1 //===- Fusion.cpp - Implementation of linalg Fusion -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Fusion pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Affine/IR/AffineOps.h" 15 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 17 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 18 #include "mlir/Dialect/Linalg/Passes.h" 19 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 20 #include "mlir/Dialect/Linalg/Utils/Utils.h" 21 #include "mlir/Dialect/MemRef/IR/MemRef.h" 22 #include "mlir/Dialect/Tensor/IR/Tensor.h" 23 #include "mlir/IR/AffineExpr.h" 24 #include "mlir/IR/AffineMap.h" 25 #include "mlir/IR/Dominance.h" 26 #include "mlir/Support/LLVM.h" 27 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 28 #include "mlir/Transforms/RegionUtils.h" 29 #include "llvm/ADT/MapVector.h" 30 #include "llvm/ADT/ScopeExit.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 34 #include <set> 35 36 #define DEBUG_TYPE "linalg-fusion" 37 38 using namespace mlir; 39 using namespace mlir::linalg; 40 41 using llvm::dbgs; 42 43 /// Implements a simple high-level fusion pass on linalg structured operations. 44 /// 45 /// In each block, linalg ops are processed in reverse textual order. 46 /// Given a linalg op `O`, fusion occurs by: 47 /// 1. inspecting the linalg ops that write into the views read by `O`. There 48 /// are 2 cases: 49 /// a) buffer case: use the SSA value of the views and a simple alias 50 /// analysis on subview ops to determine producer-consumer dependences; 51 /// b) tensor case: use SSA use-def chains on extract_slice ops; 52 /// 2. greedily fuse the linalg ops that produce the subview/extract_slice. 53 /// 3. inspect the fused ops and determine whether they have other remaining 54 /// LinalgOp uses. If not, then erase the original producing linalg op. 55 /// 56 /// More advanced use cases, analyses as well as profitability heuristics are 57 /// left for future work. 58 59 struct ShapeDimension { 60 Value shape; 61 unsigned dimension; 62 }; 63 64 // Given an `op`, returns the first (`shape`, `dimension`) pair that identifies 65 // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps 66 // guarantees at least one such dimension is found. If multiple candidates exist 67 // they must agree by construction (i.e. have the same size) and we just return 68 // the first one. 69 static ShapeDimension 70 getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth, 71 bool fromSubViewOpOnly = false) { 72 // Iterate over the inputs and outputs in order. 73 // Extract the subranges from the linearized ranges. 74 for (OpOperand *opOperand : op.getInputAndOutputOperands()) { 75 // The method `getRangeFromOperandShape` requires using SubViewOp or 76 // ExtractSliceOps. If the value isn't defined from there continue. 77 // todo: The method should be adapted to get the values from 78 // `ViewInterface`. The interface needs a `getOrCreateRanges` method which 79 // currently returns a `linalg.range`. The fix here is to move this op to 80 // `std` dialect and add the method to `ViewInterface`. 81 if (fromSubViewOpOnly && 82 !isa_and_nonnull<memref::SubViewOp, tensor::ExtractSliceOp>( 83 opOperand->get().getDefiningOp())) 84 continue; 85 86 AffineMap map = op.getTiedIndexingMap(opOperand); 87 LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange I/O idx: " 88 << opOperand->getOperandNumber() << "\n"); 89 LLVM_DEBUG(llvm::dbgs() 90 << "getShapeDefiningLoopRange map: " << map << "\n"); 91 SmallVector<Value, 8> shapeRanges(map.getNumResults(), nullptr); 92 for (auto en : llvm::enumerate(map.getResults())) { 93 auto dimExpr = en.value().dyn_cast<AffineDimExpr>(); 94 if (!dimExpr) 95 continue; 96 if (loopDepth == en.value().cast<AffineDimExpr>().getPosition()) { 97 LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: " 98 << loopDepth << "\n"); 99 LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange shape: " 100 << opOperand->get() << "\n"); 101 return ShapeDimension{opOperand->get(), 102 static_cast<unsigned>(en.index())}; 103 } 104 } 105 } 106 llvm_unreachable("Expect to be able to extract a shape defining loop range"); 107 } 108 109 // Return tiled operands for the fused producer op. When fusing into 110 // `linalg.tiled_loop` one has to update `input` and `output` arguments of the 111 // loop correspondingly. 112 // Each input tensor of the producer op has to be added to `inputs` of the 113 // `tiled_loop` if it is not present there already. Each output tensor has to 114 // be added either to `inputs` or to `outputs` of `linalg.tiled_loop` depending 115 // on whether the correponding result is an input or an output to the loop. 116 // 117 // NOTE: This way of updating the arguments of the `tiled_loop` assumes that the 118 // intermediate result is not used by any other operation but the consumer. A 119 // more generic way is to append all missing output tensors of the producer to 120 // the tiled loop outputs and hence modify the number of the results, since we 121 // would need to add the intermediate results to `linalg.yield`. After that a 122 // canonicalization pass would move the unused output args of the `tiled_loop` 123 // to the `input` section. 124 static SmallVector<Value> getTiledOperands(OpBuilder &b, LinalgOp producer) { 125 auto tiledLoop = dyn_cast<TiledLoopOp>(b.getBlock()->getParentOp()); 126 if (!tiledLoop) 127 return producer.getInputAndOutputOperands(); 128 129 SmallVector<Value> tiledOperands; 130 assert(producer.hasTensorSemantics() && 131 "only fusion on tensors is currently supported for TiledLinalgOp"); 132 133 for (OpOperand *producerInput : producer.getInputOperands()) { 134 OpOperand *addedInput = tiledLoop.findInputOperand(producerInput->get()); 135 if (addedInput == nullptr) 136 addedInput = &tiledLoop.appendInputOperand(b, producerInput->get()); 137 BlockArgument addedBlockArg = tiledLoop.getTiedBlockArgument(*addedInput); 138 tiledOperands.push_back(addedBlockArg); 139 } 140 for (OpOperand *producerOutput : producer.getOutputOperands()) { 141 OpResult result = producer.getTiedOpResult(producerOutput); 142 OpOperand *resultInputOperand = tiledLoop.findInputOperand(result); 143 OpOperand *resultOutputOperand = tiledLoop.findOutputOperand(result); 144 assert((resultInputOperand != nullptr) ^ (resultOutputOperand != nullptr) && 145 "The result should be present in `input` or `output` args of " 146 "`tiled_loop"); 147 148 bool isInput = resultInputOperand; 149 int opNumber = isInput ? resultInputOperand->getOperandNumber() 150 : resultOutputOperand->getOperandNumber(); 151 152 OpOperand *addedOutput = tiledLoop.findOutputOperand(producerOutput->get()); 153 if (addedOutput == nullptr) 154 addedOutput = 155 isInput ? &tiledLoop.appendInputOperand(b, producerOutput->get()) 156 : &tiledLoop.appendOutputOperand(b, producerOutput->get()); 157 158 OpOperand &resultOperand = tiledLoop->getOpOperand(opNumber); 159 auto addedBlockArg = tiledLoop.getTiedBlockArgument(*addedOutput); 160 auto resultOperandBlockArg = tiledLoop.getTiedBlockArgument(resultOperand); 161 resultOperandBlockArg.replaceAllUsesWith(addedBlockArg); 162 tiledLoop.eraseOperand(b, resultOperand); 163 tiledOperands.push_back(addedBlockArg); 164 } 165 return tiledOperands; 166 } 167 168 /// Fuses the producer by cloning the `producer`. The `fusedLoopsAndRanges` 169 /// provides the loop range information for the fused loops. The rest are 170 /// obtained from the producer itself, since they are not tiled + fused. 171 static LinalgOp fuse(OpBuilder &b, LinalgOp producer, 172 const DenseMap<unsigned, Range> &fusedLoopsAndRanges) { 173 SmallVector<Value, 8> ivs, tileSizes, sizeBounds; 174 SmallVector<Range, 8> loopRanges; 175 Location loc = producer.getLoc(); 176 auto zero = b.create<ConstantIndexOp>(loc, 0); 177 auto one = b.create<ConstantIndexOp>(loc, 1); 178 179 for (unsigned i = 0, e = producer.getNumLoops(); i < e; ++i) { 180 auto shapeDim = getShapeDefiningLoopRange(producer, i); 181 Value dim = createOrFoldDimOp(b, loc, shapeDim.shape, shapeDim.dimension); 182 sizeBounds.push_back(dim); 183 auto it = fusedLoopsAndRanges.find(i); 184 if (it != fusedLoopsAndRanges.end()) { 185 ivs.push_back(it->second.offset); 186 tileSizes.push_back(it->second.size); 187 loopRanges.push_back(it->second); 188 LLVM_DEBUG(llvm::dbgs() << "tiled loop#" << i << " with LoopRange " 189 << loopRanges.back() << "\n"); 190 } else { 191 tileSizes.push_back(zero); 192 loopRanges.push_back(Range{zero, dim, one}); 193 LLVM_DEBUG(llvm::dbgs() << "full loop#" << i << " with LoopRange " 194 << loopRanges.back() << "\n"); 195 } 196 } 197 198 SmallVector<Value, 8> clonedShapes; 199 clonedShapes.reserve(producer.getNumInputsAndOutputs()); 200 201 // Compute subranges for all tensor input/output operands. 202 clonedShapes.append(makeTiledShapes(b, loc, producer, 203 getTiledOperands(b, producer), ivs, 204 tileSizes, sizeBounds)); 205 206 // Iterate over the results in order. 207 // Extract the subtensor type from the linearized range. 208 // Since we do not enforce any canonicalizations on the fly, this is always 209 // fully dynamic at construction time. 210 SmallVector<Type, 4> resultTypes; 211 resultTypes.reserve(producer->getNumResults()); 212 for (RankedTensorType t : producer.getOutputTensorTypes()) { 213 unsigned rank = t.getRank(); 214 SmallVector<int64_t, 4> staticOffsetsVector( 215 rank, ShapedType::kDynamicStrideOrOffset); 216 SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamicSize); 217 SmallVector<int64_t, 4> staticStridesVector( 218 rank, ShapedType::kDynamicStrideOrOffset); 219 resultTypes.push_back(tensor::ExtractSliceOp::inferResultType( 220 t.cast<RankedTensorType>(), staticOffsetsVector, staticSizesVector, 221 staticStridesVector)); 222 } 223 224 Operation *clonedOp = producer.clone(b, loc, resultTypes, clonedShapes); 225 226 // Shift all IndexOp results by the tile offset. 227 SmallVector<Value> allIvs; 228 transform(loopRanges, std::back_inserter(allIvs), 229 [](Range range) { return range.offset; }); 230 addTileLoopIvsToIndexOpResults(b, clonedOp, allIvs); 231 232 return clonedOp; 233 } 234 235 /// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is 236 /// expected to be defined by a subview op or an extract_slice op. 237 static Range getRangeFromOperandShape(OpBuilder &b, Location loc, 238 Value shapedOperand, unsigned dim) { 239 Operation *shapeProducingOp = shapedOperand.getDefiningOp(); 240 if (auto subViewOp = dyn_cast<memref::SubViewOp>(shapeProducingOp)) 241 return subViewOp.getOrCreateRanges(b, loc)[dim]; 242 if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(shapeProducingOp)) 243 return sliceOp.getOrCreateRanges(b, loc)[dim]; 244 llvm_unreachable("SubviewOp or ExtractSliceOp expected"); 245 } 246 247 /// Fuses the producer into the loop immediately enclosing the consumer. 248 /// This is achieved by "recomputing" the producer at the time it 249 /// is needed just before the consumer. 250 static LinalgOp fuse(OpBuilder &b, LinalgOp producerOp, AffineMap producerMap, 251 OpOperand &consumerOpOperand) { 252 LLVM_DEBUG(llvm::dbgs() << "Producer map: " << producerMap << "\n"); 253 DenseMap<unsigned, Range> fusedLoopsAndRanges; 254 Value shapedOperand = consumerOpOperand.get(); 255 for (auto en : llvm::enumerate(producerMap.getResults())) { 256 unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition(); 257 fusedLoopsAndRanges[posInProducerLoop] = getRangeFromOperandShape( 258 b, consumerOpOperand.getOwner()->getLoc(), shapedOperand, en.index()); 259 } 260 return fuse(b, producerOp, fusedLoopsAndRanges); 261 } 262 263 // Encode structural fusion safety preconditions. 264 // Some of these will be lifted in the future with better analysis. 265 static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView, 266 LinalgOp consumer) { 267 assert(producer.hasBufferSemantics() && 268 "expected linalg op with buffer semantics"); 269 assert(consumer.hasBufferSemantics() && 270 "expected linalg op with buffer semantics"); 271 if (producer.getNumOutputs() != 1) { 272 LLVM_DEBUG(llvm::dbgs() << "\nNot structurally fusable (multi-output)"); 273 return false; 274 } 275 // Only fuse when the producer block dominates. 276 DominanceInfo dom(producer.getOperation()); 277 if (!dom.dominates(producer->getBlock(), consumer->getBlock())) { 278 LLVM_DEBUG( 279 llvm::dbgs() 280 << "\nNot structurally fusable (producer block does not dominate)"); 281 return false; 282 } 283 return true; 284 } 285 286 bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph, 287 LinalgOp consumer, 288 Value consumedView, 289 LinalgOp producer) { 290 assert(producer.hasBufferSemantics() && 291 "expected linalg op with buffer semantics"); 292 assert(consumer.hasBufferSemantics() && 293 "expected linalg op with buffer semantics"); 294 // Make some simple structural checks that alleviate the need for more 295 // complex analyses. 296 if (!isStructurallyFusableProducer(producer, consumedView, consumer)) { 297 LLVM_DEBUG(llvm::dbgs() << "\n***Not static last write due to structure:\t" 298 << *producer.getOperation()); 299 return false; 300 } 301 // Check for any interleaved write to consumedView. 302 if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) { 303 LLVM_DEBUG(llvm::dbgs() << "\n***Not fusable due to interleaved write:\t" 304 << *producer.getOperation()); 305 return false; 306 } 307 return true; 308 } 309 310 bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph, 311 LinalgOp consumer, Value consumedView, 312 LinalgOp producer) { 313 assert(producer.hasBufferSemantics() && 314 "expected linalg op with buffer semantics"); 315 assert(consumer.hasBufferSemantics() && 316 "expected linalg op with buffer semantics"); 317 if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer)) 318 return false; 319 // Check for any fusion-preventing dependence to any shape read/written that 320 // would violate dependences. 321 if (!graph.findCoveringDependences(producer, consumer).empty()) { 322 LLVM_DEBUG(llvm::dbgs() 323 << "\n***Not fusable due to an interleaved dependence:\t" 324 << *producer.getOperation()); 325 return false; 326 } 327 if (auto convOp = dyn_cast<linalg::ConvOp>(producer.getOperation())) { 328 // TODO: add a level of indirection to linalg.generic. 329 if (convOp.padding()) 330 return false; 331 } 332 if (auto convOp = dyn_cast<linalg::ConvOp>(consumer.getOperation())) { 333 // TODO: add a level of indirection to linalg.generic. 334 if (convOp.padding()) 335 return false; 336 } 337 return true; 338 } 339 340 /// For `consumer` with buffer semantics, find the Linalg operation on buffers 341 /// that is the last writer of `consumerOpOperand`. For now the fusable 342 /// dependence is returned as an instance of the `dependenceGraph`. 343 static Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> 344 findFusableProducer(OpOperand &consumerOpOperand, 345 const LinalgDependenceGraph &dependenceGraph) { 346 LLVM_DEBUG(llvm::dbgs() << "findFusableProducer for: " 347 << consumerOpOperand.get() << " @" 348 << consumerOpOperand.getOperandNumber() << " in " 349 << *consumerOpOperand.getOwner() << "\n"); 350 LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner()); 351 if (!consumerOp) 352 return {}; 353 354 // Only consider RAW and WAW atm. 355 for (auto depType : { 356 LinalgDependenceGraph::DependenceType::RAW, 357 LinalgDependenceGraph::DependenceType::WAW, 358 }) { 359 LLVM_DEBUG(llvm::dbgs() 360 << "Dependencies into: " << *consumerOp.getOperation() << "\n"); 361 for (auto dependence : llvm::make_filter_range( 362 dependenceGraph.getDependencesInto(consumerOp, depType), 363 [&](LinalgDependenceGraph::LinalgDependenceGraphElem elem) { 364 LLVM_DEBUG(llvm::dbgs() << "Inspect dependence btw: " 365 << elem.getIndexingValue() << " and " 366 << elem.getDependentValue() << "\n"); 367 Value v = elem.getIndexingValue(); 368 Optional<unsigned> operandNum = 369 elem.getIndexingOpViewOperandNum(); 370 return isa<LinalgOp>(elem.getDependentOp()) && 371 v == consumerOpOperand.get() && operandNum && 372 operandNum.getValue() == 373 consumerOpOperand.getOperandNumber(); 374 })) { 375 // Consumer consumes this view, `isStructurallyFusableProducer` also 376 // checks whether it is a strict subview of the producer view. 377 auto producer = cast<LinalgOp>(dependence.getDependentOp()); 378 LLVM_DEBUG(llvm::dbgs() 379 << "\n" 380 << LinalgDependenceGraph::getDependenceTypeStr(depType) 381 << "producer: " << *dependence.getDependentOp() 382 << " view: " << dependence.getDependentValue() << "\n"); 383 384 // If the producer and consumer have tensor semantics, the only dependence 385 // between them is through a RAW dependence and they are fusable by 386 // construction. For buffer semantics need additional checks. 387 if (producer.hasBufferSemantics() && consumerOp.hasBufferSemantics() && 388 isFusableInto(dependenceGraph, consumerOp, consumerOpOperand.get(), 389 producer)) 390 return dependence; 391 if (producer.hasTensorSemantics() && consumerOp.hasTensorSemantics()) { 392 assert(dependence.dependenceType == 393 LinalgDependenceGraph::DependenceType::RAW); 394 return dependence; 395 } 396 } 397 } 398 return {}; 399 } 400 401 Optional<FusionInfo> 402 mlir::linalg::fuseProducerOfBuffer(OpBuilder &b, OpOperand &consumerOpOperand, 403 const LinalgDependenceGraph &graph) { 404 Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependence = 405 findFusableProducer(consumerOpOperand, graph); 406 if (!fusableDependence) 407 return llvm::None; 408 409 LinalgOp producerOp = dyn_cast<LinalgOp>(fusableDependence->getDependentOp()); 410 if (!producerOp) 411 return llvm::None; 412 413 // If producer is already in the same block as consumer, we are done. 414 if (consumerOpOperand.get().getParentBlock() == 415 fusableDependence->getDependentValue().getParentBlock()) 416 return llvm::None; 417 418 Optional<AffineMap> producerMap = 419 fusableDependence->getDependentOpViewIndexingMap(); 420 if (!producerMap) 421 return llvm::None; 422 423 // Must be a subview or an extract_slice to guarantee there are loops we can 424 // fuse into. 425 auto subView = consumerOpOperand.get().getDefiningOp<memref::SubViewOp>(); 426 if (!subView) { 427 LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subview)"); 428 return llvm::None; 429 } 430 431 // Fuse `producer` just before `consumer`. 432 OpBuilder::InsertionGuard g(b); 433 b.setInsertionPoint(consumerOpOperand.getOwner()); 434 LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " 435 << *consumerOpOperand.getOwner() << "\n"); 436 437 auto fusedProducer = fuse(b, producerOp, *producerMap, consumerOpOperand); 438 return FusionInfo{producerOp, fusedProducer}; 439 } 440 441 /// Walk back use-def chain through scf::For yields. 442 /// Sets `producer` and `outputIndex` if it finds a producer LinalgOp 443 444 // TODO(ravishankarm, ntv): This can be moved into the dependence graphs 445 // dependence tracking since the dependence tracking is similar to what is done 446 // w.r.t to buffers. 447 static void getProducerOfTensor(Value tensor, OpResult &opResult) { 448 if (!tensor.getType().isa<RankedTensorType>()) 449 return; 450 451 while (true) { 452 LLVM_DEBUG(llvm::dbgs() << "\ngetProducerOfTensor: " << tensor); 453 if (auto linalgOp = tensor.getDefiningOp<LinalgOp>()) { 454 opResult = tensor.cast<OpResult>(); 455 return; 456 } 457 if (auto sliceOp = tensor.getDefiningOp<tensor::ExtractSliceOp>()) { 458 tensor = sliceOp.source(); 459 continue; 460 } 461 if (auto blockArg = tensor.dyn_cast<BlockArgument>()) { 462 if (auto forOp = blockArg.getDefiningOp<scf::ForOp>()) { 463 tensor = *(forOp.getIterOperands().begin() + blockArg.getArgNumber()); 464 continue; 465 } 466 } 467 return; 468 } 469 } 470 471 Optional<FusionInfo> 472 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpOperand &consumerOpOperand) { 473 Value inputTensor = consumerOpOperand.get(); 474 OpResult producerOpResult; 475 getProducerOfTensor(inputTensor, producerOpResult); 476 if (!producerOpResult) { 477 LLVM_DEBUG(llvm::dbgs() << "\nUnable to find producer"); 478 return {}; 479 } 480 return fuseProducerOfTensor(b, producerOpResult, consumerOpOperand); 481 } 482 483 Optional<FusionInfo> 484 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpResult producerOpResult, 485 OpOperand &consumerOpOperand) { 486 auto producerOp = dyn_cast<LinalgOp>(producerOpResult.getOwner()); 487 if (!producerOp) 488 return llvm::None; 489 490 LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner()); 491 if (!consumerOp) 492 return llvm::None; 493 494 Value inputTensor = consumerOpOperand.get(); 495 496 // Must be an extract_slice op to guarantee there are loops we can fuse into. 497 auto sliceOp = inputTensor.getDefiningOp<tensor::ExtractSliceOp>(); 498 if (!sliceOp) { 499 LLVM_DEBUG(llvm::dbgs() 500 << "\nNot fusable, not an extract_slice op: " << inputTensor); 501 return {}; 502 } 503 504 // If producer is already in the same block as consumer, we are done. 505 if (consumerOpOperand.get().getParentBlock() == 506 producerOpResult.getParentBlock()) 507 return {}; 508 509 // Insert fused `producer` just before `consumer`. 510 OpBuilder::InsertionGuard g(b); 511 b.setInsertionPoint(consumerOp); 512 LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumerOp << "\n"); 513 OpOperand *opOperand = 514 producerOp.getOutputOperand(producerOpResult.getResultNumber()); 515 LinalgOp fusedProducer = 516 fuse(b, producerOp, producerOp.getTiedIndexingMap(opOperand), 517 consumerOpOperand); 518 519 // Replace use. 520 // Canonicalizations are not guaranteed to have happened before constructing 521 // `fusedProducer`. In the tensor case this can result in temporary type 522 // mismatches. Insert a `tensor.cast` op to propagate the transformation 523 // invariant that types are compatible. 524 Value def = fusedProducer->getResult(producerOpResult.getResultNumber()); 525 Type consumerType = consumerOpOperand.get().getType(); 526 if (consumerType != def.getType()) 527 def = b.create<tensor::CastOp>(fusedProducer.getLoc(), consumerType, def); 528 consumerOpOperand.set(def); 529 return FusionInfo{cast<LinalgOp>(producerOpResult.getOwner()), fusedProducer}; 530 } 531 532 /// Prune all dimensions that are of reduction iterator type from `map`. 533 static AffineMap pruneReductionDimsFromMap(ArrayRef<Attribute> iteratorTypes, 534 AffineMap map) { 535 llvm::SmallDenseSet<unsigned> projectedDims; 536 for (auto attr : llvm::enumerate(iteratorTypes)) { 537 if (!isParallelIterator(attr.value())) 538 projectedDims.insert(attr.index()); 539 } 540 return getProjectedMap(map, projectedDims); 541 } 542 543 /// Returns the mapping from iterations in the consumer that write to the same 544 /// location as the iterations in the producer. To do so use 545 /// - indexing map of the fused view in the consumer : consumerIndexMap 546 /// - indexing map of the fused view in the producer : producerIndexMap 547 /// consumerLoopToProducerLoop = 548 /// inverse(producerIndexMap).compose(consumerIndexMap) 549 static Optional<AffineMap> getConsumerLoopToProducerLoopMap( 550 LinalgDependenceGraph::LinalgDependenceGraphElem dependence) { 551 auto producer = dyn_cast<LinalgOp>(dependence.getDependentOp()); 552 if (!producer) 553 return None; 554 555 Optional<AffineMap> producerIndexingMap = 556 dependence.getDependentOpViewIndexingMap(); 557 Optional<AffineMap> consumerIndexingMap = 558 dependence.getIndexingOpViewIndexingMap(); 559 if (!producerIndexingMap || !consumerIndexingMap) 560 return None; 561 562 AffineMap prunedProducerIndexingMap = pruneReductionDimsFromMap( 563 producer.iterator_types().getValue(), *producerIndexingMap); 564 if (!prunedProducerIndexingMap.isPermutation()) 565 return None; 566 567 if (consumerIndexingMap->getNumResults() != 568 prunedProducerIndexingMap.getNumResults()) 569 return None; 570 571 LLVM_DEBUG({ 572 llvm::dbgs() << "\t producerMap : "; 573 producerIndexingMap->print(llvm::dbgs()); 574 llvm::dbgs() << " pruned : "; 575 prunedProducerIndexingMap.print(llvm::dbgs()); 576 llvm::dbgs() << "\n"; 577 llvm::dbgs() << "\t consumerMap : "; 578 consumerIndexingMap->print(llvm::dbgs()); 579 llvm::dbgs() << "\n"; 580 }); 581 582 AffineMap invProducerIndexMap = inversePermutation(prunedProducerIndexingMap); 583 if (!invProducerIndexMap) 584 return None; 585 586 return invProducerIndexMap.compose(*consumerIndexingMap); 587 } 588 589 /// Given a projected permutation `map`, returns true if the map changes the 590 /// order in which the fused loop dimension appear. 591 static bool doesTransposeAccess(AffineMap map, 592 const std::set<unsigned> &fusableLoops) { 593 Optional<unsigned> lastFusableLoop; 594 for (unsigned pos : llvm::map_range(map.getResults(), [](AffineExpr expr) { 595 return expr.cast<AffineDimExpr>().getPosition(); 596 })) { 597 if (!fusableLoops.count(pos)) 598 continue; 599 if (!lastFusableLoop) { 600 lastFusableLoop = pos; 601 continue; 602 } 603 if (pos <= lastFusableLoop.getValue()) 604 return true; 605 lastFusableLoop = pos; 606 } 607 return false; 608 } 609 610 /// Returns the positions of the loop in `op` that can be tiled based on the 611 /// operations that are to be fused with it. For example, in a 612 /// 613 /// linalg.matmul ins(%a, %b : ...) outs(%c : ...) 614 /// 615 /// if the producer of %a needs to be fused with this op, only the `i` loop of 616 /// the matmul can be tiled while fusing. If producer of %a, and %b are to be 617 /// fused, then no loops can be tiled while fusing. The conditions used are: 618 /// 1. Only parallel loops can be used for tile + fuse. Find the number of 619 /// common outer parallel loops between the op and its producers being fused. 620 /// 2. Of the parallel loops only some can be fused. Only those loops can be 621 /// fused such where the fusable loops iteration space only touches one tile 622 /// of the fused operation. This is because the producer (which is writing 623 /// the fused subview) has update semantics. 624 /// 625 /// Since an inverse computation is needed, we need to consider the projection 626 /// of the producerIndexMap w.r.t the parallel loops. The actual fusable loops 627 /// are the dimensions of the consumerLoopToProducerLoop map that correspond to 628 /// parallel loops and appear in the result of the map 629 /// 630 /// Example 1: 631 /// linalg.fill(%cst, %c) 632 /// linalg.matmul ins(%a, %b) outs(%c) 633 /// Number of parallel loops : 2 634 /// producerIndexMap = affine_map<(i, j) ->(i , j)> 635 /// consumerIndexMap = affine_map<(i, j, k) -> (i, j)> 636 /// consumerLoopToProducerLoop = affine_map<(i, j, k) -> (i, j)> 637 /// Fused dimensions : i, j 638 /// 639 /// Example 2: 640 /// linalg.matmul ins(%a, %b) outs(%c) 641 /// linalg.generic {indexing_maps = [affine_map<(i, j) -> (j, i)>, ... 642 /// iterator_types = ["parallel", "parallel"]} 643 /// ins(%c) ... 644 /// 645 /// Number of parallel loops = 2: 646 /// producerIndexMap (projected to parallel loops) = 647 /// affine_map<(i, j) -> (i, j)> 648 /// consumerLoopToProducerLoop2 = affine_map<(i, j) -> (j, i)> 649 /// Fused dimensions : i, j 650 /// 651 /// Example 3: 652 /// linalg.copy(%s, %b) 653 /// linalg.matmul ins(%a, %b) outs(%c) 654 /// 655 /// Number of parallel loops = 2 656 /// produceIndexMap : affine_map<(i, j) -> (i, j)> 657 /// consumerLoopToProduceLoops = affine_map<(i, j, k) -> (k, j)> 658 /// submap with only parallel loops = affine_map<(i, j) -> (j)> 659 /// Fused dimensions : j 660 static std::set<unsigned> 661 collectFusableLoops(ArrayRef<LinalgOp> ops, 662 const FusableOpDependencesTy &fusableDependences) { 663 assert(!ops.empty()); 664 auto getNumOuterParallelLoops = [](LinalgOp linalgOp) { 665 return linalgOp.iterator_types() 666 .getValue() 667 .take_while([](Attribute attr) -> bool { 668 return attr.cast<StringAttr>().getValue() == 669 getParallelIteratorTypeName(); 670 }) 671 .size(); 672 }; 673 674 size_t numOuterParallelLoops = getNumOuterParallelLoops(ops.back()); 675 for (auto op : ops.drop_back()) { 676 numOuterParallelLoops = 677 std::min(numOuterParallelLoops, getNumOuterParallelLoops(op)); 678 } 679 680 std::set<unsigned> fusableLoops; 681 auto range = llvm::seq<unsigned>(0, numOuterParallelLoops); 682 fusableLoops.insert(range.begin(), range.end()); 683 684 for (auto op : reverse(ops)) { 685 for (auto dependence : fusableDependences.lookup(op)) { 686 LLVM_DEBUG({ 687 llvm::dbgs() << "\t fusable :"; 688 for (unsigned i : fusableLoops) 689 llvm::dbgs() << " " << i; 690 llvm::dbgs() << "\n"; 691 }); 692 693 Optional<AffineMap> consumerLoopToProducerLoop = 694 getConsumerLoopToProducerLoopMap(dependence); 695 if (!consumerLoopToProducerLoop) { 696 op.emitRemark("failed to get map from consumer loop to producer loop"); 697 return {}; 698 } 699 // todo: This condition is only an implementation limitation. When fusing 700 // the operation, if the accesses in the producer/consumer are transposes 701 // of each other, the loop bounds for the tiled producer can be 702 // manipulated accordingly. This requires some additional bookkeeping in 703 // the implementation of tile+fuse that is deferred to later. 704 if (doesTransposeAccess(*consumerLoopToProducerLoop, fusableLoops)) { 705 op.emitRemark("unhandled fusion when fusion requires permutation"); 706 return {}; 707 } 708 709 std::set<unsigned> candidates; 710 for (AffineExpr expr : consumerLoopToProducerLoop->getResults()) { 711 unsigned position = expr.cast<AffineDimExpr>().getPosition(); 712 if (fusableLoops.count(position)) 713 candidates.insert(position); 714 } 715 LLVM_DEBUG({ 716 llvm::dbgs() << "\t candidates :"; 717 for (unsigned i : candidates) 718 llvm::dbgs() << " " << i; 719 llvm::dbgs() << "\n"; 720 }); 721 if (candidates.empty()) 722 return {}; 723 std::swap(candidates, fusableLoops); 724 } 725 } 726 727 return fusableLoops; 728 } 729 730 /// Find all dependences that are fusable. 731 FusableOpDependencesTy mlir::linalg::findAllFusableDependences( 732 ArrayRef<LinalgOp> ops, const LinalgDependenceGraph &dependenceGraph) { 733 FusableOpDependencesTy fusableDependences; 734 DenseMap<Operation *, SmallVector<AffineMap, 1>> fusedProducerIndexingMap; 735 for (LinalgOp op : reverse(ops)) { 736 for (OpOperand *opOperand : op.getInputAndOutputOperands()) { 737 Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> 738 fusableDependence = findFusableProducer(*opOperand, dependenceGraph); 739 if (!fusableDependence) 740 continue; 741 LinalgOp producerOp = 742 dyn_cast<LinalgOp>(fusableDependence->getDependentOp()); 743 if (!producerOp) 744 continue; 745 // Do not fuse dependences that are to operations not in the same basic 746 // block. This avoid moving fused operations across loops that might 747 // themselves carry dependency making the fusion illegal. 748 if (producerOp->getBlock() != op->getBlock()) 749 continue; 750 751 // Make sure that the indexing map of the view used for fusion in the 752 // producer is a projected permutation. 753 Optional<AffineMap> producerMap = 754 fusableDependence->getDependentOpViewIndexingMap(); 755 Optional<AffineMap> consumerMap = 756 fusableDependence->getIndexingOpViewIndexingMap(); 757 assert( 758 consumerMap && 759 "unable to find indexing map of operand/result of indexing OpView"); 760 fusedProducerIndexingMap[producerOp.getOperation()].push_back( 761 *consumerMap); 762 if (!producerMap || !producerMap->isProjectedPermutation() || 763 !consumerMap->isProjectedPermutation()) 764 continue; 765 766 fusableDependences[producerOp.getOperation()].push_back( 767 *fusableDependence); 768 } 769 } 770 // TODO: Currently fusion would not be legal if the fusable dependence is to 771 // the same producer but different indexing map in the consumer. Fix this, but 772 // in the meanwhile disallow such a fusion. 773 for (auto useIndexingMapsList : fusedProducerIndexingMap) { 774 AffineMap map1 = useIndexingMapsList.second.front(); 775 for (AffineMap map2 : 776 ArrayRef<AffineMap>(useIndexingMapsList.second).drop_front()) { 777 if (map1 != map2) { 778 fusableDependences.erase(useIndexingMapsList.first); 779 break; 780 } 781 } 782 } 783 return fusableDependences; 784 } 785 786 /// Tile the fused loops in the root operation, by setting the tile sizes for 787 /// all other loops to zero (those will be tiled later). 788 static Optional<TiledLinalgOp> 789 tileRootOperation(OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizeVector, 790 const LinalgTilingOptions &options, 791 const std::set<unsigned> &fusedLoops) { 792 SmallVector<Value, 4> tileSizes(tileSizeVector.begin(), tileSizeVector.end()); 793 auto zero = b.create<ConstantIndexOp>(op.getLoc(), 0); 794 for (unsigned i = 0, e = tileSizes.size(); i != e; ++i) 795 if (!fusedLoops.count(i)) 796 tileSizes[i] = zero; 797 LinalgTilingOptions tileFusedLoopsOptions = options; 798 tileFusedLoopsOptions.setTileSizes(tileSizes); 799 return tileLinalgOp(b, op, tileFusedLoopsOptions); 800 } 801 802 /// Fuse the operations in `fusionCandidates` with `tiledOp`. Latter is expected 803 /// to be a tiled operation such that it is valid to fuse all operations in 804 /// `fusionCandidates`, i.e. move the operation within the inter-tile loops of 805 /// `tiledOp`. 806 static SmallVector<LinalgOp, 1> 807 fuseOperations(OpBuilder &b, LinalgOp rootOp, TiledLinalgOp tiledLinalgOp, 808 ArrayRef<LinalgOp> fusionCandidates, 809 const FusableOpDependencesTy &fusableDependences, 810 const std::set<unsigned> &fusedLoops) { 811 LinalgOp tiledOp = tiledLinalgOp.op; 812 OpBuilder::InsertionGuard guard(b); 813 b.setInsertionPoint(tiledOp); 814 815 DenseMap<unsigned, Range> fusedLoopsAndRanges; 816 for (unsigned loop : fusedLoops) { 817 ShapeDimension shapeDim = getShapeDefiningLoopRange(tiledOp, loop, true); 818 fusedLoopsAndRanges[loop] = getRangeFromOperandShape( 819 b, tiledOp.getLoc(), shapeDim.shape, shapeDim.dimension); 820 } 821 822 SmallVector<LinalgOp, 1> fusedOps(fusionCandidates.size()); 823 DenseMap<Operation *, LinalgOp> origOpToFusedOp; 824 origOpToFusedOp[rootOp.getOperation()] = tiledOp; 825 for (auto candidate : enumerate(llvm::reverse(fusionCandidates))) { 826 LinalgOp origOp = candidate.value(); 827 LinalgOp fusedOp = fuse(b, origOp, fusedLoopsAndRanges); 828 origOpToFusedOp[origOp.getOperation()] = fusedOp; 829 fusedOps[fusionCandidates.size() - candidate.index() - 1] = fusedOp; 830 831 // Prepare the builder for the next insertion point. 832 auto guard = llvm::make_scope_exit([&]() { b.setInsertionPoint(fusedOp); }); 833 if (!origOp.hasTensorSemantics()) 834 continue; 835 836 // If the producer consumer operations are linalg operations on tensors, the 837 // dependence is due to value produced (as a return tensor) by the producer 838 // and used in the consumer. The returned value of the fused op needs to be 839 // made the operand of the tiled/fused consumer operation. By construction 840 // the value returned by the producer is the value used by the consumer. 841 for (auto &dependence : fusableDependences.lookup(origOp.getOperation())) { 842 if (dependence.dependenceType != 843 LinalgDependenceGraph::DependenceType::RAW) 844 continue; 845 846 unsigned resultIndex = 847 dependence.getDependentOpViewResultNum().getValue(); 848 LinalgOp consumer = origOpToFusedOp.lookup(dependence.getIndexingOp()); 849 if (!consumer) 850 continue; 851 852 Value replacementValue = fusedOp.getOperation()->getResult(resultIndex); 853 consumer.getOperation()->setOperand( 854 dependence.getIndexingOpViewOperandNum().getValue(), 855 replacementValue); 856 } 857 858 // At this point, all Linalg uses of the tensors produced by `origOp` have 859 // been replaced. However, there may still be "output tensor"-like uses 860 // coming from WAW dependencies. 861 // All these uses are iter_args of the outermost loop (TODO: add a check). 862 // Such iter_args uses serve 2 purposes: 863 // 1. give a shape to the output 864 // 2. encode destructive updates that may be inplaceable by bufferization. 865 // To keep the second type of information while letting the unfused op die 866 // unused, we need to forward the producer output operand. 867 if (auto forOp = dyn_cast<scf::ForOp>(tiledLinalgOp.loops.front())) { 868 for (auto &operand : forOp.getIterOpOperands()) { 869 if (auto opResult = operand.get().dyn_cast<OpResult>()) { 870 if (opResult.getOwner() == origOp) { 871 Value output = 872 origOp.getOutputOperand(opResult.getResultNumber())->get(); 873 assert(output.getType().isa<RankedTensorType>()); 874 operand.set(output); 875 } 876 } 877 } 878 } 879 } 880 return fusedOps; 881 } 882 883 static Optional<TiledAndFusedLinalgOps> 884 tileAndFuseLinalgOpsImpl(OpBuilder &b, ArrayRef<LinalgOp> ops, 885 const LinalgDependenceGraph &dependenceGraph, 886 const LinalgTilingOptions &tilingOptions) { 887 if (ops.size() < 2) 888 return llvm::None; 889 LinalgOp rootOp = ops.back(); 890 if (!llvm::all_of( 891 ops, 892 [](LinalgOp linalgOp) { return linalgOp.hasBufferSemantics(); }) && 893 !llvm::all_of(ops, [](LinalgOp linalgOp) { 894 return linalgOp.hasTensorSemantics(); 895 })) { 896 rootOp.emitError( 897 "unable to fuse operations that have tensor semantics with operations " 898 "that have buffer semantics and viceversa."); 899 return llvm::None; 900 } 901 // TODO: Support interchange with tile + fuse. This might actually help do 902 // better fusion. 903 if (!tilingOptions.interchangeVector.empty()) { 904 rootOp.emitRemark("unable to handle tile and fuse with interchange"); 905 return llvm::None; 906 } 907 908 OpBuilder::InsertionGuard guard(b); 909 b.setInsertionPoint(rootOp); 910 911 // Find all the producers. 912 LLVM_DEBUG(llvm::dbgs() << "findAllFusableDependences\n"); 913 FusableOpDependencesTy fusableDependences = 914 findAllFusableDependences(ops, dependenceGraph); 915 if (fusableDependences.empty()) { 916 LLVM_DEBUG(llvm::dbgs() << "no fusable dependencies found\n"); 917 return llvm::None; 918 } 919 920 TiledAndFusedLinalgOps ret; 921 // Find the loops that can be tiled and fused. 922 LLVM_DEBUG(llvm::dbgs() << "collectFusableLoops\n"); 923 ret.fusedLoopDims = collectFusableLoops(ops, fusableDependences); 924 925 // If there are no fusable dependences or there are no tile+fusable loops, 926 // just return. 927 if (ret.fusedLoopDims.empty()) { 928 LLVM_DEBUG(llvm::dbgs() << "no fusable loops found\n"); 929 return llvm::None; 930 } 931 932 // Tile the fused loops in the last operation in the list. 933 SmallVector<Value, 4> tileSizeVector = 934 tilingOptions.tileSizeComputationFunction(b, rootOp); 935 Optional<TiledLinalgOp> tiledRootOp = tileRootOperation( 936 b, rootOp, tileSizeVector, tilingOptions, ret.fusedLoopDims); 937 if (!tiledRootOp) { 938 rootOp.emitRemark("failed to tile the fused loops"); 939 return llvm::None; 940 } 941 ret.op = tiledRootOp->op; 942 ret.fusedLoops.assign(tiledRootOp->loops.begin(), tiledRootOp->loops.end()); 943 944 // Fuse the other operations into the fused inter-tile loops produced above. 945 ret.fusedProducers = fuseOperations(b, rootOp, *tiledRootOp, ops.drop_back(), 946 fusableDependences, ret.fusedLoopDims); 947 948 return ret; 949 } 950 951 Optional<TiledAndFusedLinalgOps> 952 mlir::linalg::tileAndFuseLinalgOps(OpBuilder &b, ArrayRef<LinalgOp> ops, 953 const LinalgDependenceGraph &dependenceGraph, 954 const LinalgTilingOptions &tilingOptions) { 955 switch (tilingOptions.loopType) { 956 case LinalgTilingLoopType::Loops: 957 case LinalgTilingLoopType::ParallelLoops: 958 case LinalgTilingLoopType::TiledLoops: 959 return tileAndFuseLinalgOpsImpl(b, ops, dependenceGraph, tilingOptions); 960 default:; 961 } 962 return llvm::None; 963 } 964