xref: /llvm-project/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp (revision a5b9316b24ce1de54ae3ab7a5254f0219fee12ac)
1 //===- Fusion.cpp - Implementation of linalg Fusion -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Fusion pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Analysis/Dominance.h"
15 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
16 #include "mlir/Dialect/Linalg/EDSC/Intrinsics.h"
17 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
18 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
19 #include "mlir/Dialect/Linalg/Passes.h"
20 #include "mlir/Dialect/Linalg/Utils/Utils.h"
21 #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
22 #include "mlir/IR/AffineExpr.h"
23 #include "mlir/IR/AffineMap.h"
24 #include "mlir/IR/PatternMatch.h"
25 #include "mlir/Support/LLVM.h"
26 #include "mlir/Support/STLExtras.h"
27 #include "mlir/Transforms/FoldUtils.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 
32 #define DEBUG_TYPE "linalg-fusion"
33 
34 using namespace mlir;
35 using namespace mlir::edsc;
36 using namespace mlir::edsc::intrinsics;
37 using namespace mlir::linalg;
38 
39 using folded_std_constant_index = folded::ValueBuilder<ConstantIndexOp>;
40 
41 using llvm::dbgs;
42 
43 /// Implements a simple high-level fusion pass of linalg library operations.
44 ///
45 /// In each block, linalg ops are processed in reverse textual order.
46 /// Given a linalg op `O`, fusion occurs by:
47 ///   1. inspecting the linalg ops that write into the views read by `O`. This
48 ///      uses the SSA value of the views and a simple subview/slice analysis to
49 ///      determine producer-consumer dependences;
50 ///   2. greedily fuse the linalg ops that produce subview
51 ///   3. inspect the fused ops and determine whether they have other remaining
52 ///      LinalgOp uses. If not, then erase the original producing linalg op.
53 ///
54 /// More advanced use cases, analyses as well as profitability heuristics are
55 /// left for future work.
56 
57 // Return a cloned version of `op` that operates on `loopRanges`, assumed to be
58 // a subset of the original loop ranges of `op`.
59 // This is achieved by applying the `loopToOperandRangesMaps` permutation maps
60 // to the `loopRanges` in order to obtain view ranges.
61 static LinalgOp cloneWithLoopRanges(OpBuilder &b, Location loc, LinalgOp op,
62                                     ArrayRef<SubViewOp::Range> loopRanges) {
63   assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
64   auto maps = op.indexing_maps();
65   SmallVector<Value, 8> clonedViews;
66   clonedViews.reserve(op.getNumInputsAndOutputs());
67   // Iterate over the inputs and outputs in order.
68   // Extract the subranges from the linearized ranges.
69   SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers());
70   for (auto en : llvm::enumerate(ios)) {
71     unsigned idx = en.index();
72     auto map = maps[idx].cast<AffineMapAttr>().getValue();
73     LLVM_DEBUG(dbgs() << "map: " << map << "\n");
74     Value view = en.value();
75     SmallVector<SubViewOp::Range, 4> viewRanges(map.getNumResults());
76     for (auto en2 : llvm::enumerate(map.getResults())) {
77       unsigned d = en2.index();
78       // loopToOperandRangesMaps are permutations-only.
79       unsigned loopPos = en2.value().cast<AffineDimExpr>().getPosition();
80       viewRanges[d] = loopRanges[loopPos];
81       LLVM_DEBUG(dbgs() << "\ni,j: " << en.index() << ", " << en2.index()
82                         << "\t"
83                         << "loopPos: " << loopPos << "\t" << viewRanges[d]);
84     }
85     // Construct a new subview for the tile.
86     unsigned rank = viewRanges.size();
87     SmallVector<Value, 4> offsets, sizes, strides;
88     offsets.reserve(rank);
89     sizes.reserve(rank);
90     strides.reserve(rank);
91     for (auto r : viewRanges) {
92       offsets.push_back(r.offset);
93       sizes.push_back(r.size);
94       strides.push_back(r.stride);
95     }
96     clonedViews.push_back(
97         b.create<SubViewOp>(loc, view, offsets, sizes, strides));
98   }
99   auto operands = getAssumedNonViewOperands(op);
100   clonedViews.append(operands.begin(), operands.end());
101   return op.clone(b, loc, clonedViews);
102 }
103 
104 struct ViewDimension {
105   Value view;
106   unsigned dimension;
107 };
108 
109 // Given an `op`, returns the first (`view`, `dimension`) pair that identifies
110 // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps
111 // guarantees at least one such dimension is found. If multiple candidates exist
112 // they must agree by construction (i.e. have the same size) and we just return
113 // the first one.
114 static ViewDimension getViewDefiningLoopRange(LinalgOp op, unsigned loopDepth) {
115   assert(op.hasBufferSemantics() && "expected linalg op with buffer semantics");
116   auto maps = op.indexing_maps();
117   // Iterate over the inputs and outputs in order.
118   // Extract the subranges from the linearized ranges.
119   SmallVector<Value, 8> ios(op.getInputsAndOutputBuffers());
120   for (auto en : llvm::enumerate(ios)) {
121     unsigned idx = en.index();
122     auto map = maps[idx].cast<AffineMapAttr>().getValue();
123     LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange I/O idx: " << idx << "\n");
124     LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange map: " << map << "\n");
125     Value view = en.value();
126     SmallVector<Value, 8> viewRanges(map.getNumResults(), nullptr);
127     for (auto en2 : llvm::enumerate(map.getResults())) {
128       if (loopDepth == en2.value().cast<AffineDimExpr>().getPosition()) {
129         LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange loopDepth: " << loopDepth
130                           << "\n");
131         LLVM_DEBUG(dbgs() << "getViewDefiningLoopRange view: " << view << "\n");
132         return ViewDimension{view, static_cast<unsigned>(en2.index())};
133       }
134     }
135   }
136   llvm_unreachable("Expect to be able to extract a view defining loop range");
137 }
138 
139 static LinalgOp fuse(Value producedView, LinalgOp producer, LinalgOp consumer,
140                      unsigned consumerIdx, unsigned producerIdx,
141                      OperationFolder *folder) {
142   assert(producer.hasBufferSemantics() &&
143          "expected linalg op with buffer semantics");
144   assert(consumer.hasBufferSemantics() &&
145          "expected linalg op with buffer semantics");
146 
147   if (auto convOp = dyn_cast<linalg::ConvOp>(producer.getOperation())) {
148     // TODO(ntv): add a level of indirection to linalg.generic.
149     if (convOp.padding())
150       llvm_unreachable("Unexpected conv with padding");
151   }
152   if (auto convOp = dyn_cast<linalg::ConvOp>(consumer.getOperation())) {
153     // TODO(ntv): add a level of indirection to linalg.generic.
154     if (convOp.padding())
155       llvm_unreachable("Unexpected conv with padding");
156   }
157 
158   auto subView = dyn_cast_or_null<SubViewOp>(
159       consumer.getBuffer(consumerIdx).getDefiningOp());
160   auto slice = dyn_cast_or_null<SliceOp>(
161       consumer.getBuffer(consumerIdx).getDefiningOp());
162   assert(subView || slice);
163   (void)subView;
164   (void)slice;
165 
166   // loopToOperandRangesMaps are permutations-only by construction:
167   //   we can always identify a data dimension with a (at least one) loop
168   //   dimension.
169   AffineMap producerMap =
170       producer.indexing_maps()[producer.getNumInputs() + producerIdx]
171           .cast<AffineMapAttr>()
172           .getValue();
173   LLVM_DEBUG(dbgs() << "Producer Idx: " << producerIdx
174                     << ", producer map: " << producerMap << "\n");
175 
176   unsigned nPar = producer.getNumParallelLoops();
177   unsigned nRed = producer.getNumReductionLoops();
178   unsigned nWin = producer.getNumWindowLoops();
179   SmallVector<SubViewOp::Range, 8> loopRanges(nPar + nRed + nWin);
180 
181   // Iterate over dimensions identified by the producer map for `producerIdx`.
182   // This defines a subset of the loop ranges that we need to complete later.
183   for (auto en : llvm::enumerate(producerMap.getResults())) {
184     unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition();
185     loopRanges[posInProducerLoop] = subView.getRanges()[en.index()];
186   }
187 
188   OpBuilder b(consumer.getOperation());
189   auto loc = consumer.getLoc();
190   // Iterate over all dimensions. For the dimensions not identified by the
191   // producer map for `producerIdx`, we need to explicitly compute the view that
192   // defines the loop ranges using the `producer`.
193   for (unsigned i = 0, nLoops = loopRanges.size(); i < nLoops; ++i) {
194     if (loopRanges[i].offset)
195       LLVM_DEBUG(llvm::dbgs()
196                  << "existing LoopRange: " << loopRanges[i] << "\n");
197     else {
198       auto viewDim = getViewDefiningLoopRange(producer, i);
199       loopRanges[i] = SubViewOp::Range{folded_std_constant_index(folder, 0),
200                                        std_dim(viewDim.view, viewDim.dimension),
201                                        folded_std_constant_index(folder, 1)};
202       LLVM_DEBUG(llvm::dbgs() << "new LoopRange: " << loopRanges[i] << "\n");
203     }
204   }
205 
206   return cloneWithLoopRanges(b, loc, producer, loopRanges);
207 }
208 
209 // Encode structural fusion safety preconditions.
210 // Some of these will be lifted in the future with better analysis.
211 static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView,
212                                           LinalgOp consumer) {
213   assert(producer.hasBufferSemantics() &&
214          "expected linalg op with buffer semantics");
215   assert(consumer.hasBufferSemantics() &&
216          "expected linalg op with buffer semantics");
217   if (producer.getNumOutputs() != 1) {
218     LLVM_DEBUG(dbgs() << "\nNot structurally fusable (multi-output)");
219     return false;
220   }
221   // Only fuse when the producer block dominates.
222   DominanceInfo dom(producer.getOperation());
223   if (!dom.dominates(producer.getOperation()->getBlock(),
224                      consumer.getOperation()->getBlock())) {
225     LLVM_DEBUG(
226         dbgs()
227         << "\nNot structurally fusable (producer block does not dominate)");
228     return false;
229   }
230   return true;
231 }
232 
233 bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph,
234                                              LinalgOp consumer,
235                                              Value consumedView,
236                                              LinalgOp producer) {
237   assert(producer.hasBufferSemantics() &&
238          "expected linalg op with buffer semantics");
239   assert(consumer.hasBufferSemantics() &&
240          "expected linalg op with buffer semantics");
241   // Make some simple structural checks that alleviate the need for more
242   // complex analyses.
243   if (!isStructurallyFusableProducer(producer, consumedView, consumer)) {
244     LLVM_DEBUG(dbgs() << "\n***Not static last write due to structure:\t"
245                       << *producer.getOperation());
246     return false;
247   }
248   // Check for any interleaved write to consumedView.
249   if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) {
250     LLVM_DEBUG(dbgs() << "\n***Not fusable due to interleaved write:\t"
251                       << *producer.getOperation());
252     return false;
253   }
254   return true;
255 }
256 
257 bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph,
258                                  LinalgOp consumer, Value consumedView,
259                                  LinalgOp producer) {
260   assert(producer.hasBufferSemantics() &&
261          "expected linalg op with buffer semantics");
262   assert(consumer.hasBufferSemantics() &&
263          "expected linalg op with buffer semantics");
264   if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer))
265     return false;
266   // Check for any fusion-preventing dependence to any view read/written that
267   // would violate dependences.
268   if (!graph.findCoveringDependences(producer, consumer).empty()) {
269     LLVM_DEBUG(dbgs() << "\n***Not fusable due to an interleaved dependence:\t"
270                       << *producer.getOperation());
271     return false;
272   }
273   return true;
274 }
275 
276 static Optional<FusionInfo>
277 fuseProducerOfDep(OpBuilder &b, LinalgOp consumer, unsigned consumerIdx,
278                   const LinalgDependenceGraph &graph, OperationFolder *folder,
279                   LinalgDependenceGraph::DependenceType depType) {
280   assert(consumer.hasBufferSemantics() &&
281          "expected linalg op with buffer semantics");
282   LLVM_DEBUG(dbgs() << "\nStart examining consumer: "
283                     << *consumer.getOperation());
284   for (auto dependence : graph.getDependencesInto(consumer, depType)) {
285     LLVM_DEBUG(dbgs() << "\n***Consider producer:\t"
286                       << *dependence.dependentOpView.op << "\n");
287     auto producer = cast<LinalgOp>(dependence.dependentOpView.op);
288     if (isa<linalg::IndexedGenericOp>(dependence.dependentOpView.op)) {
289       LLVM_DEBUG(dbgs() << "Not fusing indexed_generic producer");
290       continue;
291     }
292 
293     // Check that the dependence is indeed on the input `consumerIdx` view.
294     auto consumedView = dependence.indexingView;
295     if (consumer.getBuffer(consumerIdx) != consumedView)
296       continue;
297 
298     // Consumer consumes this view, `isStructurallyFusableProducer` also checks
299     // whether it is a strict subview of the producer view.
300     auto producedView = dependence.dependentOpView.view;
301     auto producerIdx = producer.getIndexOfOutputBuffer(producedView).getValue();
302     // `consumerIdx` and `producerIdx` exist by construction.
303     LLVM_DEBUG(dbgs() << "\n"
304                       << LinalgDependenceGraph::getDependenceTypeStr(depType)
305                       << "producer: " << *producer.getOperation() << " view: "
306                       << producedView << " output index: " << producerIdx);
307 
308     // Must be a subview or a slice to guarantee there are loops we can fuse
309     // into.
310     auto subView = dyn_cast_or_null<SubViewOp>(consumedView.getDefiningOp());
311     auto slice = dyn_cast_or_null<SliceOp>(consumedView.getDefiningOp());
312     if (!subView && !slice) {
313       LLVM_DEBUG(dbgs() << "\nNot fusable (not a subview or slice)");
314       continue;
315     }
316 
317     // Simple fusability checks.
318     if (!isFusableInto(graph, consumer, consumedView, producer))
319       continue;
320 
321     // Fuse `producer` just before `consumer`.
322     OpBuilder::InsertionGuard g(b);
323     b.setInsertionPoint(consumer.getOperation());
324     ScopedContext scope(b, consumer.getLoc());
325     LLVM_DEBUG(dbgs() << "Fuse into consumer: " << *consumer << "\n");
326     auto fusedProducer = fuse(producedView, producer, consumer, consumerIdx,
327                               producerIdx, folder);
328 
329     return FusionInfo{producer, fusedProducer};
330   }
331   return llvm::None;
332 }
333 
334 // Only consider RAW and WAW atm.
335 Optional<FusionInfo> mlir::linalg::fuseProducerOf(
336     OpBuilder &b, LinalgOp consumer, unsigned consumerIdx,
337     const LinalgDependenceGraph &graph, OperationFolder *folder) {
338   SmallVector<LinalgDependenceGraph::DependenceType, 4> deps = {
339       LinalgDependenceGraph::DependenceType::RAW,
340       LinalgDependenceGraph::DependenceType::WAW,
341   };
342   for (auto dep : deps) {
343     if (auto res =
344             fuseProducerOfDep(b, consumer, consumerIdx, graph, folder, dep))
345       return res;
346   }
347   return llvm::None;
348 }
349 
350 /// Checks if two Generic ops are fusible, when one is a producer and another is
351 /// a consumer (with the result of the producer being the `consumerIdx` operand
352 /// of the consumer).
353 static bool areTensorOpsFusible(LinalgOp producer, LinalgOp consumer,
354                                 unsigned consumerIdx) {
355   // Verify that the producer and consumer are ops on tensors.
356   if (!producer.hasTensorSemantics() || !consumer.hasTensorSemantics())
357     return false;
358 
359   auto producerOp = dyn_cast<linalg::GenericOp>(producer.getOperation());
360   auto consumerOp = dyn_cast<linalg::GenericOp>(consumer.getOperation());
361   // Verify that
362   // - the producer and consumers are generic ops,
363   // - only handle cases where the producer has a single return value,
364   // - the producer return value should be the same as argument at `consumerIdx`
365   //   of the consumer,
366   // - the producer has all "parallel" iterator type.
367   // - only handle ops that use regions for specifying the scalar operations.
368   if (!producerOp || !consumerOp || producerOp.getNumOutputs() != 1 ||
369       producerOp.getResult(0) != consumerOp.getOperand(consumerIdx) ||
370       producerOp.getNumParallelLoops() != producerOp.getNumLoops() ||
371       producerOp.fun() || consumerOp.fun())
372     return false;
373 
374   // Get the consumer index map. The number of results of the consumer index map
375   // must match the number of loops of the producer.
376   AffineMap consumerIndexMap = consumerOp.getIndexingMap(consumerIdx);
377   if (consumerIndexMap.getNumResults() != producerOp.getNumLoops())
378     return false;
379 
380   // Finally the index_map for the result must be invertible. For now just
381   // verify it is a permutation.
382   AffineMap producerResultIndexMap = producerOp.getOutputIndexingMap(0);
383   return producerResultIndexMap.isPermutation();
384 }
385 
386 /// Computes the indexing maps for arguments of a producer generic op when the
387 /// result of the producer is fused with the consumer.
388 /// - consumerIndexMap is the indexing_map for the argument in the consumer op
389 ///   that is the result of the producer op.
390 /// - invProducerResultIndexMap is the inverse of the indexing_map for the
391 ///   result in the producer op.
392 /// - producerArgIndexMap is the indexing_map of the argument of the producer
393 ///   op.
394 /// The result is the indexing_map to use for the producer argument when the
395 /// producer and consumer ops are fused.
396 static AffineMap computeProducerArgMap(AffineMap consumerIndexMap,
397                                        AffineMap invProducerResultIndexMap,
398                                        AffineMap producerArgIndexMap) {
399   // t1 is map from producer result tensor index -> producer arg tensor index.
400   auto t1 = producerArgIndexMap.compose(invProducerResultIndexMap);
401   // The return is map from consumer loop -> producer arg tensor index,
402   // i.e. indexing_map for the producer argument in the fused operation.
403   return t1.compose(consumerIndexMap);
404 }
405 
406 Optional<LinalgOp> mlir::linalg::fuseTensorOps(OpBuilder &b, LinalgOp producer,
407                                                LinalgOp consumer,
408                                                unsigned consumerIdx,
409                                                OperationFolder *folder) {
410   if (!areTensorOpsFusible(producer, consumer, consumerIdx))
411     return {};
412 
413   MLIRContext *context = b.getContext();
414   auto producerOp = cast<linalg::GenericOp>(producer.getOperation());
415   auto consumerOp = cast<linalg::GenericOp>(consumer.getOperation());
416   AffineMap consumerIndexMap = consumerOp.getIndexingMap(consumerIdx);
417   AffineMap invProducerResultIndexMap =
418       inversePermutation(producerOp.getOutputIndexingMap(0));
419 
420   // Compute the fused op operandslist by replacing the operand corresponding to
421   // the result of the producer, with the operands of the producer.
422   unsigned fusedArgsIn =
423       producerOp.getNumInputs() + consumerOp.getNumInputs() - 1;
424   auto fusedArgsOut = consumerOp.getNumOutputs();
425   SmallVector<Value, 2> fusedOperandsList(consumerOp.getOperands());
426   fusedOperandsList.erase(std::next(fusedOperandsList.begin(), consumerIdx));
427   fusedOperandsList.reserve(fusedArgsIn + fusedArgsOut);
428   fusedOperandsList.insert(
429       std::next(fusedOperandsList.begin(), consumerIdx),
430       producerOp.operand_begin(),
431       std::next(producerOp.operand_begin(), producerOp.getNumInputs()));
432 
433   // Compute the fused indexing_maps of the operands/results of the fused op.
434   SmallVector<Attribute, 2> fusedIndexingMapAttrs;
435   fusedIndexingMapAttrs.reserve(fusedArgsIn + fusedArgsOut);
436   fusedIndexingMapAttrs.append(consumerOp.indexing_maps().begin(),
437                                consumerOp.indexing_maps().end());
438   fusedIndexingMapAttrs.erase(
439       std::next(fusedIndexingMapAttrs.begin(), consumerIdx));
440   auto *insertPos = std::next(fusedIndexingMapAttrs.begin(), consumerIdx);
441   for (auto producerArgIndexAttr :
442        llvm::enumerate(producerOp.indexing_maps())) {
443     if (producerArgIndexAttr.index() == producerOp.getNumInputs())
444       break;
445     auto composedIndexMap = computeProducerArgMap(
446         consumerIndexMap, invProducerResultIndexMap,
447         producerArgIndexAttr.value().cast<AffineMapAttr>().getValue());
448     insertPos = std::next(fusedIndexingMapAttrs.insert(
449         insertPos, AffineMapAttr::get(composedIndexMap)));
450   }
451 
452   // Generate the fused op.
453   auto fusedLinalgOp = b.create<GenericOp>(
454       UnknownLoc::get(context), consumerOp.getResultTypes(), fusedOperandsList,
455       b.getI64IntegerAttr(fusedArgsIn), b.getI64IntegerAttr(fusedArgsOut),
456       b.getArrayAttr(fusedIndexingMapAttrs), consumerOp.iterator_types(),
457       /*doc=*/nullptr,
458       /*fun=*/nullptr,
459       /*library_call=*/nullptr);
460 
461   // Build the region of the fused op.
462   auto &fusedOpRegion = fusedLinalgOp.region();
463   Block &producerOpBlock = producerOp.region().front();
464   Block &consumerOpBlock = consumerOp.region().front();
465   Block *fusedBlock = new Block();
466   fusedOpRegion.push_back(fusedBlock);
467   BlockAndValueMapping mapper;
468   // Map the arguments for the unmodified args from the consumer.
469   for (auto consumerOpArg : llvm::enumerate(consumerOpBlock.getArguments())) {
470     if (consumerOpArg.index() == consumerIdx) {
471       // Map the arguments for the args from the producer.
472       for (auto producerOpArg : producerOpBlock.getArguments())
473         mapper.map(producerOpArg,
474                    fusedBlock->addArgument(producerOpArg.getType()));
475       continue;
476     }
477     mapper.map(consumerOpArg.value(),
478                fusedBlock->addArgument(consumerOpArg.value().getType()));
479   }
480 
481   // Add operations from producer (except the yield operation) to the fused op.
482   for (auto &op : producerOpBlock.getOperations()) {
483     if (auto yieldOp = dyn_cast<YieldOp>(op)) {
484       // Lookup the value the yield operation is mapped to.
485       Value yieldVal = yieldOp.getOperand(0);
486       auto clonedVal = mapper.lookup(yieldVal);
487       mapper.map(consumerOpBlock.getArgument(consumerIdx), clonedVal);
488       continue;
489     }
490     fusedBlock->push_back(op.clone(mapper));
491   }
492   for (auto &op : consumerOpBlock.getOperations())
493     fusedBlock->push_back(op.clone(mapper));
494 
495   return cast<LinalgOp>(fusedLinalgOp.getOperation());
496 }
497 
498 static void fuseLinalgOpsGreedily(FuncOp f) {
499   LLVM_DEBUG(f.print(dbgs() << "\nBefore linalg-fusion: \n"));
500 
501   OpBuilder b(f);
502   OperationFolder folder(f.getContext());
503   DenseSet<Operation *> eraseSet;
504 
505   // Save original Linalg ops, we only want to make a pass over those.
506   SmallVector<Operation *, 8> linalgOps;
507   f.walk([&](LinalgOp op) {
508     if (op.hasBufferSemantics())
509       linalgOps.push_back(op);
510   });
511 
512   // TODO(pifon, ntv): LinalgDependenceGraph should be able to update itself.
513   // The current naive and expensive reconstruction of the graph should be
514   // removed.
515   for (auto *op : llvm::reverse(linalgOps)) {
516     for (unsigned id = 0, e = LinalgOp(op).getNumInputsAndOutputBuffers();
517          id < e; ++id) {
518       linalg::Aliases aliases;
519       linalg::LinalgDependenceGraph graph(aliases, linalgOps);
520       if (auto info = fuseProducerOf(b, op, id, graph, &folder)) {
521         auto *originalOp = info->originalProducer.getOperation();
522         eraseSet.insert(originalOp);
523         auto *originalOpInLinalgOpsVector =
524             std::find(linalgOps.begin(), linalgOps.end(), originalOp);
525         *originalOpInLinalgOpsVector = info->fusedProducer.getOperation();
526       }
527     }
528   }
529   // The `fuseProducerOf` function performs structural checks and in particular
530   // that no covering read or write exist between the consumer and the producer.
531   // As a consequence, the only fusions that may occur preserve subsequent
532   // dependences and are guaranteed by construction to produce the whole view.
533   // We may thus erase the producer once it is fused.
534   for (auto *e : eraseSet)
535     e->erase();
536   LLVM_DEBUG(f.print(dbgs() << "\nAfter linalg-fusion: \n"));
537 }
538 
539 namespace {
540 
541 /// Patterns to fuse a generic op, with the producer of its operands.
542 struct FuseGenericTensorOps : public OpRewritePattern<GenericOp> {
543   using OpRewritePattern<GenericOp>::OpRewritePattern;
544 
545   LogicalResult matchAndRewrite(GenericOp op,
546                                 PatternRewriter &rewriter) const override {
547     if (!op.hasTensorSemantics())
548       return failure();
549 
550     // Find the first operand that is defined by another generic op on tensors.
551     for (auto operand : llvm::enumerate(op.getOperation()->getOperands())) {
552       auto definingOp =
553           dyn_cast_or_null<GenericOp>(operand.value().getDefiningOp());
554       if (!definingOp || !definingOp.hasTensorSemantics())
555         continue;
556       auto fusedOp =
557           fuseTensorOps(rewriter, cast<LinalgOp>(definingOp.getOperation()),
558                         cast<LinalgOp>(op.getOperation()), operand.index());
559       if (!fusedOp)
560         continue;
561       rewriter.replaceOp(op, fusedOp.getValue().getOperation()->getResults());
562       return success();
563     }
564     return failure();
565   }
566 };
567 
568 /// Pass that fuses generic ops on tensors. Used only for testing.
569 struct FusionOfTensorOpsPass
570     : public LinalgFusionOfTensorOpsBase<FusionOfTensorOpsPass> {
571   void runOnOperation() override {
572     OwningRewritePatternList patterns;
573     Operation *op = getOperation();
574     patterns.insert<FuseGenericTensorOps>(op->getContext());
575     applyPatternsAndFoldGreedily(op->getRegions(), patterns);
576   };
577 };
578 
579 struct LinalgFusionPass : public LinalgFusionBase<LinalgFusionPass> {
580   void runOnFunction() override { fuseLinalgOpsGreedily(getFunction()); }
581 };
582 } // namespace
583 
584 std::unique_ptr<OperationPass<FuncOp>> mlir::createLinalgFusionPass() {
585   return std::make_unique<LinalgFusionPass>();
586 }
587 
588 std::unique_ptr<Pass> mlir::createLinalgFusionOfTensorOpsPass() {
589   return std::make_unique<FusionOfTensorOpsPass>();
590 }
591