsAndRanges; 269 Value shapedOperand = consumerOpOperand.get(); 270 for (auto en : llvm::enumerate(producerMap.getResults())) { 271 unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition(); 272 fusedLoopsAndRanges[posInProducerLoop] = getRangeFromOperandShape( 273 b, consumerOpOperand.getOwner()->getLoc(), shapedOperand, en.index()); 274 } 275 return fuse(b, producerOp, fusedLoopsAndRanges); 276 } 277 278 // Encode structural fusion safety preconditions. 279 // Some of these will be lifted in the future with better analysis. 280 static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView, 281 LinalgOp consumer) { 282 assert(producer.hasBufferSemantics() && 283 "expected linalg op with buffer semantics"); 284 assert(consumer.hasBufferSemantics() && 285 "expected linalg op with buffer semantics"); 286 if (producer.getNumOutputs() != 1) { 287 LLVM_DEBUG(llvm::dbgs() << "\nNot structurally fusable (multi-output)"); 288 return false; 289 } 290 // Only fuse when the producer block dominates. 291 DominanceInfo dom(producer.getOperation()); 292 if (!dom.dominates(producer->getBlock(), consumer->getBlock())) { 293 LLVM_DEBUG( 294 llvm::dbgs() 295 << "\nNot structurally fusable (producer block does not dominate)"); 296 return false; 297 } 298 return true; 299 } 300 301 bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph, 302 LinalgOp consumer, 303 Value consumedView, 304 LinalgOp producer) { 305 assert(producer.hasBufferSemantics() && 306 "expected linalg op with buffer semantics"); 307 assert(consumer.hasBufferSemantics() && 308 "expected linalg op with buffer semantics"); 309 // Make some simple structural checks that alleviate the need for more 310 // complex analyses. 311 if (!isStructurallyFusableProducer(producer, consumedView, consumer)) { 312 LLVM_DEBUG(llvm::dbgs() << "\n***Not static last write due to structure:\t" 313 << *producer.getOperation()); 314 return false; 315 } 316 // Check for any interleaved write to consumedView. 317 if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) { 318 LLVM_DEBUG(llvm::dbgs() << "\n***Not fusable due to interleaved write:\t" 319 << *producer.getOperation()); 320 return false; 321 } 322 return true; 323 } 324 325 bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph, 326 LinalgOp consumer, Value consumedView, 327 LinalgOp producer) { 328 assert(producer.hasBufferSemantics() && 329 "expected linalg op with buffer semantics"); 330 assert(consumer.hasBufferSemantics() && 331 "expected linalg op with buffer semantics"); 332 if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer)) 333 return false; 334 // Check for any fusion-preventing dependence to any shape read/written that 335 // would violate dependences. 336 if (!graph.findCoveringDependences(producer, consumer).empty()) { 337 LLVM_DEBUG(llvm::dbgs() 338 << "\n***Not fusable due to an interleaved dependence:\t" 339 << *producer.getOperation()); 340 return false; 341 } 342 if (auto convOp = dyn_cast<linalg::ConvOp>(producer.getOperation())) { 343 // TODO: add a level of indirection to linalg.generic. 344 if (convOp.padding()) 345 return false; 346 } 347 if (auto convOp = dyn_cast<linalg::ConvOp>(consumer.getOperation())) { 348 // TODO: add a level of indirection to linalg.generic. 349 if (convOp.padding()) 350 return false; 351 } 352 return true; 353 } 354 355 /// For `consumer` with buffer semantics, find the Linalg operation on buffers 356 /// that is the last writer of `consumerOpOperand`. For now the fusable 357 /// dependence is returned as an instance of the `dependenceGraph`. 358 static Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> 359 findFusableProducer(OpOperand &consumerOpOperand, 360 const LinalgDependenceGraph &dependenceGraph) { 361 LLVM_DEBUG(llvm::dbgs() << "findFusableProducer for: " 362 << consumerOpOperand.get() << " @" 363 << consumerOpOperand.getOperandNumber() << " in " 364 << *consumerOpOperand.getOwner() << "\n"); 365 LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner()); 366 if (!consumerOp) 367 return {}; 368 369 // Only consider RAW and WAW atm. 370 for (auto depType : { 371 LinalgDependenceGraph::DependenceType::RAW, 372 LinalgDependenceGraph::DependenceType::WAW, 373 }) { 374 LLVM_DEBUG(llvm::dbgs() 375 << "Dependencies into: " << *consumerOp.getOperation() << "\n"); 376 for (auto dependence : llvm::make_filter_range( 377 dependenceGraph.getDependencesInto(consumerOp, depType), 378 [&](LinalgDependenceGraph::LinalgDependenceGraphElem elem) { 379 LLVM_DEBUG(llvm::dbgs() << "Inspect dependence btw: " 380 << elem.getIndexingValue() << " and " 381 << elem.getDependentValue() << "\n"); 382 Value v = elem.getIndexingValue(); 383 Optional<unsigned> operandNum = 384 elem.getIndexingOpViewOperandNum(); 385 return isa<LinalgOp>(elem.getDependentOp()) && 386 v == consumerOpOperand.get() && operandNum && 387 operandNum.getValue() == 388 consumerOpOperand.getOperandNumber(); 389 })) { 390 // Consumer consumes this view, `isStructurallyFusableProducer` also 391 // checks whether it is a strict subview of the producer view. 392 auto producer = cast<LinalgOp>(dependence.getDependentOp()); 393 LLVM_DEBUG(llvm::dbgs() 394 << "\n" 395 << LinalgDependenceGraph::getDependenceTypeStr(depType) 396 << "producer: " << *dependence.getDependentOp() 397 << " view: " << dependence.getDependentValue() << "\n"); 398 399 // If the producer and consumer have tensor semantics, the only dependence 400 // between them is through a RAW dependence and they are fusable by 401 // construction. For buffer semantics need additional checks. 402 if (producer.hasBufferSemantics() && consumerOp.hasBufferSemantics() && 403 isFusableInto(dependenceGraph, consumerOp, consumerOpOperand.get(), 404 producer)) 405 return dependence; 406 if (producer.hasTensorSemantics() && consumerOp.hasTensorSemantics()) { 407 assert(dependence.dependenceType == 408 LinalgDependenceGraph::DependenceType::RAW); 409 return dependence; 410 } 411 } 412 } 413 return {}; 414 } 415 416 Optional<FusionInfo> 417 mlir::linalg::fuseProducerOfBuffer(OpBuilder &b, OpOperand &consumerOpOperand, 418 const LinalgDependenceGraph &graph) { 419 Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependence = 420 findFusableProducer(consumerOpOperand, graph); 421 if (!fusableDependence) 422 return llvm::None; 423 424 LinalgOp producerOp = dyn_cast<LinalgOp>(fusableDependence->getDependentOp()); 425 if (!producerOp) 426 return llvm::None; 427 428 // If producer is already in the same block as consumer, we are done. 429 if (consumerOpOperand.get().getParentBlock() == 430 fusableDependence->getDependentValue().getParentBlock()) 431 return llvm::None; 432 433 Optional<AffineMap> producerMap = 434 fusableDependence->getDependentOpViewIndexingMap(); 435 if (!producerMap) 436 return llvm::None; 437 438 // Must be a subview or an extract_slice to guarantee there are loops we can 439 // fuse into. 440 auto subView = consumerOpOperand.get().getDefiningOp<memref::SubViewOp>(); 441 if (!subView) { 442 LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subview)"); 443 return llvm::None; 444 } 445 446 // Fuse `producer` just before `consumer`. 447 OpBuilder::InsertionGuard g(b); 448 b.setInsertionPoint(consumerOpOperand.getOwner()); 449 LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " 450 << *consumerOpOperand.getOwner() << "\n"); 451 452 auto fusedProducer = fuse(b, producerOp, *producerMap, consumerOpOperand); 453 return FusionInfo{producerOp, fusedProducer}; 454 } 455 456 /// Walk back use-def chain through scf::For yields. 457 /// Sets `producer` and `outputIndex` if it finds a producer LinalgOp 458 459 // TODO(ravishankarm, ntv): This can be moved into the dependence graphs 460 // dependence tracking since the dependence tracking is similar to what is done 461 // w.r.t to buffers. 462 static void getProducerOfTensor(Value tensor, OpResult &opResult) { 463 if (!tensor.getType().isa<RankedTensorType>()) 464 return; 465 466 while (true) { 467 LLVM_DEBUG(llvm::dbgs() << "\ngetProducerOfTensor: " << tensor); 468 if (auto linalgOp = tensor.getDefiningOp<LinalgOp>()) { 469 opResult = tensor.cast<OpResult>(); 470 return; 471 } 472 if (auto sliceOp = tensor.getDefiningOp<tensor::ExtractSliceOp>()) { 473 tensor = sliceOp.source(); 474 continue; 475 } 476 if (auto blockArg = tensor.dyn_cast<BlockArgument>()) { 477 if (auto forOp = blockArg.getDefiningOp<scf::ForOp>()) { 478 tensor = *(forOp.getIterOperands().begin() + blockArg.getArgNumber()); 479 continue; 480 } 481 } 482 return; 483 } 484 } 485 486 Optional<FusionInfo> 487 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpOperand &consumerOpOperand) { 488 Value inputTensor = consumerOpOperand.get(); 489 OpResult producerOpResult; 490 getProducerOfTensor(inputTensor, producerOpResult); 491 if (!producerOpResult) { 492 LLVM_DEBUG(llvm::dbgs() << "\nUnable to find producer"); 493 return {}; 494 } 495 return fuseProducerOfTensor(b, producerOpResult, consumerOpOperand); 496 } 497 498 Optional<FusionInfo> 499 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpResult producerOpResult, 500 OpOperand &consumerOpOperand) { 501 auto producerOp = dyn_cast<LinalgOp>(producerOpResult.getOwner()); 502 if (!producerOp) 503 return llvm::None; 504 505 LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner()); 506 if (!consumerOp) 507 return llvm::None; 508 509 Value inputTensor = consumerOpOperand.get(); 510 511 // Must be an extract_slice op to guarantee there are loops we can fuse into. 512 auto sliceOp = inputTensor.getDefiningOp<tensor::ExtractSliceOp>(); 513 if (!sliceOp) { 514 LLVM_DEBUG(llvm::dbgs() 515 << "\nNot fusable, not an extract_slice op: " << inputTensor); 516 return {}; 517 } 518 519 // If producer is already in the same block as consumer, we are done. 520 if (consumerOpOperand.get().getParentBlock() == 521 producerOpResult.getParentBlock()) 522 return {}; 523 524 // Insert fused `producer` just before `consumer`. 525 OpBuilder::InsertionGuard g(b); 526 b.setInsertionPoint(consumerOp); 527 LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumerOp << "\n"); 528 OpOperand *opOperand = 529 producerOp.getOutputOperand(producerOpResult.getResultNumber()); 530 LinalgOp fusedProducer = 531 fuse(b, producerOp, producerOp.getTiedIndexingMap(opOperand), 532 consumerOpOperand); 533 534 // Replace use. 535 // Canonicalizations are not guaranteed to have happened before constructing 536 // `fusedProducer`. In the tensor case this can result in temporary type 537 // mismatches. Insert a `tensor.cast` op to propagate the transformation 538 // invariant that types are compatible. 539 Value def = fusedProducer->getResult(producerOpResult.getResultNumber()); 540 Type consumerType = consumerOpOperand.get().getType(); 541 if (consumerType != def.getType()) 542 def = b.create<tensor::CastOp>(fusedProducer.getLoc(), consumerType, def); 543 consumerOpOperand.set(def); 544 return FusionInfo{cast<LinalgOp>(producerOpResult.getOwner()), fusedProducer}; 545 } 546 547 /// Prune all dimensions that are of reduction iterator type from `map`. 548 static AffineMap pruneReductionDimsFromMap(ArrayRef<Attribute> iteratorTypes, 549 AffineMap map) { 550 llvm::SmallDenseSet<unsigned> projectedDims; 551 for (auto attr : llvm::enumerate(iteratorTypes)) { 552 if (!isParallelIterator(attr.value())) 553 projectedDims.insert(attr.index()); 554 } 555 return getProjectedMap(map, projectedDims); 556 } 557 558 /// Returns the mapping from iterations in the consumer that write to the same 559 /// location as the iterations in the producer. To do so use 560 /// - indexing map of the fused view in the consumer : consumerIndexMap 561 /// - indexing map of the fused view in the producer : producerIndexMap 562 /// consumerLoopToProducerLoop = 563 /// inverse(producerIndexMap).compose(consumerIndexMap) 564 static Optional<AffineMap> getConsumerLoopToProducerLoopMap( 565 LinalgDependenceGraph::LinalgDependenceGraphElem dependence) { 566 auto producer = dyn_cast<LinalgOp>(dependence.getDependentOp()); 567 if (!producer) 568 return None; 569 570 Optional<AffineMap> producerIndexingMap = 571 dependence.getDependentOpViewIndexingMap(); 572 Optional<AffineMap> consumerIndexingMap = 573 dependence.getIndexingOpViewIndexingMap(); 574 if (!producerIndexingMap || !consumerIndexingMap) 575 return None; 576 577 AffineMap prunedProducerIndexingMap = pruneReductionDimsFromMap( 578 producer.iterator_types().getValue(), *producerIndexingMap); 579 if (!prunedProducerIndexingMap.isPermutation()) 580 return None; 581 582 if (consumerIndexingMap->getNumResults() != 583 prunedProducerIndexingMap.getNumResults()) 584 return None; 585 586 LLVM_DEBUG({ 587 llvm::dbgs() << "\t producerMap : "; 588 producerIndexingMap->print(llvm::dbgs()); 589 llvm::dbgs() << " pruned : "; 590 prunedProducerIndexingMap.print(llvm::dbgs()); 591 llvm::dbgs() << "\n"; 592 llvm::dbgs() << "\t consumerMap : "; 593 consumerIndexingMap->print(llvm::dbgs()); 594 llvm::dbgs() << "\n"; 595 }); 596 597 AffineMap invProducerIndexMap = inversePermutation(prunedProducerIndexingMap); 598 if (!invProducerIndexMap) 599 return None; 600 601 return invProducerIndexMap.compose(*consumerIndexingMap); 602 } 603 604 /// Given a projected permutation `map`, returns true if the map changes the 605 /// order in which the fused loop dimension appear. 606 static bool doesTransposeAccess(AffineMap map, 607 const std::set<unsigned> &fusableLoops) { 608 Optional<unsigned> lastFusableLoop; 609 for (unsigned pos : llvm::map_range(map.getResults(), [](AffineExpr expr) { 610 return expr.cast<AffineDimExpr>().getPosition(); 611 })) { 612 if (!fusableLoops.count(pos)) 613 continue; 614 if (!lastFusableLoop) { 615 lastFusableLoop = pos; 616 continue; 617 } 618 if (pos <= lastFusableLoop.getValue()) 619 return true; 620 lastFusableLoop = pos; 621 } 622 return false; 623 } 624 625 /// Returns the positions of the loop in `op` that can be tiled based on the 626 /// operations that are to be fused with it. For example, in a 627 /// 628 /// linalg.matmul ins(%a, %b : ...) outs(%c : ...) 629 /// 630 /// if the producer of %a needs to be fused with this op, only the `i` loop of 631 /// the matmul can be tiled while fusing. If producer of %a, and %b are to be 632 /// fused, then no loops can be tiled while fusing. The conditions used are: 633 /// 1. Only parallel loops can be used for tile + fuse. Find the number of 634 /// common outer parallel loops between the op and its producers being fused. 635 /// 2. Of the parallel loops only some can be fused. Only those loops can be 636 /// fused such where the fusable loops iteration space only touches one tile 637 /// of the fused operation. This is because the producer (which is writing 638 /// the fused subview) has update semantics. 639 /// 640 /// Since an inverse computation is needed, we need to consider the projection 641 /// of the producerIndexMap w.r.t the parallel loops. The actual fusable loops 642 /// are the dimensions of the consumerLoopToProducerLoop map that correspond to 643 /// parallel loops and appear in the result of the map 644 /// 645 /// Example 1: 646 /// linalg.fill(%cst, %c) 647 /// linalg.matmul ins(%a, %b) outs(%c) 648 /// Number of parallel loops : 2 649 /// producerIndexMap = affine_map<(i, j) ->(i , j)> 650 /// consumerIndexMap = affine_map<(i, j, k) -> (i, j)> 651 /// consumerLoopToProducerLoop = affine_map<(i, j, k) -> (i, j)> 652 /// Fused dimensions : i, j 653 /// 654 /// Example 2: 655 /// linalg.matmul ins(%a, %b) outs(%c) 656 /// linalg.generic {indexing_maps = [affine_map<(i, j) -> (j, i)>, ... 657 /// iterator_types = ["parallel", "parallel"]} 658 /// ins(%c) ... 659 /// 660 /// Number of parallel loops = 2: 661 /// producerIndexMap (projected to parallel loops) = 662 /// affine_map<(i, j) -> (i, j)> 663 /// consumerLoopToProducerLoop2 = affine_map<(i, j) -> (j, i)> 664 /// Fused dimensions : i, j 665 /// 666 /// Example 3: 667 /// linalg.copy(%s, %b) 668 /// linalg.matmul ins(%a, %b) outs(%c) 669 /// 670 /// Number of parallel loops = 2 671 /// produceIndexMap : affine_map<(i, j) -> (i, j)> 672 /// consumerLoopToProduceLoops = affine_map<(i, j, k) -> (k, j)> 673 /// submap with only parallel loops = affine_map<(i, j) -> (j)> 674 /// Fused dimensions : j 675 static std::set<unsigned> 676 collectFusableLoops(ArrayRef<LinalgOp> ops, 677 const FusableOpDependencesTy &fusableDependences) { 678 assert(!ops.empty()); 679 auto getNumOuterParallelLoops = [](LinalgOp linalgOp) { 680 return linalgOp.iterator_types() 681 .getValue() 682 .take_while([](Attribute attr) -> bool { 683 return attr.cast<StringAttr>().getValue() == 684 getParallelIteratorTypeName(); 685 }) 686 .size(); 687 }; 688 689 size_t numOuterParallelLoops = getNumOuterParallelLoops(ops.back()); 690 for (auto op : ops.drop_back()) { 691 numOuterParallelLoops = 692 std::min(numOuterParallelLoops, getNumOuterParallelLoops(op)); 693 } 694 695 std::set<unsigned> fusableLoops; 696 auto range = llvm::seq<unsigned>(0, numOuterParallelLoops); 697 fusableLoops.insert(range.begin(), range.end()); 698 699 for (auto op : reverse(ops)) { 700 for (auto dependence : fusableDependences.lookup(op)) { 701 LLVM_DEBUG({ 702 llvm::dbgs() << "\t fusable :"; 703 for (unsigned i : fusableLoops) 704 llvm::dbgs() << " " << i; 705 llvm::dbgs() << "\n"; 706 }); 707 708 Optional<AffineMap> consumerLoopToProducerLoop = 709 getConsumerLoopToProducerLoopMap(dependence); 710 if (!consumerLoopToProducerLoop) { 711 op.emitRemark("failed to get map from consumer loop to producer loop"); 712 return {}; 713 } 714 // todo: This condition is only an implementation limitation. When fusing 715 // the operation, if the accesses in the producer/consumer are transposes 716 // of each other, the loop bounds for the tiled producer can be 717 // manipulated accordingly. This requires some additional bookkeeping in 718 // the implementation of tile+fuse that is deferred to later. 719 if (doesTransposeAccess(*consumerLoopToProducerLoop, fusableLoops)) { 720 op.emitRemark("unhandled fusion when fusion requires permutation"); 721 return {}; 722 } 723 724 std::set<unsigned> candidates; 725 for (AffineExpr expr : consumerLoopToProducerLoop->getResults()) { 726 unsigned position = expr.cast<AffineDimExpr>().getPosition(); 727 if (fusableLoops.count(position)) 728 candidates.insert(position); 729 } 730 LLVM_DEBUG({ 731 llvm::dbgs() << "\t candidates :"; 732 for (unsigned i : candidates) 733 llvm::dbgs() << " " << i; 734 llvm::dbgs() << "\n"; 735 }); 736 if (candidates.empty()) 737 return {}; 738 std::swap(candidates, fusableLoops); 739 } 740 } 741 742 return fusableLoops; 743 } 744 745 /// Find all dependences that are fusable. 746 FusableOpDependencesTy mlir::linalg::findAllFusableDependences( 747 ArrayRef<LinalgOp> ops, const LinalgDependenceGraph &dependenceGraph) { 748 FusableOpDependencesTy fusableDependences; 749 DenseMap<Operation *, SmallVector<AffineMap, 1>> fusedProducerIndexingMap; 750 for (LinalgOp op : reverse(ops)) { 751 for (OpOperand *opOperand : op.getInputAndOutputOperands()) { 752 Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> 753 fusableDependence = findFusableProducer(*opOperand, dependenceGraph); 754 if (!fusableDependence) 755 continue; 756 LinalgOp producerOp = 757 dyn_cast<LinalgOp>(fusableDependence->getDependentOp()); 758 if (!producerOp) 759 continue; 760 // Do not fuse dependences that are to operations not in the same basic 761 // block. This avoid moving fused operations across loops that might 762 // themselves carry dependency making the fusion illegal. 763 if (producerOp->getBlock() != op->getBlock()) 764 continue; 765 766 // Make sure that the indexing map of the view used for fusion in the 767 // producer is a projected permutation. 768 Optional<AffineMap> producerMap = 769 fusableDependence->getDependentOpViewIndexingMap(); 770 Optional<AffineMap> consumerMap = 771 fusableDependence->getIndexingOpViewIndexingMap(); 772 assert( 773 consumerMap && 774 "unable to find indexing map of operand/result of indexing OpView"); 775 fusedProducerIndexingMap[producerOp.getOperation()].push_back( 776 *consumerMap); 777 if (!producerMap || !producerMap->isProjectedPermutation() || 778 !consumerMap->isProjectedPermutation()) 779 continue; 780 781 fusableDependences[producerOp.getOperation()].push_back( 782 *fusableDependence); 783 } 784 } 785 // TODO: Currently fusion would not be legal if the fusable dependence is to 786 // the same producer but different indexing map in the consumer. Fix this, but 787 // in the meanwhile disallow such a fusion. 788 for (auto useIndexingMapsList : fusedProducerIndexingMap) { 789 AffineMap map1 = useIndexingMapsList.second.front(); 790 for (AffineMap map2 : 791 ArrayRef<AffineMap>(useIndexingMapsList.second).drop_front()) { 792 if (map1 != map2) { 793 fusableDependences.erase(useIndexingMapsList.first); 794 break; 795 } 796 } 797 } 798 return fusableDependences; 799 } 800 801 /// Tile the fused loops in the root operation, by setting the tile sizes for 802 /// all other loops to zero (those will be tiled later). 803 static Optional<TiledLinalgOp> 804 tileRootOperation(OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizeVector, 805 const LinalgTilingOptions &options, 806 const std::set<unsigned> &fusedLoops) { 807 SmallVector<Value, 4> tileSizes(tileSizeVector.begin(), tileSizeVector.end()); 808 auto zero = b.create<ConstantIndexOp>(op.getLoc(), 0); 809 for (unsigned i = 0, e = tileSizes.size(); i != e; ++i) 810 if (!fusedLoops.count(i)) 811 tileSizes[i] = zero; 812 LinalgTilingOptions tileFusedLoopsOptions = options; 813 tileFusedLoopsOptions.setTileSizes(tileSizes); 814 return tileLinalgOp(b, op, tileFusedLoopsOptions); 815 } 816 817 /// Fuse the operations in `fusionCandidates` with `tiledOp`. Latter is expected 818 /// to be a tiled operation such that it is valid to fuse all operations in 819 /// `fusionCandidates`, i.e. move the operation within the inter-tile loops of 820 /// `tiledOp`. 821 static SmallVector<LinalgOp, 1> 822 fuseOperations(OpBuilder &b, LinalgOp rootOp, TiledLinalgOp tiledLinalgOp, 823 ArrayRef<LinalgOp> fusionCandidates, 824 const FusableOpDependencesTy &fusableDependences, 825 const std::set<unsigned> &fusedLoops) { 826 LinalgOp tiledOp = tiledLinalgOp.op; 827 OpBuilder::InsertionGuard guard(b); 828 b.setInsertionPoint(tiledOp); 829 830 DenseMap<unsigned, Range> fusedLoopsAndRanges; 831 for (unsigned loop : fusedLoops) { 832 ShapeDimension shapeDim = getShapeDefiningLoopRange(tiledOp, loop, true); 833 fusedLoopsAndRanges[loop] = getRangeFromOperandShape( 834 b, tiledOp.getLoc(), shapeDim.shape, shapeDim.dimension); 835 } 836 837 SmallVector<LinalgOp, 1> fusedOps(fusionCandidates.size()); 838 DenseMap<Operation *, LinalgOp> origOpToFusedOp; 839 origOpToFusedOp[rootOp.getOperation()] = tiledOp; 840 for (auto candidate : enumerate(llvm::reverse(fusionCandidates))) { 841 LinalgOp origOp = candidate.value(); 842 LinalgOp fusedOp = fuse(b, origOp, fusedLoopsAndRanges); 843 origOpToFusedOp[origOp.getOperation()] = fusedOp; 844 fusedOps[fusionCandidates.size() - candidate.index() - 1] = fusedOp; 845 846 // Prepare the builder for the next insertion point. 847 auto guard = llvm::make_scope_exit([&]() { b.setInsertionPoint(fusedOp); }); 848 if (!origOp.hasTensorSemantics()) 849 continue; 850 851 // If the producer consumer operations are linalg operations on tensors, the 852 // dependence is due to value produced (as a return tensor) by the producer 853 // and used in the consumer. The returned value of the fused op needs to be 854 // made the operand of the tiled/fused consumer operation. By construction 855 // the value returned by the producer is the value used by the consumer. 856 for (auto &dependence : fusableDependences.lookup(origOp.getOperation())) { 857 if (dependence.dependenceType != 858 LinalgDependenceGraph::DependenceType::RAW) 859 continue; 860 861 unsigned resultIndex = 862 dependence.getDependentOpViewResultNum().getValue(); 863 LinalgOp consumer = origOpToFusedOp.lookup(dependence.getIndexingOp()); 864 if (!consumer) 865 continue; 866 867 Value replacementValue = fusedOp.getOperation()->getResult(resultIndex); 868 consumer.getOperation()->setOperand( 869 dependence.getIndexingOpViewOperandNum().getValue(), 870 replacementValue); 871 } 872 873 // At this point, all Linalg uses of the tensors produced by `origOp` have 874 // been replaced. However, there may still be "output tensor"-like uses 875 // coming from WAW dependencies. 876 // All these uses are iter_args of the outermost loop (TODO: add a check). 877 // Such iter_args uses serve 2 purposes: 878 // 1. give a shape to the output 879 // 2. encode destructive updates that may be inplaceable by bufferization. 880 // To keep the second type of information while letting the unfused op die 881 // unused, we need to forward the producer output operand. 882 if (auto forOp = dyn_cast<scf::ForOp>(tiledLinalgOp.loops.front())) { 883 for (auto &operand : forOp.getIterOpOperands()) { 884 if (auto opResult = operand.get().dyn_cast<OpResult>()) { 885 if (opResult.getOwner() == origOp) { 886 Value output = 887 origOp.getOutputOperand(opResult.getResultNumber())->get(); 888 assert(output.getType().isa<RankedTensorType>()); 889 operand.set(output); 890 } 891 } 892 } 893 } 894 } 895 return fusedOps; 896 } 897 898 static Optional<TiledAndFusedLinalgOps> 899 tileAndFuseLinalgOpsImpl(OpBuilder &b, ArrayRef<LinalgOp> ops, 900 const LinalgDependenceGraph &dependenceGraph, 901 const LinalgTilingOptions &tilingOptions) { 902 if (ops.size() < 2) 903 return llvm::None; 904 LinalgOp rootOp = ops.back(); 905 if (!llvm::all_of( 906 ops, 907 [](LinalgOp linalgOp) { return linalgOp.hasBufferSemantics(); }) && 908 !llvm::all_of(ops, [](LinalgOp linalgOp) { 909 return linalgOp.hasTensorSemantics(); 910 })) { 911 rootOp.emitError( 912 "unable to fuse operations that have tensor semantics with operations " 913 "that have buffer semantics and viceversa."); 914 return llvm::None; 915 } 916 // TODO: Support interchange with tile + fuse. This might actually help do 917 // better fusion. 918 if (!tilingOptions.interchangeVector.empty()) { 919 rootOp.emitRemark("unable to handle tile and fuse with interchange"); 920 return llvm::None; 921 } 922 923 OpBuilder::InsertionGuard guard(b); 924 b.setInsertionPoint(rootOp); 925 926 // Find all the producers. 927 LLVM_DEBUG(llvm::dbgs() << "findAllFusableDependences\n"); 928 FusableOpDependencesTy fusableDependences = 929 findAllFusableDependences(ops, dependenceGraph); 930 if (fusableDependences.empty()) { 931 LLVM_DEBUG(llvm::dbgs() << "no fusable dependencies found\n"); 932 return llvm::None; 933 } 934 935 TiledAndFusedLinalgOps ret; 936 // Find the loops that can be tiled and fused. 937 LLVM_DEBUG(llvm::dbgs() << "collectFusableLoops\n"); 938 ret.fusedLoopDims = collectFusableLoops(ops, fusableDependences); 939 940 // If there are no fusable dependences or there are no tile+fusable loops, 941 // just return. 942 if (ret.fusedLoopDims.empty()) { 943 LLVM_DEBUG(llvm::dbgs() << "no fusable loops found\n"); 944 return llvm::None; 945 } 946 947 // Tile the fused loops in the last operation in the list. 948 SmallVector<Value, 4> tileSizeVector = 949 tilingOptions.tileSizeComputationFunction(b, rootOp); 950 Optional<TiledLinalgOp> tiledRootOp = tileRootOperation( 951 b, rootOp, tileSizeVector, tilingOptions, ret.fusedLoopDims); 952 if (!tiledRootOp) { 953 rootOp.emitRemark("failed to tile the fused loops"); 954 return llvm::None; 955 } 956 ret.op = tiledRootOp->op; 957 ret.fusedLoops.assign(tiledRootOp->loops.begin(), tiledRootOp->loops.end()); 958 959 // Fuse the other operations into the fused inter-tile loops produced above. 960 ret.fusedProducers = fuseOperations(b, rootOp, *tiledRootOp, ops.drop_back(), 961 fusableDependences, ret.fusedLoopDims); 962 963 return ret; 964 } 965 966 Optional<TiledAndFusedLinalgOps> 967 mlir::linalg::tileAndFuseLinalgOps(OpBuilder &b, ArrayRef<LinalgOp> ops, 968 const LinalgDependenceGraph &dependenceGraph, 969 const LinalgTilingOptions &tilingOptions) { 970 switch (tilingOptions.loopType) { 971 case LinalgTilingLoopType::Loops: 972 case LinalgTilingLoopType::ParallelLoops: 973 case LinalgTilingLoopType::TiledLoops: 974 return tileAndFuseLinalgOpsImpl(b, ops, dependenceGraph, tilingOptions); 975 default:; 976 } 977 return llvm::None; 978 } 979