1 //===- Fusion.cpp - Implementation of linalg Fusion -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the linalg dialect Fusion pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Affine/IR/AffineOps.h" 15 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h" 16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h" 17 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" 18 #include "mlir/Dialect/Linalg/Passes.h" 19 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 20 #include "mlir/Dialect/Linalg/Utils/Utils.h" 21 #include "mlir/Dialect/MemRef/IR/MemRef.h" 22 #include "mlir/Dialect/Tensor/IR/Tensor.h" 23 #include "mlir/IR/AffineExpr.h" 24 #include "mlir/IR/AffineMap.h" 25 #include "mlir/IR/Dominance.h" 26 #include "mlir/Support/LLVM.h" 27 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 28 #include "mlir/Transforms/RegionUtils.h" 29 #include "llvm/ADT/MapVector.h" 30 #include "llvm/ADT/ScopeExit.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 34 #include <set> 35 36 #define DEBUG_TYPE "linalg-fusion" 37 38 using namespace mlir; 39 using namespace mlir::linalg; 40 41 using llvm::dbgs; 42 43 /// Implements a simple high-level fusion pass on linalg structured operations. 44 /// 45 /// In each block, linalg ops are processed in reverse textual order. 46 /// Given a linalg op `O`, fusion occurs by: 47 /// 1. inspecting the linalg ops that write into the views read by `O`. There 48 /// are 2 cases: 49 /// a) buffer case: use the SSA value of the views and a simple alias 50 /// analysis on subview ops to determine producer-consumer dependences; 51 /// b) tensor case: use SSA use-def chains on extract_slice ops; 52 /// 2. greedily fuse the linalg ops that produce the subview/extract_slice. 53 /// 3. inspect the fused ops and determine whether they have other remaining 54 /// LinalgOp uses. If not, then erase the original producing linalg op. 55 /// 56 /// More advanced use cases, analyses as well as profitability heuristics are 57 /// left for future work. 58 59 struct ShapeDimension { 60 Value shape; 61 unsigned dimension; 62 }; 63 64 // Given an `op`, returns the first (`shape`, `dimension`) pair that identifies 65 // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps 66 // guarantees at least one such dimension is found. If multiple candidates exist 67 // they must agree by construction (i.e. have the same size) and we just return 68 // the first one. 69 static ShapeDimension 70 getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth, 71 bool fromSubViewOpOnly = false) { 72 // Iterate over the inputs and outputs in order. 73 // Extract the subranges from the linearized ranges. 74 for (OpOperand *opOperand : op.getInputAndOutputOperands()) { 75 // The method `getRangeFromOperandShape` requires using SubViewOp or 76 // ExtractSliceOps. If the value isn't defined from there continue. 77 // todo: The method should be adapted to get the values from 78 // `ViewInterface`. The interface needs a `getOrCreateRanges` method which 79 // currently returns a `linalg.range`. The fix here is to move this op to 80 // `std` dialect and add the method to `ViewInterface`. 81 if (fromSubViewOpOnly && 82 !isa_and_nonnull<memref::SubViewOp, tensor::ExtractSliceOp>( 83 opOperand->get().getDefiningOp())) 84 continue; 85 86 AffineMap map = op.getTiedIndexingMap(opOperand); 87 LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange I/O idx: " 88 << opOperand->getOperandNumber() << "\n"); 89 LLVM_DEBUG(llvm::dbgs() 90 << "getShapeDefiningLoopRange map: " << map << "\n"); 91 SmallVector<Value, 8> shapeRanges(map.getNumResults(), nullptr); 92 for (auto en : llvm::enumerate(map.getResults())) { 93 auto dimExpr = en.value().dyn_cast<AffineDimExpr>(); 94 if (!dimExpr) 95 continue; 96 if (loopDepth == en.value().cast<AffineDimExpr>().getPosition()) { 97 LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: " 98 << loopDepth << "\n"); 99 LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange shape: " 100 << opOperand->get() << "\n"); 101 return ShapeDimension{opOperand->get(), 102 static_cast<unsigned>(en.index())}; 103 } 104 } 105 } 106 llvm_unreachable("Expect to be able to extract a shape defining loop range"); 107 } 108 109 // Return tiled operands for the fused producer op. When fusing into 110 // `linalg.tiled_loop` one has to update `input` and `output` arguments of the 111 // loop correspondingly. 112 // Each input tensor of the producer op has to be added to `inputs` of the 113 // `tiled_loop` if it is not present there already. Each output tensor has to 114 // be added either to `inputs` or to `outputs` of `linalg.tiled_loop` depending 115 // on whether the correponding result is an input or an output to the loop. 116 // 117 // NOTE: This way of updating the arguments of the `tiled_loop` assumes that the 118 // intermediate result is not used by any other operation but the consumer. A 119 // more generic way is to append all missing output tensors of the producer to 120 // the tiled loop outputs and hence modify the number of the results, since we 121 // would need to add the intermediate results to `linalg.yield`. After that a 122 // canonicalization pass would move the unused output args of the `tiled_loop` 123 // to the `input` section. 124 static SmallVector<Value> getTiledOperands(OpBuilder &b, LinalgOp producer) { 125 auto tiledLoop = dyn_cast<TiledLoopOp>(b.getBlock()->getParentOp()); 126 if (!tiledLoop) 127 return producer.getInputAndOutputOperands(); 128 129 SmallVector<Value> tiledOperands; 130 assert(producer.hasTensorSemantics() && 131 "only fusion on tensors is currently supported for TiledLinalgOp"); 132 133 for (OpOperand *producerInput : producer.getInputOperands()) { 134 OpOperand *addedInput = tiledLoop.findInputOperand(producerInput->get()); 135 if (addedInput == nullptr) 136 addedInput = &tiledLoop.appendInputOperand(b, producerInput->get()); 137 BlockArgument addedBlockArg = tiledLoop.getTiedBlockArgument(*addedInput); 138 tiledOperands.push_back(addedBlockArg); 139 } 140 for (OpOperand *producerOutput : producer.getOutputOperands()) { 141 OpResult result = producer.getTiedOpResult(producerOutput); 142 OpOperand *resultInputOperand = tiledLoop.findInputOperand(result); 143 OpOperand *resultOutputOperand = tiledLoop.findOutputOperand(result); 144 assert((resultInputOperand != nullptr) ^ (resultOutputOperand != nullptr) && 145 "The result should be present in `input` or `output` args of " 146 "`tiled_loop"); 147 148 bool isInput = resultInputOperand; 149 int opNumber = isInput ? resultInputOperand->getOperandNumber() 150 : resultOutputOperand->getOperandNumber(); 151 152 OpOperand *addedOutput = tiledLoop.findOutputOperand(producerOutput->get()); 153 if (addedOutput == nullptr) 154 addedOutput = 155 isInput ? &tiledLoop.appendInputOperand(b, producerOutput->get()) 156 : &tiledLoop.appendOutputOperand(b, producerOutput->get()); 157 158 OpOperand &resultOperand = tiledLoop->getOpOperand(opNumber); 159 auto addedBlockArg = tiledLoop.getTiedBlockArgument(*addedOutput); 160 auto resultOperandBlockArg = tiledLoop.getTiedBlockArgument(resultOperand); 161 resultOperandBlockArg.replaceAllUsesWith(addedBlockArg); 162 tiledLoop.eraseOperand(b, resultOperand); 163 tiledOperands.push_back(addedBlockArg); 164 } 165 return tiledOperands; 166 } 167 168 /// Fuses the producer by cloning the `producer`. The `fusedLoopsAndRanges` 169 /// provides the loop range information for the fused loops. The rest are 170 /// obtained from the producer itself, since they are not tiled + fused. 171 static LinalgOp fuse(OpBuilder &b, LinalgOp producer, 172 const DenseMap<unsigned, Range> &fusedLoopsAndRanges) { 173 SmallVector<Value, 8> ivs, tileSizes, sizeBounds; 174 SmallVector<Range, 8> loopRanges; 175 Location loc = producer.getLoc(); 176 auto zero = b.create<ConstantIndexOp>(loc, 0); 177 auto one = b.create<ConstantIndexOp>(loc, 1); 178 179 for (unsigned i = 0, e = producer.getNumLoops(); i < e; ++i) { 180 auto shapeDim = getShapeDefiningLoopRange(producer, i); 181 Value dim = createOrFoldDimOp(b, loc, shapeDim.shape, shapeDim.dimension); 182 sizeBounds.push_back(dim); 183 auto it = fusedLoopsAndRanges.find(i); 184 if (it != fusedLoopsAndRanges.end()) { 185 ivs.push_back(it->second.offset); 186 tileSizes.push_back(it->second.size); 187 loopRanges.push_back(it->second); 188 LLVM_DEBUG(llvm::dbgs() << "tiled loop#" << i << " with LoopRange " 189 << loopRanges.back() << "\n"); 190 } else { 191 tileSizes.push_back(zero); 192 loopRanges.push_back(Range{zero, dim, one}); 193 LLVM_DEBUG(llvm::dbgs() << "full loop#" << i << " with LoopRange " 194 << loopRanges.back() << "\n"); 195 } 196 } 197 198 SmallVector<Value, 8> clonedShapes; 199 clonedShapes.reserve(producer.getNumInputsAndOutputs()); 200 201 // Compute subranges for all tensor input/output operands. 202 clonedShapes.append(makeTiledShapes(b, loc, producer, 203 getTiledOperands(b, producer), ivs, 204 tileSizes, sizeBounds)); 205 206 // Iterate over the results in order. 207 // Extract the subtensor type from the linearized range. 208 // Since we do not enforce any canonicalizations on the fly, this is always 209 // fully dynamic at construction time. 210 SmallVector<Type, 4> resultTypes; 211 resultTypes.reserve(producer->getNumResults()); 212 for (RankedTensorType t : producer.getOutputTensorTypes()) { 213 unsigned rank = t.getRank(); 214 SmallVector<int64_t, 4> staticOffsetsVector( 215 rank, ShapedType::kDynamicStrideOrOffset); 216 SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamicSize); 217 SmallVector<int64_t, 4> staticStridesVector( 218 rank, ShapedType::kDynamicStrideOrOffset); 219 resultTypes.push_back(tensor::ExtractSliceOp::inferResultType( 220 t.cast<RankedTensorType>(), staticOffsetsVector, staticSizesVector, 221 staticStridesVector)); 222 } 223 224 Operation *clonedOp = producer.clone(b, loc, resultTypes, clonedShapes); 225 226 // Shift all IndexOp results by the tile offset. 227 SmallVector<Value> allIvs; 228 transform(loopRanges, std::back_inserter(allIvs), 229 [](Range range) { return range.offset; }); 230 addTileLoopIvsToIndexOpResults(b, clonedOp, allIvs); 231 232 return clonedOp; 233 } 234 235 /// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is 236 /// expected to be defined by a subview op or an extract_slice op. 237 static Range getRangeFromOperandShape(OpBuilder &b, Location loc, 238 Value shapedOperand, unsigned dim) { 239 Operation *shapeProducingOp = shapedOperand.getDefiningOp(); 240 if (auto subViewOp = dyn_cast<memref::SubViewOp>(shapeProducingOp)) 241 return subViewOp.getOrCreateRanges(b, loc)[dim]; 242 if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(shapeProducingOp)) 243 return sliceOp.getOrCreateRanges(b, loc)[dim]; 244 llvm_unreachable("SubviewOp or ExtractSliceOp expected"); 245 } 246 247 /// Fuses the producer into the loop immediately enclosing the consumer. 248 /// This is achieved by "recomputing" the producer at the time it 249 /// is needed just before the consumer. 250 static LinalgOp fuse(OpBuilder &b, LinalgOp producerOp, AffineMap producerMap, 251 OpOperand &consumerOpOperand) { 252 LLVM_DEBUG(llvm::dbgs() << "Producer map: " << producerMap << "\n"); 253 DenseMap<unsigned, Range> fusedLoopsAndRanges; 254 Value shapedOperand = consumerOpOperand.get(); 255 for (auto en : llvm::enumerate(producerMap.getResults())) { 256 unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition(); 257 fusedLoopsAndRanges[posInProducerLoop] = getRangeFromOperandShape( 258 b, consumerOpOperand.getOwner()->getLoc(), shapedOperand, en.index()); 259 } 260 return fuse(b, producerOp, fusedLoopsAndRanges); 261 } 262 263 // Encode structural fusion safety preconditions. 264 // Some of these will be lifted in the future with better analysis. 265 static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView, 266 LinalgOp consumer) { 267 assert(producer.hasBufferSemantics() && 268 "expected linalg op with buffer semantics"); 269 assert(consumer.hasBufferSemantics() && 270 "expected linalg op with buffer semantics"); 271 if (producer.getNumOutputs() != 1) { 272 LLVM_DEBUG(llvm::dbgs() << "\nNot structurally fusable (multi-output)"); 273 return false; 274 } 275 // Only fuse when the producer block dominates. 276 DominanceInfo dom(producer.getOperation()); 277 if (!dom.dominates(producer->getBlock(), consumer->getBlock())) { 278 LLVM_DEBUG( 279 llvm::dbgs() 280 << "\nNot structurally fusable (producer block does not dominate)"); 281 return false; 282 } 283 return true; 284 } 285 286 bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph, 287 LinalgOp consumer, 288 Value consumedView, 289 LinalgOp producer) { 290 assert(producer.hasBufferSemantics() && 291 "expected linalg op with buffer semantics"); 292 assert(consumer.hasBufferSemantics() && 293 "expected linalg op with buffer semantics"); 294 // Make some simple structural checks that alleviate the need for more 295 // complex analyses. 296 if (!isStructurallyFusableProducer(producer, consumedView, consumer)) { 297 LLVM_DEBUG(llvm::dbgs() << "\n***Not static last write due to structure:\t" 298 << *producer.getOperation()); 299 return false; 300 } 301 // Check for any interleaved write to consumedView. 302 if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) { 303 LLVM_DEBUG(llvm::dbgs() << "\n***Not fusable due to interleaved write:\t" 304 << *producer.getOperation()); 305 return false; 306 } 307 return true; 308 } 309 310 bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph, 311 LinalgOp consumer, Value consumedView, 312 LinalgOp producer) { 313 assert(producer.hasBufferSemantics() && 314 "expected linalg op with buffer semantics"); 315 assert(consumer.hasBufferSemantics() && 316 "expected linalg op with buffer semantics"); 317 if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer)) 318 return false; 319 // Check for any fusion-preventing dependence to any shape read/written that 320 // would violate dependences. 321 if (!graph.findCoveringDependences(producer, consumer).empty()) { 322 LLVM_DEBUG(llvm::dbgs() 323 << "\n***Not fusable due to an interleaved dependence:\t" 324 << *producer.getOperation()); 325 return false; 326 } 327 return true; 328 } 329 330 /// For `consumer` with buffer semantics, find the Linalg operation on buffers 331 /// that is the last writer of `consumerOpOperand`. For now the fusable 332 /// dependence is returned as an instance of the `dependenceGraph`. 333 static Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> 334 findFusableProducer(OpOperand &consumerOpOperand, 335 const LinalgDependenceGraph &dependenceGraph) { 336 LLVM_DEBUG(llvm::dbgs() << "findFusableProducer for: " 337 << consumerOpOperand.get() << " @" 338 << consumerOpOperand.getOperandNumber() << " in " 339 << *consumerOpOperand.getOwner() << "\n"); 340 LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner()); 341 if (!consumerOp) 342 return {}; 343 344 // Only consider RAW and WAW atm. 345 for (auto depType : { 346 LinalgDependenceGraph::DependenceType::RAW, 347 LinalgDependenceGraph::DependenceType::WAW, 348 }) { 349 LLVM_DEBUG(llvm::dbgs() 350 << "Dependencies into: " << *consumerOp.getOperation() << "\n"); 351 for (auto dependence : llvm::make_filter_range( 352 dependenceGraph.getDependencesInto(consumerOp, depType), 353 [&](LinalgDependenceGraph::LinalgDependenceGraphElem elem) { 354 LLVM_DEBUG(llvm::dbgs() << "Inspect dependence btw: " 355 << elem.getIndexingValue() << " and " 356 << elem.getDependentValue() << "\n"); 357 Value v = elem.getIndexingValue(); 358 Optional<unsigned> operandNum = 359 elem.getIndexingOpViewOperandNum(); 360 return isa<LinalgOp>(elem.getDependentOp()) && 361 v == consumerOpOperand.get() && operandNum && 362 operandNum.getValue() == 363 consumerOpOperand.getOperandNumber(); 364 })) { 365 // Consumer consumes this view, `isStructurallyFusableProducer` also 366 // checks whether it is a strict subview of the producer view. 367 auto producer = cast<LinalgOp>(dependence.getDependentOp()); 368 LLVM_DEBUG(llvm::dbgs() 369 << "\n" 370 << LinalgDependenceGraph::getDependenceTypeStr(depType) 371 << "producer: " << *dependence.getDependentOp() 372 << " view: " << dependence.getDependentValue() << "\n"); 373 374 // If the producer and consumer have tensor semantics, the only dependence 375 // between them is through a RAW dependence and they are fusable by 376 // construction. For buffer semantics need additional checks. 377 if (producer.hasBufferSemantics() && consumerOp.hasBufferSemantics() && 378 isFusableInto(dependenceGraph, consumerOp, consumerOpOperand.get(), 379 producer)) 380 return dependence; 381 if (producer.hasTensorSemantics() && consumerOp.hasTensorSemantics()) { 382 assert(dependence.dependenceType == 383 LinalgDependenceGraph::DependenceType::RAW); 384 return dependence; 385 } 386 } 387 } 388 return {}; 389 } 390 391 Optional<FusionInfo> 392 mlir::linalg::fuseProducerOfBuffer(OpBuilder &b, OpOperand &consumerOpOperand, 393 const LinalgDependenceGraph &graph) { 394 Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependence = 395 findFusableProducer(consumerOpOperand, graph); 396 if (!fusableDependence) 397 return llvm::None; 398 399 LinalgOp producerOp = dyn_cast<LinalgOp>(fusableDependence->getDependentOp()); 400 if (!producerOp) 401 return llvm::None; 402 403 // If producer is already in the same block as consumer, we are done. 404 if (consumerOpOperand.get().getParentBlock() == 405 fusableDependence->getDependentValue().getParentBlock()) 406 return llvm::None; 407 408 Optional<AffineMap> producerMap = 409 fusableDependence->getDependentOpViewIndexingMap(); 410 if (!producerMap) 411 return llvm::None; 412 413 // Must be a subview or an extract_slice to guarantee there are loops we can 414 // fuse into. 415 auto subView = consumerOpOperand.get().getDefiningOp<memref::SubViewOp>(); 416 if (!subView) { 417 LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subview)"); 418 return llvm::None; 419 } 420 421 // Fuse `producer` just before `consumer`. 422 OpBuilder::InsertionGuard g(b); 423 b.setInsertionPoint(consumerOpOperand.getOwner()); 424 LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " 425 << *consumerOpOperand.getOwner() << "\n"); 426 427 auto fusedProducer = fuse(b, producerOp, *producerMap, consumerOpOperand); 428 return FusionInfo{producerOp, fusedProducer}; 429 } 430 431 /// Walk back use-def chain through scf::For yields. 432 /// Sets `producer` and `outputIndex` if it finds a producer LinalgOp 433 434 // TODO(ravishankarm, ntv): This can be moved into the dependence graphs 435 // dependence tracking since the dependence tracking is similar to what is done 436 // w.r.t to buffers. 437 static void getProducerOfTensor(Value tensor, OpResult &opResult) { 438 if (!tensor.getType().isa<RankedTensorType>()) 439 return; 440 441 while (true) { 442 LLVM_DEBUG(llvm::dbgs() << "\ngetProducerOfTensor: " << tensor); 443 if (auto linalgOp = tensor.getDefiningOp<LinalgOp>()) { 444 opResult = tensor.cast<OpResult>(); 445 return; 446 } 447 if (auto sliceOp = tensor.getDefiningOp<tensor::ExtractSliceOp>()) { 448 tensor = sliceOp.source(); 449 continue; 450 } 451 if (auto blockArg = tensor.dyn_cast<BlockArgument>()) { 452 if (auto forOp = blockArg.getDefiningOp<scf::ForOp>()) { 453 tensor = *(forOp.getIterOperands().begin() + blockArg.getArgNumber()); 454 continue; 455 } 456 } 457 return; 458 } 459 } 460 461 Optional<FusionInfo> 462 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpOperand &consumerOpOperand) { 463 Value inputTensor = consumerOpOperand.get(); 464 OpResult producerOpResult; 465 getProducerOfTensor(inputTensor, producerOpResult); 466 if (!producerOpResult) { 467 LLVM_DEBUG(llvm::dbgs() << "\nUnable to find producer"); 468 return {}; 469 } 470 return fuseProducerOfTensor(b, producerOpResult, consumerOpOperand); 471 } 472 473 Optional<FusionInfo> 474 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpResult producerOpResult, 475 OpOperand &consumerOpOperand) { 476 auto producerOp = dyn_cast<LinalgOp>(producerOpResult.getOwner()); 477 if (!producerOp) 478 return llvm::None; 479 480 LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner()); 481 if (!consumerOp) 482 return llvm::None; 483 484 Value inputTensor = consumerOpOperand.get(); 485 486 // Must be an extract_slice op to guarantee there are loops we can fuse into. 487 auto sliceOp = inputTensor.getDefiningOp<tensor::ExtractSliceOp>(); 488 if (!sliceOp) { 489 LLVM_DEBUG(llvm::dbgs() 490 << "\nNot fusable, not an extract_slice op: " << inputTensor); 491 return {}; 492 } 493 494 // If producer is already in the same block as consumer, we are done. 495 if (consumerOpOperand.get().getParentBlock() == 496 producerOpResult.getParentBlock()) 497 return {}; 498 499 // Insert fused `producer` just before `consumer`. 500 OpBuilder::InsertionGuard g(b); 501 b.setInsertionPoint(consumerOp); 502 LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumerOp << "\n"); 503 OpOperand *opOperand = 504 producerOp.getOutputOperand(producerOpResult.getResultNumber()); 505 LinalgOp fusedProducer = 506 fuse(b, producerOp, producerOp.getTiedIndexingMap(opOperand), 507 consumerOpOperand); 508 509 // Replace use. 510 // Canonicalizations are not guaranteed to have happened before constructing 511 // `fusedProducer`. In the tensor case this can result in temporary type 512 // mismatches. Insert a `tensor.cast` op to propagate the transformation 513 // invariant that types are compatible. 514 Value def = fusedProducer->getResult(producerOpResult.getResultNumber()); 515 Type consumerType = consumerOpOperand.get().getType(); 516 if (consumerType != def.getType()) 517 def = b.create<tensor::CastOp>(fusedProducer.getLoc(), consumerType, def); 518 consumerOpOperand.set(def); 519 return FusionInfo{cast<LinalgOp>(producerOpResult.getOwner()), fusedProducer}; 520 } 521 522 /// Prune all dimensions that are of reduction iterator type from `map`. 523 static AffineMap pruneReductionDimsFromMap(ArrayRef<Attribute> iteratorTypes, 524 AffineMap map) { 525 llvm::SmallDenseSet<unsigned> projectedDims; 526 for (auto attr : llvm::enumerate(iteratorTypes)) { 527 if (!isParallelIterator(attr.value())) 528 projectedDims.insert(attr.index()); 529 } 530 return getProjectedMap(map, projectedDims); 531 } 532 533 /// Returns the mapping from iterations in the consumer that write to the same 534 /// location as the iterations in the producer. To do so use 535 /// - indexing map of the fused view in the consumer : consumerIndexMap 536 /// - indexing map of the fused view in the producer : producerIndexMap 537 /// consumerLoopToProducerLoop = 538 /// inverse(producerIndexMap).compose(consumerIndexMap) 539 static Optional<AffineMap> getConsumerLoopToProducerLoopMap( 540 LinalgDependenceGraph::LinalgDependenceGraphElem dependence) { 541 auto producer = dyn_cast<LinalgOp>(dependence.getDependentOp()); 542 if (!producer) 543 return None; 544 545 Optional<AffineMap> producerIndexingMap = 546 dependence.getDependentOpViewIndexingMap(); 547 Optional<AffineMap> consumerIndexingMap = 548 dependence.getIndexingOpViewIndexingMap(); 549 if (!producerIndexingMap || !consumerIndexingMap) 550 return None; 551 552 AffineMap prunedProducerIndexingMap = pruneReductionDimsFromMap( 553 producer.iterator_types().getValue(), *producerIndexingMap); 554 if (!prunedProducerIndexingMap.isPermutation()) 555 return None; 556 557 if (consumerIndexingMap->getNumResults() != 558 prunedProducerIndexingMap.getNumResults()) 559 return None; 560 561 LLVM_DEBUG({ 562 llvm::dbgs() << "\t producerMap : "; 563 producerIndexingMap->print(llvm::dbgs()); 564 llvm::dbgs() << " pruned : "; 565 prunedProducerIndexingMap.print(llvm::dbgs()); 566 llvm::dbgs() << "\n"; 567 llvm::dbgs() << "\t consumerMap : "; 568 consumerIndexingMap->print(llvm::dbgs()); 569 llvm::dbgs() << "\n"; 570 }); 571 572 AffineMap invProducerIndexMap = inversePermutation(prunedProducerIndexingMap); 573 if (!invProducerIndexMap) 574 return None; 575 576 return invProducerIndexMap.compose(*consumerIndexingMap); 577 } 578 579 /// Given a projected permutation `map`, returns true if the map changes the 580 /// order in which the fused loop dimension appear. 581 static bool doesTransposeAccess(AffineMap map, 582 const std::set<unsigned> &fusableLoops) { 583 Optional<unsigned> lastFusableLoop; 584 for (unsigned pos : llvm::map_range(map.getResults(), [](AffineExpr expr) { 585 return expr.cast<AffineDimExpr>().getPosition(); 586 })) { 587 if (!fusableLoops.count(pos)) 588 continue; 589 if (!lastFusableLoop) { 590 lastFusableLoop = pos; 591 continue; 592 } 593 if (pos <= lastFusableLoop.getValue()) 594 return true; 595 lastFusableLoop = pos; 596 } 597 return false; 598 } 599 600 /// Returns the positions of the loop in `op` that can be tiled based on the 601 /// operations that are to be fused with it. For example, in a 602 /// 603 /// linalg.matmul ins(%a, %b : ...) outs(%c : ...) 604 /// 605 /// if the producer of %a needs to be fused with this op, only the `i` loop of 606 /// the matmul can be tiled while fusing. If producer of %a, and %b are to be 607 /// fused, then no loops can be tiled while fusing. The conditions used are: 608 /// 1. Only parallel loops can be used for tile + fuse. Find the number of 609 /// common outer parallel loops between the op and its producers being fused. 610 /// 2. Of the parallel loops only some can be fused. Only those loops can be 611 /// fused such where the fusable loops iteration space only touches one tile 612 /// of the fused operation. This is because the producer (which is writing 613 /// the fused subview) has update semantics. 614 /// 615 /// Since an inverse computation is needed, we need to consider the projection 616 /// of the producerIndexMap w.r.t the parallel loops. The actual fusable loops 617 /// are the dimensions of the consumerLoopToProducerLoop map that correspond to 618 /// parallel loops and appear in the result of the map 619 /// 620 /// Example 1: 621 /// linalg.fill(%cst, %c) 622 /// linalg.matmul ins(%a, %b) outs(%c) 623 /// Number of parallel loops : 2 624 /// producerIndexMap = affine_map<(i, j) ->(i , j)> 625 /// consumerIndexMap = affine_map<(i, j, k) -> (i, j)> 626 /// consumerLoopToProducerLoop = affine_map<(i, j, k) -> (i, j)> 627 /// Fused dimensions : i, j 628 /// 629 /// Example 2: 630 /// linalg.matmul ins(%a, %b) outs(%c) 631 /// linalg.generic {indexing_maps = [affine_map<(i, j) -> (j, i)>, ... 632 /// iterator_types = ["parallel", "parallel"]} 633 /// ins(%c) ... 634 /// 635 /// Number of parallel loops = 2: 636 /// producerIndexMap (projected to parallel loops) = 637 /// affine_map<(i, j) -> (i, j)> 638 /// consumerLoopToProducerLoop2 = affine_map<(i, j) -> (j, i)> 639 /// Fused dimensions : i, j 640 /// 641 /// Example 3: 642 /// linalg.copy(%s, %b) 643 /// linalg.matmul ins(%a, %b) outs(%c) 644 /// 645 /// Number of parallel loops = 2 646 /// produceIndexMap : affine_map<(i, j) -> (i, j)> 647 /// consumerLoopToProduceLoops = affine_map<(i, j, k) -> (k, j)> 648 /// submap with only parallel loops = affine_map<(i, j) -> (j)> 649 /// Fused dimensions : j 650 static std::set<unsigned> 651 collectFusableLoops(ArrayRef<LinalgOp> ops, 652 const FusableOpDependencesTy &fusableDependences) { 653 assert(!ops.empty()); 654 auto getNumOuterParallelLoops = [](LinalgOp linalgOp) { 655 return linalgOp.iterator_types() 656 .getValue() 657 .take_while([](Attribute attr) -> bool { 658 return attr.cast<StringAttr>().getValue() == 659 getParallelIteratorTypeName(); 660 }) 661 .size(); 662 }; 663 664 size_t numOuterParallelLoops = getNumOuterParallelLoops(ops.back()); 665 for (auto op : ops.drop_back()) { 666 numOuterParallelLoops = 667 std::min(numOuterParallelLoops, getNumOuterParallelLoops(op)); 668 } 669 670 std::set<unsigned> fusableLoops; 671 auto range = llvm::seq<unsigned>(0, numOuterParallelLoops); 672 fusableLoops.insert(range.begin(), range.end()); 673 674 for (auto op : reverse(ops)) { 675 for (auto dependence : fusableDependences.lookup(op)) { 676 LLVM_DEBUG({ 677 llvm::dbgs() << "\t fusable :"; 678 for (unsigned i : fusableLoops) 679 llvm::dbgs() << " " << i; 680 llvm::dbgs() << "\n"; 681 }); 682 683 Optional<AffineMap> consumerLoopToProducerLoop = 684 getConsumerLoopToProducerLoopMap(dependence); 685 if (!consumerLoopToProducerLoop) { 686 op.emitRemark("failed to get map from consumer loop to producer loop"); 687 return {}; 688 } 689 // todo: This condition is only an implementation limitation. When fusing 690 // the operation, if the accesses in the producer/consumer are transposes 691 // of each other, the loop bounds for the tiled producer can be 692 // manipulated accordingly. This requires some additional bookkeeping in 693 // the implementation of tile+fuse that is deferred to later. 694 if (doesTransposeAccess(*consumerLoopToProducerLoop, fusableLoops)) { 695 op.emitRemark("unhandled fusion when fusion requires permutation"); 696 return {}; 697 } 698 699 std::set<unsigned> candidates; 700 for (AffineExpr expr : consumerLoopToProducerLoop->getResults()) { 701 unsigned position = expr.cast<AffineDimExpr>().getPosition(); 702 if (fusableLoops.count(position)) 703 candidates.insert(position); 704 } 705 LLVM_DEBUG({ 706 llvm::dbgs() << "\t candidates :"; 707 for (unsigned i : candidates) 708 llvm::dbgs() << " " << i; 709 llvm::dbgs() << "\n"; 710 }); 711 if (candidates.empty()) 712 return {}; 713 std::swap(candidates, fusableLoops); 714 } 715 } 716 717 return fusableLoops; 718 } 719 720 /// Find all dependences that are fusable. 721 FusableOpDependencesTy mlir::linalg::findAllFusableDependences( 722 ArrayRef<LinalgOp> ops, const LinalgDependenceGraph &dependenceGraph) { 723 FusableOpDependencesTy fusableDependences; 724 DenseMap<Operation *, SmallVector<AffineMap, 1>> fusedProducerIndexingMap; 725 for (LinalgOp op : reverse(ops)) { 726 for (OpOperand *opOperand : op.getInputAndOutputOperands()) { 727 Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> 728 fusableDependence = findFusableProducer(*opOperand, dependenceGraph); 729 if (!fusableDependence) 730 continue; 731 LinalgOp producerOp = 732 dyn_cast<LinalgOp>(fusableDependence->getDependentOp()); 733 if (!producerOp) 734 continue; 735 // Do not fuse dependences that are to operations not in the same basic 736 // block. This avoid moving fused operations across loops that might 737 // themselves carry dependency making the fusion illegal. 738 if (producerOp->getBlock() != op->getBlock()) 739 continue; 740 741 // Make sure that the indexing map of the view used for fusion in the 742 // producer is a projected permutation. 743 Optional<AffineMap> producerMap = 744 fusableDependence->getDependentOpViewIndexingMap(); 745 Optional<AffineMap> consumerMap = 746 fusableDependence->getIndexingOpViewIndexingMap(); 747 assert( 748 consumerMap && 749 "unable to find indexing map of operand/result of indexing OpView"); 750 fusedProducerIndexingMap[producerOp.getOperation()].push_back( 751 *consumerMap); 752 if (!producerMap || !producerMap->isProjectedPermutation() || 753 !consumerMap->isProjectedPermutation()) 754 continue; 755 756 fusableDependences[producerOp.getOperation()].push_back( 757 *fusableDependence); 758 } 759 } 760 // TODO: Currently fusion would not be legal if the fusable dependence is to 761 // the same producer but different indexing map in the consumer. Fix this, but 762 // in the meanwhile disallow such a fusion. 763 for (auto useIndexingMapsList : fusedProducerIndexingMap) { 764 AffineMap map1 = useIndexingMapsList.second.front(); 765 for (AffineMap map2 : 766 ArrayRef<AffineMap>(useIndexingMapsList.second).drop_front()) { 767 if (map1 != map2) { 768 fusableDependences.erase(useIndexingMapsList.first); 769 break; 770 } 771 } 772 } 773 return fusableDependences; 774 } 775 776 /// Tile the fused loops in the root operation, by setting the tile sizes for 777 /// all other loops to zero (those will be tiled later). 778 static Optional<TiledLinalgOp> 779 tileRootOperation(OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizeVector, 780 const LinalgTilingOptions &options, 781 const std::set<unsigned> &fusedLoops) { 782 SmallVector<Value, 4> tileSizes(tileSizeVector.begin(), tileSizeVector.end()); 783 auto zero = b.create<ConstantIndexOp>(op.getLoc(), 0); 784 for (unsigned i = 0, e = tileSizes.size(); i != e; ++i) 785 if (!fusedLoops.count(i)) 786 tileSizes[i] = zero; 787 LinalgTilingOptions tileFusedLoopsOptions = options; 788 tileFusedLoopsOptions.setTileSizes(tileSizes); 789 return tileLinalgOp(b, op, tileFusedLoopsOptions); 790 } 791 792 /// Fuse the operations in `fusionCandidates` with `tiledOp`. Latter is expected 793 /// to be a tiled operation such that it is valid to fuse all operations in 794 /// `fusionCandidates`, i.e. move the operation within the inter-tile loops of 795 /// `tiledOp`. 796 static SmallVector<LinalgOp, 1> 797 fuseOperations(OpBuilder &b, LinalgOp rootOp, TiledLinalgOp tiledLinalgOp, 798 ArrayRef<LinalgOp> fusionCandidates, 799 const FusableOpDependencesTy &fusableDependences, 800 const std::set<unsigned> &fusedLoops) { 801 LinalgOp tiledOp = tiledLinalgOp.op; 802 OpBuilder::InsertionGuard guard(b); 803 b.setInsertionPoint(tiledOp); 804 805 DenseMap<unsigned, Range> fusedLoopsAndRanges; 806 for (unsigned loop : fusedLoops) { 807 ShapeDimension shapeDim = getShapeDefiningLoopRange(tiledOp, loop, true); 808 fusedLoopsAndRanges[loop] = getRangeFromOperandShape( 809 b, tiledOp.getLoc(), shapeDim.shape, shapeDim.dimension); 810 } 811 812 SmallVector<LinalgOp, 1> fusedOps(fusionCandidates.size()); 813 DenseMap<Operation *, LinalgOp> origOpToFusedOp; 814 origOpToFusedOp[rootOp.getOperation()] = tiledOp; 815 for (auto candidate : enumerate(llvm::reverse(fusionCandidates))) { 816 LinalgOp origOp = candidate.value(); 817 LinalgOp fusedOp = fuse(b, origOp, fusedLoopsAndRanges); 818 origOpToFusedOp[origOp.getOperation()] = fusedOp; 819 fusedOps[fusionCandidates.size() - candidate.index() - 1] = fusedOp; 820 821 // Prepare the builder for the next insertion point. 822 auto guard = llvm::make_scope_exit([&]() { b.setInsertionPoint(fusedOp); }); 823 if (!origOp.hasTensorSemantics()) 824 continue; 825 826 // If the producer consumer operations are linalg operations on tensors, the 827 // dependence is due to value produced (as a return tensor) by the producer 828 // and used in the consumer. The returned value of the fused op needs to be 829 // made the operand of the tiled/fused consumer operation. By construction 830 // the value returned by the producer is the value used by the consumer. 831 for (auto &dependence : fusableDependences.lookup(origOp.getOperation())) { 832 if (dependence.dependenceType != 833 LinalgDependenceGraph::DependenceType::RAW) 834 continue; 835 836 unsigned resultIndex = 837 dependence.getDependentOpViewResultNum().getValue(); 838 LinalgOp consumer = origOpToFusedOp.lookup(dependence.getIndexingOp()); 839 if (!consumer) 840 continue; 841 842 Value replacementValue = fusedOp.getOperation()->getResult(resultIndex); 843 consumer.getOperation()->setOperand( 844 dependence.getIndexingOpViewOperandNum().getValue(), 845 replacementValue); 846 } 847 848 // At this point, all Linalg uses of the tensors produced by `origOp` have 849 // been replaced. However, there may still be "output tensor"-like uses 850 // coming from WAW dependencies. 851 // All these uses are iter_args of the outermost loop (TODO: add a check). 852 // Such iter_args uses serve 2 purposes: 853 // 1. give a shape to the output 854 // 2. encode destructive updates that may be inplaceable by bufferization. 855 // To keep the second type of information while letting the unfused op die 856 // unused, we need to forward the producer output operand. 857 if (auto forOp = dyn_cast<scf::ForOp>(tiledLinalgOp.loops.front())) { 858 for (auto &operand : forOp.getIterOpOperands()) { 859 if (auto opResult = operand.get().dyn_cast<OpResult>()) { 860 if (opResult.getOwner() == origOp) { 861 Value output = 862 origOp.getOutputOperand(opResult.getResultNumber())->get(); 863 assert(output.getType().isa<RankedTensorType>()); 864 operand.set(output); 865 } 866 } 867 } 868 } 869 } 870 return fusedOps; 871 } 872 873 static Optional<TiledAndFusedLinalgOps> 874 tileAndFuseLinalgOpsImpl(OpBuilder &b, ArrayRef<LinalgOp> ops, 875 const LinalgDependenceGraph &dependenceGraph, 876 const LinalgTilingOptions &tilingOptions) { 877 if (ops.size() < 2) 878 return llvm::None; 879 LinalgOp rootOp = ops.back(); 880 if (!llvm::all_of( 881 ops, 882 [](LinalgOp linalgOp) { return linalgOp.hasBufferSemantics(); }) && 883 !llvm::all_of(ops, [](LinalgOp linalgOp) { 884 return linalgOp.hasTensorSemantics(); 885 })) { 886 rootOp.emitError( 887 "unable to fuse operations that have tensor semantics with operations " 888 "that have buffer semantics and viceversa."); 889 return llvm::None; 890 } 891 // TODO: Support interchange with tile + fuse. This might actually help do 892 // better fusion. 893 if (!tilingOptions.interchangeVector.empty()) { 894 rootOp.emitRemark("unable to handle tile and fuse with interchange"); 895 return llvm::None; 896 } 897 898 OpBuilder::InsertionGuard guard(b); 899 b.setInsertionPoint(rootOp); 900 901 // Find all the producers. 902 LLVM_DEBUG(llvm::dbgs() << "findAllFusableDependences\n"); 903 FusableOpDependencesTy fusableDependences = 904 findAllFusableDependences(ops, dependenceGraph); 905 if (fusableDependences.empty()) { 906 LLVM_DEBUG(llvm::dbgs() << "no fusable dependencies found\n"); 907 return llvm::None; 908 } 909 910 TiledAndFusedLinalgOps ret; 911 // Find the loops that can be tiled and fused. 912 LLVM_DEBUG(llvm::dbgs() << "collectFusableLoops\n"); 913 ret.fusedLoopDims = collectFusableLoops(ops, fusableDependences); 914 915 // If there are no fusable dependences or there are no tile+fusable loops, 916 // just return. 917 if (ret.fusedLoopDims.empty()) { 918 LLVM_DEBUG(llvm::dbgs() << "no fusable loops found\n"); 919 return llvm::None; 920 } 921 922 // Tile the fused loops in the last operation in the list. 923 SmallVector<Value, 4> tileSizeVector = 924 tilingOptions.tileSizeComputationFunction(b, rootOp); 925 Optional<TiledLinalgOp> tiledRootOp = tileRootOperation( 926 b, rootOp, tileSizeVector, tilingOptions, ret.fusedLoopDims); 927 if (!tiledRootOp) { 928 rootOp.emitRemark("failed to tile the fused loops"); 929 return llvm::None; 930 } 931 ret.op = tiledRootOp->op; 932 ret.fusedLoops.assign(tiledRootOp->loops.begin(), tiledRootOp->loops.end()); 933 934 // Fuse the other operations into the fused inter-tile loops produced above. 935 ret.fusedProducers = fuseOperations(b, rootOp, *tiledRootOp, ops.drop_back(), 936 fusableDependences, ret.fusedLoopDims); 937 938 return ret; 939 } 940 941 Optional<TiledAndFusedLinalgOps> 942 mlir::linalg::tileAndFuseLinalgOps(OpBuilder &b, ArrayRef<LinalgOp> ops, 943 const LinalgDependenceGraph &dependenceGraph, 944 const LinalgTilingOptions &tilingOptions) { 945 switch (tilingOptions.loopType) { 946 case LinalgTilingLoopType::Loops: 947 case LinalgTilingLoopType::ParallelLoops: 948 case LinalgTilingLoopType::TiledLoops: 949 return tileAndFuseLinalgOpsImpl(b, ops, dependenceGraph, tilingOptions); 950 default:; 951 } 952 return llvm::None; 953 } 954