xref: /llvm-project/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp (revision 4a661602ef2db22272cbb39bdb179996dbfa54b1)
1 //===- Fusion.cpp - Implementation of linalg Fusion -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Fusion pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Dialect/Affine/IR/AffineOps.h"
15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
17 #include "mlir/Dialect/Linalg/IR/Linalg.h"
18 #include "mlir/Dialect/Linalg/Passes.h"
19 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
20 #include "mlir/Dialect/Linalg/Utils/Utils.h"
21 #include "mlir/Dialect/MemRef/IR/MemRef.h"
22 #include "mlir/Dialect/Tensor/IR/Tensor.h"
23 #include "mlir/IR/AffineExpr.h"
24 #include "mlir/IR/AffineMap.h"
25 #include "mlir/IR/Dominance.h"
26 #include "mlir/Support/LLVM.h"
27 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
28 #include "mlir/Transforms/RegionUtils.h"
29 #include "llvm/ADT/MapVector.h"
30 #include "llvm/ADT/ScopeExit.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 
34 #include <set>
35 
36 #define DEBUG_TYPE "linalg-fusion"
37 
38 using namespace mlir;
39 using namespace mlir::linalg;
40 
41 /// Implements a simple high-level fusion pass on linalg structured operations.
42 ///
43 /// In each block, linalg ops are processed in reverse textual order.
44 /// Given a linalg op `O`, fusion occurs by:
45 ///   1. inspecting the linalg ops that write into the views read by `O`. There
46 ///      are 2 cases:
47 ///      a) buffer case: use the SSA value of the views and a simple alias
48 ///         analysis on subview ops to determine producer-consumer dependences;
49 ///      b) tensor case: use SSA use-def chains on extract_slice ops;
50 ///   2. greedily fuse the linalg ops that produce the subview/extract_slice.
51 ///   3. inspect the fused ops and determine whether they have other remaining
52 ///      LinalgOp uses. If not, then erase the original producing linalg op.
53 ///
54 /// More advanced use cases, analyses as well as profitability heuristics are
55 /// left for future work.
56 
57 struct ShapeDimension {
58   Value shape;
59   unsigned dimension;
60 };
61 
62 // Given an `op`, returns the first (`shape`, `dimension`) pair that identifies
63 // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps
64 // guarantees at least one such dimension is found. If multiple candidates exist
65 // they must agree by construction (i.e. have the same size) and we just return
66 // the first one.
67 static ShapeDimension
68 getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth,
69                           bool fromSubViewOpOnly = false) {
70   // Iterate over the inputs and outputs in order.
71   // Extract the subranges from the linearized ranges.
72   for (OpOperand *opOperand : op.getInputAndOutputOperands()) {
73     // The method `getRangeFromOperandShape` requires using SubViewOp or
74     // ExtractSliceOps. If the value isn't defined from there continue.
75     // todo: The method should be adapted to get the values from
76     // `ViewInterface`. The interface needs a `getOrCreateRanges` method which
77     // currently returns a `linalg.range`. The fix here is to move this op to
78     // `std` dialect and add the method to `ViewInterface`.
79     if (fromSubViewOpOnly &&
80         !isa_and_nonnull<memref::SubViewOp, tensor::ExtractSliceOp>(
81             opOperand->get().getDefiningOp()))
82       continue;
83 
84     AffineMap map = op.getTiedIndexingMap(opOperand);
85     LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange I/O idx: "
86                             << opOperand->getOperandNumber() << "\n");
87     LLVM_DEBUG(llvm::dbgs()
88                << "getShapeDefiningLoopRange map: " << map << "\n");
89     SmallVector<Value, 8> shapeRanges(map.getNumResults(), nullptr);
90     for (const auto &en : llvm::enumerate(map.getResults())) {
91       auto dimExpr = en.value().dyn_cast<AffineDimExpr>();
92       if (!dimExpr)
93         continue;
94       if (loopDepth == en.value().cast<AffineDimExpr>().getPosition()) {
95         LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: "
96                                 << loopDepth << "\n");
97         LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange shape: "
98                                 << opOperand->get() << "\n");
99         return ShapeDimension{opOperand->get(),
100                               static_cast<unsigned>(en.index())};
101       }
102     }
103   }
104   llvm_unreachable("Expect to be able to extract a shape defining loop range");
105 }
106 
107 // Return tiled operands for the fused producer op. When fusing into
108 // `linalg.tiled_loop` one has to update `input` and `output` arguments of the
109 // loop correspondingly.
110 // Each input tensor of the producer op has to be added to `inputs` of the
111 // `tiled_loop` if it is not present there already. Each output tensor has to
112 // be added either to `inputs` or to `outputs` of `linalg.tiled_loop` depending
113 // on whether the correponding result is an input or an output to the loop.
114 //
115 // NOTE: This way of updating the arguments of the `tiled_loop` assumes that the
116 // intermediate result is not used by any other operation but the consumer. A
117 // more generic way is to append all missing output tensors of the producer to
118 // the tiled loop outputs and hence modify the number of the results, since we
119 // would need to add the intermediate results to `linalg.yield`. After that a
120 // canonicalization pass would move the unused output args of the `tiled_loop`
121 // to the `input` section.
122 static SmallVector<Value> getTiledOperands(OpBuilder &b, LinalgOp producer) {
123   auto tiledLoop = dyn_cast<TiledLoopOp>(b.getBlock()->getParentOp());
124   if (!tiledLoop)
125     return producer.getInputAndOutputOperands();
126 
127   SmallVector<Value> tiledOperands;
128   assert(producer.hasTensorSemantics() &&
129          "only fusion on tensors is currently supported for TiledLinalgOp");
130 
131   for (OpOperand *producerInput : producer.getInputOperands()) {
132     OpOperand *addedInput = tiledLoop.findInputOperand(producerInput->get());
133     if (addedInput == nullptr)
134       addedInput = &tiledLoop.appendInputOperand(b, producerInput->get());
135     BlockArgument addedBlockArg = tiledLoop.getTiedBlockArgument(*addedInput);
136     tiledOperands.push_back(addedBlockArg);
137   }
138   for (OpOperand *producerOutput : producer.getOutputOperands()) {
139     OpResult result = producer.getTiedOpResult(producerOutput);
140     OpOperand *resultInputOperand = tiledLoop.findInputOperand(result);
141     OpOperand *resultOutputOperand = tiledLoop.findOutputOperand(result);
142     assert((resultInputOperand != nullptr) ^ (resultOutputOperand != nullptr) &&
143            "The result should be present in `input` or `output` args of "
144            "`tiled_loop");
145 
146     bool isInput = resultInputOperand;
147     int opNumber = isInput ? resultInputOperand->getOperandNumber()
148                            : resultOutputOperand->getOperandNumber();
149 
150     OpOperand *addedOutput = tiledLoop.findOutputOperand(producerOutput->get());
151     if (addedOutput == nullptr)
152       addedOutput =
153           isInput ? &tiledLoop.appendInputOperand(b, producerOutput->get())
154                   : &tiledLoop.appendOutputOperand(b, producerOutput->get());
155 
156     OpOperand &resultOperand = tiledLoop->getOpOperand(opNumber);
157     auto addedBlockArg = tiledLoop.getTiedBlockArgument(*addedOutput);
158     auto resultOperandBlockArg = tiledLoop.getTiedBlockArgument(resultOperand);
159     resultOperandBlockArg.replaceAllUsesWith(addedBlockArg);
160     tiledLoop.eraseOperand(b, resultOperand);
161     tiledOperands.push_back(addedBlockArg);
162   }
163   return tiledOperands;
164 }
165 
166 /// Fuses the producer by cloning the `producer`. The `fusedLoopsAndRanges`
167 /// provides the loop range information for the fused loops. The rest are
168 /// obtained from the producer itself, since they are not tiled + fused.
169 static LinalgOp fuse(OpBuilder &b, LinalgOp producer,
170                      const DenseMap<unsigned, Range> &fusedLoopsAndRanges) {
171   SmallVector<Value, 8> ivs, tileSizes, sizeBounds;
172   SmallVector<Range, 8> loopRanges;
173   Location loc = producer.getLoc();
174   auto zero = b.create<arith::ConstantIndexOp>(loc, 0);
175   auto one = b.create<arith::ConstantIndexOp>(loc, 1);
176 
177   for (unsigned i = 0, e = producer.getNumLoops(); i < e; ++i) {
178     auto shapeDim = getShapeDefiningLoopRange(producer, i);
179     Value dim = createOrFoldDimOp(b, loc, shapeDim.shape, shapeDim.dimension);
180     sizeBounds.push_back(dim);
181     auto it = fusedLoopsAndRanges.find(i);
182     if (it != fusedLoopsAndRanges.end()) {
183       ivs.push_back(it->second.offset);
184       tileSizes.push_back(it->second.size);
185       loopRanges.push_back(it->second);
186       LLVM_DEBUG(llvm::dbgs() << "tiled loop#" << i << " with LoopRange "
187                               << loopRanges.back() << "\n");
188     } else {
189       tileSizes.push_back(zero);
190       loopRanges.push_back(Range{zero, dim, one});
191       LLVM_DEBUG(llvm::dbgs() << "full loop#" << i << " with LoopRange "
192                               << loopRanges.back() << "\n");
193     }
194   }
195 
196   SmallVector<Value, 8> clonedShapes;
197   clonedShapes.reserve(producer.getNumInputsAndOutputs());
198 
199   // Compute subranges for all tensor input/output operands.
200   clonedShapes.append(makeTiledShapes(b, loc, producer,
201                                       getTiledOperands(b, producer), ivs,
202                                       tileSizes, sizeBounds));
203 
204   // Iterate over the results in order.
205   // Extract the subtensor type from the linearized range.
206   // Since we do not enforce any canonicalizations on the fly, this is always
207   // fully dynamic at construction time.
208   SmallVector<Type, 4> resultTypes;
209   resultTypes.reserve(producer->getNumResults());
210   for (RankedTensorType t : producer.getOutputTensorTypes()) {
211     unsigned rank = t.getRank();
212     SmallVector<int64_t, 4> staticOffsetsVector(
213         rank, ShapedType::kDynamicStrideOrOffset);
214     SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamicSize);
215     SmallVector<int64_t, 4> staticStridesVector(
216         rank, ShapedType::kDynamicStrideOrOffset);
217     resultTypes.push_back(tensor::ExtractSliceOp::inferResultType(
218         t.cast<RankedTensorType>(), staticOffsetsVector, staticSizesVector,
219         staticStridesVector));
220   }
221 
222   Operation *clonedOp = producer.clone(b, loc, resultTypes, clonedShapes);
223 
224   // Shift all IndexOp results by the tile offset.
225   SmallVector<Value> allIvs;
226   transform(loopRanges, std::back_inserter(allIvs),
227             [](Range range) { return range.offset; });
228   addTileLoopIvsToIndexOpResults(b, clonedOp, allIvs);
229 
230   return clonedOp;
231 }
232 
233 /// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is
234 /// expected to be defined by a subview op or an extract_slice op.
235 static Range getRangeFromOperandShape(OpBuilder &b, Location loc,
236                                       Value shapedOperand, unsigned dim) {
237   Operation *shapeProducingOp = shapedOperand.getDefiningOp();
238   if (auto subViewOp = dyn_cast<memref::SubViewOp>(shapeProducingOp))
239     return subViewOp.getOrCreateRanges(b, loc)[dim];
240   if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(shapeProducingOp))
241     return sliceOp.getOrCreateRanges(b, loc)[dim];
242   llvm_unreachable("SubviewOp or ExtractSliceOp expected");
243 }
244 
245 /// Fuses the producer into the loop immediately enclosing the consumer.
246 /// This is achieved by "recomputing" the producer at the time it
247 /// is needed just before the consumer.
248 static LinalgOp fuse(OpBuilder &b, LinalgOp producerOp, AffineMap producerMap,
249                      OpOperand &consumerOpOperand) {
250   LLVM_DEBUG(llvm::dbgs() << "Producer map: " << producerMap << "\n");
251   DenseMap<unsigned, Range> fusedLoopsAndRanges;
252   Value shapedOperand = consumerOpOperand.get();
253   for (const auto &en : llvm::enumerate(producerMap.getResults())) {
254     unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition();
255     fusedLoopsAndRanges[posInProducerLoop] = getRangeFromOperandShape(
256         b, consumerOpOperand.getOwner()->getLoc(), shapedOperand, en.index());
257   }
258   return fuse(b, producerOp, fusedLoopsAndRanges);
259 }
260 
261 // Encode structural fusion safety preconditions.
262 // Some of these will be lifted in the future with better analysis.
263 static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView,
264                                           LinalgOp consumer) {
265   assert(producer.hasBufferSemantics() &&
266          "expected linalg op with buffer semantics");
267   assert(consumer.hasBufferSemantics() &&
268          "expected linalg op with buffer semantics");
269   if (producer.getNumOutputs() != 1) {
270     LLVM_DEBUG(llvm::dbgs() << "\nNot structurally fusable (multi-output)");
271     return false;
272   }
273   // Only fuse when the producer block dominates.
274   DominanceInfo dom(producer.getOperation());
275   if (!dom.dominates(producer->getBlock(), consumer->getBlock())) {
276     LLVM_DEBUG(
277         llvm::dbgs()
278         << "\nNot structurally fusable (producer block does not dominate)");
279     return false;
280   }
281   return true;
282 }
283 
284 bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph,
285                                              LinalgOp consumer,
286                                              Value consumedView,
287                                              LinalgOp producer) {
288   assert(producer.hasBufferSemantics() &&
289          "expected linalg op with buffer semantics");
290   assert(consumer.hasBufferSemantics() &&
291          "expected linalg op with buffer semantics");
292   // Make some simple structural checks that alleviate the need for more
293   // complex analyses.
294   if (!isStructurallyFusableProducer(producer, consumedView, consumer)) {
295     LLVM_DEBUG(llvm::dbgs() << "\n***Not static last write due to structure:\t"
296                             << *producer.getOperation());
297     return false;
298   }
299   // Check for any interleaved write to consumedView.
300   if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) {
301     LLVM_DEBUG(llvm::dbgs() << "\n***Not fusable due to interleaved write:\t"
302                             << *producer.getOperation());
303     return false;
304   }
305   return true;
306 }
307 
308 bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph,
309                                  LinalgOp consumer, Value consumedView,
310                                  LinalgOp producer) {
311   assert(producer.hasBufferSemantics() &&
312          "expected linalg op with buffer semantics");
313   assert(consumer.hasBufferSemantics() &&
314          "expected linalg op with buffer semantics");
315   if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer))
316     return false;
317   // Check for any fusion-preventing dependence to any shape read/written that
318   // would violate dependences.
319   if (!graph.findCoveringDependences(producer, consumer).empty()) {
320     LLVM_DEBUG(llvm::dbgs()
321                << "\n***Not fusable due to an interleaved dependence:\t"
322                << *producer.getOperation());
323     return false;
324   }
325   return true;
326 }
327 
328 /// For `consumer` with buffer semantics, find the Linalg operation on buffers
329 /// that is the last writer of `consumerOpOperand`. For now the fusable
330 /// dependence is returned as an instance of the `dependenceGraph`.
331 static FailureOr<LinalgDependenceGraph::LinalgDependenceGraphElem>
332 findFusableProducer(OpOperand &consumerOpOperand,
333                     const LinalgDependenceGraph &dependenceGraph) {
334   LLVM_DEBUG(llvm::dbgs() << "findFusableProducer for: "
335                           << consumerOpOperand.get() << " @"
336                           << consumerOpOperand.getOperandNumber() << " in "
337                           << *consumerOpOperand.getOwner() << "\n");
338   LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner());
339   if (!consumerOp)
340     return failure();
341 
342   // Only consider RAW and WAW atm.
343   for (auto depType : {
344            LinalgDependenceGraph::DependenceType::RAW,
345            LinalgDependenceGraph::DependenceType::WAW,
346        }) {
347     LLVM_DEBUG(llvm::dbgs()
348                << "Dependencies into: " << *consumerOp.getOperation() << "\n");
349     for (auto dependence : llvm::make_filter_range(
350              dependenceGraph.getDependencesInto(consumerOp, depType),
351              [&](LinalgDependenceGraph::LinalgDependenceGraphElem elem) {
352                LLVM_DEBUG(llvm::dbgs() << "Inspect dependence btw: "
353                                        << elem.getIndexingValue() << " and "
354                                        << elem.getDependentValue() << "\n");
355                Value v = elem.getIndexingValue();
356                Optional<unsigned> operandNum =
357                    elem.getIndexingOpViewOperandNum();
358                return isa<LinalgOp>(elem.getDependentOp()) &&
359                       v == consumerOpOperand.get() && operandNum &&
360                       operandNum.getValue() ==
361                           consumerOpOperand.getOperandNumber();
362              })) {
363       // Consumer consumes this view, `isStructurallyFusableProducer` also
364       // checks whether it is a strict subview of the producer view.
365       auto producer = cast<LinalgOp>(dependence.getDependentOp());
366       LLVM_DEBUG(llvm::dbgs()
367                  << "\n"
368                  << LinalgDependenceGraph::getDependenceTypeStr(depType)
369                  << "producer: " << *dependence.getDependentOp()
370                  << " view: " << dependence.getDependentValue() << "\n");
371 
372       // If the producer and consumer have tensor semantics, the only dependence
373       // between them is through a RAW dependence and they are fusable by
374       // construction. For buffer semantics need additional checks.
375       if (producer.hasBufferSemantics() && consumerOp.hasBufferSemantics() &&
376           isFusableInto(dependenceGraph, consumerOp, consumerOpOperand.get(),
377                         producer))
378         return dependence;
379       if (producer.hasTensorSemantics() && consumerOp.hasTensorSemantics()) {
380         assert(dependence.dependenceType ==
381                LinalgDependenceGraph::DependenceType::RAW);
382         return dependence;
383       }
384     }
385   }
386   return failure();
387 }
388 
389 FailureOr<FusionInfo>
390 mlir::linalg::fuseProducerOfBuffer(OpBuilder &b, OpOperand &consumerOpOperand,
391                                    const LinalgDependenceGraph &graph) {
392   Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependence =
393       findFusableProducer(consumerOpOperand, graph);
394   if (!fusableDependence)
395     return failure();
396 
397   LinalgOp producerOp = dyn_cast<LinalgOp>(fusableDependence->getDependentOp());
398   if (!producerOp)
399     return failure();
400 
401   // If producer is already in the same block as consumer, we are done.
402   if (consumerOpOperand.get().getParentBlock() ==
403       fusableDependence->getDependentValue().getParentBlock())
404     return failure();
405 
406   Optional<AffineMap> producerMap =
407       fusableDependence->getDependentOpViewIndexingMap();
408   if (!producerMap)
409     return failure();
410 
411   // Must be a subview or an extract_slice to guarantee there are loops we can
412   // fuse into.
413   auto subView = consumerOpOperand.get().getDefiningOp<memref::SubViewOp>();
414   if (!subView) {
415     LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subview)");
416     return failure();
417   }
418 
419   // Fuse `producer` just before `consumer`.
420   OpBuilder::InsertionGuard g(b);
421   b.setInsertionPoint(consumerOpOperand.getOwner());
422   LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: "
423                           << *consumerOpOperand.getOwner() << "\n");
424 
425   auto fusedProducer = fuse(b, producerOp, *producerMap, consumerOpOperand);
426   return FusionInfo{producerOp, fusedProducer};
427 }
428 
429 /// Walk back use-def chain through scf::For yields.
430 /// Sets `producer` and `outputIndex` if it finds a producer LinalgOp
431 
432 // TODO(ravishankarm, ntv): This can be moved into the dependence graphs
433 // dependence tracking since the dependence tracking is similar to what is done
434 // w.r.t to buffers.
435 static void getProducerOfTensor(Value tensor, OpResult &opResult) {
436   if (!tensor.getType().isa<RankedTensorType>())
437     return;
438 
439   while (true) {
440     LLVM_DEBUG(llvm::dbgs() << "\ngetProducerOfTensor: " << tensor);
441     if (auto linalgOp = tensor.getDefiningOp<LinalgOp>()) {
442       opResult = tensor.cast<OpResult>();
443       return;
444     }
445     if (auto sliceOp = tensor.getDefiningOp<tensor::ExtractSliceOp>()) {
446       tensor = sliceOp.source();
447       continue;
448     }
449     if (auto blockArg = tensor.dyn_cast<BlockArgument>()) {
450       if (auto forOp = blockArg.getDefiningOp<scf::ForOp>()) {
451         tensor = *(forOp.getIterOperands().begin() + blockArg.getArgNumber());
452         continue;
453       }
454     }
455     return;
456   }
457 }
458 
459 FailureOr<FusionInfo>
460 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpOperand &consumerOpOperand) {
461   Value inputTensor = consumerOpOperand.get();
462   OpResult producerOpResult;
463   getProducerOfTensor(inputTensor, producerOpResult);
464   if (!producerOpResult) {
465     LLVM_DEBUG(llvm::dbgs() << "\nUnable to find producer");
466     return failure();
467   }
468   return fuseProducerOfTensor(b, producerOpResult, consumerOpOperand);
469 }
470 
471 FailureOr<FusionInfo>
472 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpResult producerOpResult,
473                                    OpOperand &consumerOpOperand) {
474   auto producerOp = dyn_cast<LinalgOp>(producerOpResult.getOwner());
475   if (!producerOp)
476     return failure();
477 
478   LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner());
479   if (!consumerOp)
480     return failure();
481 
482   Value inputTensor = consumerOpOperand.get();
483 
484   // Must be an extract_slice op to guarantee there are loops we can fuse into.
485   auto sliceOp = inputTensor.getDefiningOp<tensor::ExtractSliceOp>();
486   if (!sliceOp) {
487     LLVM_DEBUG(llvm::dbgs()
488                << "\nNot fusable, not an extract_slice op: " << inputTensor);
489     return failure();
490   }
491 
492   // If producer is already in the same block as consumer, we are done.
493   if (consumerOpOperand.get().getParentBlock() ==
494       producerOpResult.getParentBlock())
495     return failure();
496 
497   // Insert fused `producer` just before `consumer`.
498   OpBuilder::InsertionGuard g(b);
499   b.setInsertionPoint(consumerOp);
500   LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumerOp << "\n");
501   OpOperand *opOperand =
502       producerOp.getOutputOperand(producerOpResult.getResultNumber());
503   LinalgOp fusedProducer =
504       fuse(b, producerOp, producerOp.getTiedIndexingMap(opOperand),
505            consumerOpOperand);
506 
507   // Replace use.
508   // Canonicalizations are not guaranteed to have happened before constructing
509   // `fusedProducer`. In the tensor case this can result in temporary type
510   // mismatches. Insert a `tensor.cast` op to propagate the transformation
511   // invariant that types are compatible.
512   Value def = fusedProducer->getResult(producerOpResult.getResultNumber());
513   Type consumerType = consumerOpOperand.get().getType();
514   if (consumerType != def.getType())
515     def = b.create<tensor::CastOp>(fusedProducer.getLoc(), consumerType, def);
516   consumerOpOperand.set(def);
517   return FusionInfo{cast<LinalgOp>(producerOpResult.getOwner()), fusedProducer};
518 }
519 
520 /// Prune all dimensions that are of reduction iterator type from `map`.
521 static AffineMap pruneReductionDimsFromMap(ArrayRef<Attribute> iteratorTypes,
522                                            AffineMap map) {
523   llvm::SmallDenseSet<unsigned> projectedDims;
524   for (const auto &attr : llvm::enumerate(iteratorTypes)) {
525     if (!isParallelIterator(attr.value()))
526       projectedDims.insert(attr.index());
527   }
528   return getProjectedMap(map, projectedDims);
529 }
530 
531 /// Returns the mapping from iterations in the consumer that write to the same
532 /// location as the iterations in the producer. To do so use
533 /// - indexing map of the fused view in the consumer : consumerIndexMap
534 /// - indexing map of the fused view in the producer : producerIndexMap
535 ///     consumerLoopToProducerLoop =
536 ///       inverse(producerIndexMap).compose(consumerIndexMap)
537 static FailureOr<AffineMap> getConsumerLoopToProducerLoopMap(
538     LinalgDependenceGraph::LinalgDependenceGraphElem dependence) {
539   auto producer = dyn_cast<LinalgOp>(dependence.getDependentOp());
540   if (!producer)
541     return failure();
542 
543   Optional<AffineMap> producerIndexingMap =
544       dependence.getDependentOpViewIndexingMap();
545   Optional<AffineMap> consumerIndexingMap =
546       dependence.getIndexingOpViewIndexingMap();
547   if (!producerIndexingMap || !consumerIndexingMap)
548     return failure();
549 
550   AffineMap prunedProducerIndexingMap = pruneReductionDimsFromMap(
551       producer.iterator_types().getValue(), *producerIndexingMap);
552   if (!prunedProducerIndexingMap.isPermutation())
553     return failure();
554 
555   if (consumerIndexingMap->getNumResults() !=
556       prunedProducerIndexingMap.getNumResults())
557     return failure();
558 
559   LLVM_DEBUG({
560     llvm::dbgs() << "\t producerMap : ";
561     producerIndexingMap->print(llvm::dbgs());
562     llvm::dbgs() << "  pruned : ";
563     prunedProducerIndexingMap.print(llvm::dbgs());
564     llvm::dbgs() << "\n";
565     llvm::dbgs() << "\t consumerMap : ";
566     consumerIndexingMap->print(llvm::dbgs());
567     llvm::dbgs() << "\n";
568   });
569 
570   AffineMap invProducerIndexMap = inversePermutation(prunedProducerIndexingMap);
571   if (!invProducerIndexMap)
572     return failure();
573 
574   return invProducerIndexMap.compose(*consumerIndexingMap);
575 }
576 
577 /// Given a projected permutation `map`, returns true if the map changes the
578 /// order in which the fused loop dimension appear.
579 static bool doesTransposeAccess(AffineMap map,
580                                 const std::set<unsigned> &fusableLoops) {
581   Optional<unsigned> lastFusableLoop;
582   for (unsigned pos : llvm::map_range(map.getResults(), [](AffineExpr expr) {
583          return expr.cast<AffineDimExpr>().getPosition();
584        })) {
585     if (!fusableLoops.count(pos))
586       continue;
587     if (!lastFusableLoop) {
588       lastFusableLoop = pos;
589       continue;
590     }
591     if (pos <= lastFusableLoop.getValue())
592       return true;
593     lastFusableLoop = pos;
594   }
595   return false;
596 }
597 
598 /// Returns the positions of the loop in `op` that can be tiled based on the
599 /// operations that are to be fused with it. For example, in a
600 ///
601 ///   linalg.matmul ins(%a, %b : ...) outs(%c : ...)
602 ///
603 /// if the producer of %a needs to be fused with this op, only the `i` loop of
604 /// the matmul can be tiled while fusing. If producer of %a, and %b are to be
605 /// fused, then no loops can be tiled while fusing. The conditions used are:
606 /// 1. Only parallel loops can be used for tile + fuse. Find the number of
607 ///    common outer parallel loops between the op and its producers being fused.
608 /// 2. Of the parallel loops only some can be fused. Only those loops can be
609 ///    fused such where the fusable loops iteration space only touches one tile
610 ///    of the fused operation. This is because the producer (which is writing
611 ///    the fused subview) has update semantics.
612 ///
613 /// Since an inverse computation is needed, we need to consider the projection
614 /// of the producerIndexMap w.r.t the parallel loops.  The actual fusable loops
615 /// are the dimensions of the consumerLoopToProducerLoop map that correspond to
616 /// parallel loops and appear in the result of the map
617 ///
618 /// Example 1:
619 ///   linalg.fill(%cst, %c)
620 ///   linalg.matmul ins(%a, %b) outs(%c)
621 ///     Number of parallel loops : 2
622 ///     producerIndexMap = affine_map<(i, j) ->(i , j)>
623 ///     consumerIndexMap = affine_map<(i, j, k) -> (i, j)>
624 ///     consumerLoopToProducerLoop = affine_map<(i, j, k) -> (i, j)>
625 ///     Fused dimensions : i, j
626 ///
627 /// Example 2:
628 ///   linalg.matmul ins(%a, %b) outs(%c)
629 ///   linalg.generic {indexing_maps = [affine_map<(i, j) -> (j, i)>, ...
630 ///                   iterator_types = ["parallel", "parallel"]}
631 ///     ins(%c) ...
632 ///
633 ///     Number of parallel loops = 2:
634 ///     producerIndexMap (projected to parallel loops) =
635 ///       affine_map<(i, j) -> (i, j)>
636 ///     consumerLoopToProducerLoop2 = affine_map<(i, j) -> (j, i)>
637 ///     Fused dimensions : i, j
638 ///
639 /// Example 3:
640 ///   linalg.copy(%s, %b)
641 ///   linalg.matmul ins(%a, %b) outs(%c)
642 ///
643 ///   Number of parallel loops = 2
644 ///   produceIndexMap : affine_map<(i, j) -> (i, j)>
645 ///   consumerLoopToProduceLoops = affine_map<(i, j, k) -> (k, j)>
646 ///     submap with only parallel loops = affine_map<(i, j) -> (j)>
647 ///   Fused dimensions : j
648 static std::set<unsigned>
649 collectFusableLoops(ArrayRef<LinalgOp> ops,
650                     const FusableOpDependencesTy &fusableDependences) {
651   assert(!ops.empty());
652   auto getNumOuterParallelLoops = [](LinalgOp linalgOp) {
653     return linalgOp.iterator_types()
654         .getValue()
655         .take_while([](Attribute attr) -> bool {
656           return attr.cast<StringAttr>().getValue() ==
657                  getParallelIteratorTypeName();
658         })
659         .size();
660   };
661 
662   size_t numOuterParallelLoops = getNumOuterParallelLoops(ops.back());
663   for (auto op : ops.drop_back()) {
664     numOuterParallelLoops =
665         std::min(numOuterParallelLoops, getNumOuterParallelLoops(op));
666   }
667 
668   std::set<unsigned> fusableLoops;
669   auto range = llvm::seq<unsigned>(0, numOuterParallelLoops);
670   fusableLoops.insert(range.begin(), range.end());
671 
672   for (auto op : reverse(ops)) {
673     for (auto dependence : fusableDependences.lookup(op)) {
674       LLVM_DEBUG({
675         llvm::dbgs() << "\t fusable :";
676         for (unsigned i : fusableLoops)
677           llvm::dbgs() << " " << i;
678         llvm::dbgs() << "\n";
679       });
680 
681       Optional<AffineMap> consumerLoopToProducerLoop =
682           getConsumerLoopToProducerLoopMap(dependence);
683       if (!consumerLoopToProducerLoop) {
684         op.emitRemark("failed to get map from consumer loop to producer loop");
685         return {};
686       }
687       // todo: This condition is only an implementation limitation. When fusing
688       // the operation, if the accesses in the producer/consumer are transposes
689       // of each other, the loop bounds for the tiled producer can be
690       // manipulated accordingly. This requires some additional bookkeeping in
691       // the implementation of tile+fuse that is deferred to later.
692       if (doesTransposeAccess(*consumerLoopToProducerLoop, fusableLoops)) {
693         op.emitRemark("unhandled fusion when fusion requires permutation");
694         return {};
695       }
696 
697       std::set<unsigned> candidates;
698       for (AffineExpr expr : consumerLoopToProducerLoop->getResults()) {
699         unsigned position = expr.cast<AffineDimExpr>().getPosition();
700         if (fusableLoops.count(position))
701           candidates.insert(position);
702       }
703       LLVM_DEBUG({
704         llvm::dbgs() << "\t candidates :";
705         for (unsigned i : candidates)
706           llvm::dbgs() << " " << i;
707         llvm::dbgs() << "\n";
708       });
709       if (candidates.empty())
710         return {};
711       std::swap(candidates, fusableLoops);
712     }
713   }
714 
715   return fusableLoops;
716 }
717 
718 /// Find all dependences that are fusable.
719 FusableOpDependencesTy mlir::linalg::findAllFusableDependences(
720     ArrayRef<LinalgOp> ops, const LinalgDependenceGraph &dependenceGraph) {
721   FusableOpDependencesTy fusableDependences;
722   DenseMap<Operation *, SmallVector<AffineMap, 1>> fusedProducerIndexingMap;
723   for (LinalgOp op : reverse(ops)) {
724     for (OpOperand *opOperand : op.getInputAndOutputOperands()) {
725       Optional<LinalgDependenceGraph::LinalgDependenceGraphElem>
726           fusableDependence = findFusableProducer(*opOperand, dependenceGraph);
727       if (!fusableDependence)
728         continue;
729       LinalgOp producerOp =
730           dyn_cast<LinalgOp>(fusableDependence->getDependentOp());
731       if (!producerOp)
732         continue;
733       // Do not fuse dependences that are to operations not in the same basic
734       // block. This avoid moving fused operations across loops that might
735       // themselves carry dependency making the fusion illegal.
736       if (producerOp->getBlock() != op->getBlock())
737         continue;
738 
739       // Make sure that the indexing map of the view used for fusion in the
740       // producer is a projected permutation.
741       Optional<AffineMap> producerMap =
742           fusableDependence->getDependentOpViewIndexingMap();
743       Optional<AffineMap> consumerMap =
744           fusableDependence->getIndexingOpViewIndexingMap();
745       assert(
746           consumerMap &&
747           "unable to find indexing map of operand/result of indexing OpView");
748       fusedProducerIndexingMap[producerOp.getOperation()].push_back(
749           *consumerMap);
750       if (!producerMap || !producerMap->isProjectedPermutation() ||
751           !consumerMap->isProjectedPermutation())
752         continue;
753 
754       fusableDependences[producerOp.getOperation()].push_back(
755           *fusableDependence);
756     }
757   }
758   // TODO: Currently fusion would not be legal if the fusable dependence is to
759   // the same producer but different indexing map in the consumer. Fix this, but
760   // in the meanwhile disallow such a fusion.
761   for (auto useIndexingMapsList : fusedProducerIndexingMap) {
762     AffineMap map1 = useIndexingMapsList.second.front();
763     for (AffineMap map2 :
764          ArrayRef<AffineMap>(useIndexingMapsList.second).drop_front()) {
765       if (map1 != map2) {
766         fusableDependences.erase(useIndexingMapsList.first);
767         break;
768       }
769     }
770   }
771   return fusableDependences;
772 }
773 
774 /// Tile the fused loops in the root operation, by setting the tile sizes for
775 /// all other loops to zero (those will be tiled later).
776 static FailureOr<TiledLinalgOp>
777 tileRootOperation(OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizeVector,
778                   const LinalgTilingOptions &options,
779                   const std::set<unsigned> &fusedLoops) {
780   SmallVector<Value, 4> tileSizes(tileSizeVector.begin(), tileSizeVector.end());
781   auto zero = b.create<arith::ConstantIndexOp>(op.getLoc(), 0);
782   for (unsigned i = 0, e = tileSizes.size(); i != e; ++i)
783     if (!fusedLoops.count(i))
784       tileSizes[i] = zero;
785   LinalgTilingOptions tileFusedLoopsOptions = options;
786   tileFusedLoopsOptions.setTileSizes(tileSizes);
787   // TODO: Propagate RewriterBase everywhere.
788   IRRewriter rewriter(b);
789   return tileLinalgOp(rewriter, op, tileFusedLoopsOptions);
790 }
791 
792 /// Fuse the operations in `fusionCandidates` with `tiledOp`. Latter is expected
793 /// to be a tiled operation such that it is valid to fuse all operations in
794 /// `fusionCandidates`, i.e. move the operation within the inter-tile loops of
795 /// `tiledOp`.
796 static SmallVector<LinalgOp, 1>
797 fuseOperations(OpBuilder &b, LinalgOp rootOp, TiledLinalgOp tiledLinalgOp,
798                ArrayRef<LinalgOp> fusionCandidates,
799                const FusableOpDependencesTy &fusableDependences,
800                const std::set<unsigned> &fusedLoops) {
801   LinalgOp tiledOp = tiledLinalgOp.op;
802   OpBuilder::InsertionGuard guard(b);
803   b.setInsertionPoint(tiledOp);
804 
805   DenseMap<unsigned, Range> fusedLoopsAndRanges;
806   for (unsigned loop : fusedLoops) {
807     ShapeDimension shapeDim = getShapeDefiningLoopRange(tiledOp, loop, true);
808     fusedLoopsAndRanges[loop] = getRangeFromOperandShape(
809         b, tiledOp.getLoc(), shapeDim.shape, shapeDim.dimension);
810   }
811 
812   SmallVector<LinalgOp, 1> fusedOps(fusionCandidates.size());
813   DenseMap<Operation *, LinalgOp> origOpToFusedOp;
814   origOpToFusedOp[rootOp.getOperation()] = tiledOp;
815   for (const auto &candidate : enumerate(llvm::reverse(fusionCandidates))) {
816     LinalgOp origOp = candidate.value();
817     LinalgOp fusedOp = fuse(b, origOp, fusedLoopsAndRanges);
818     origOpToFusedOp[origOp.getOperation()] = fusedOp;
819     fusedOps[fusionCandidates.size() - candidate.index() - 1] = fusedOp;
820 
821     // Prepare the builder for the next insertion point.
822     auto guard = llvm::make_scope_exit([&]() { b.setInsertionPoint(fusedOp); });
823     if (!origOp.hasTensorSemantics())
824       continue;
825 
826     // If the producer consumer operations are linalg operations on tensors, the
827     // dependence is due to value produced (as a return tensor) by the producer
828     // and used in the consumer. The returned value of the fused op needs to be
829     // made the operand of the tiled/fused consumer operation. By construction
830     // the value returned by the producer is the value used by the consumer.
831     for (auto &dependence : fusableDependences.lookup(origOp.getOperation())) {
832       if (dependence.dependenceType !=
833           LinalgDependenceGraph::DependenceType::RAW)
834         continue;
835 
836       unsigned resultIndex =
837           dependence.getDependentOpViewResultNum().getValue();
838       LinalgOp consumer = origOpToFusedOp.lookup(dependence.getIndexingOp());
839       if (!consumer)
840         continue;
841 
842       Value replacementValue = fusedOp.getOperation()->getResult(resultIndex);
843       consumer.getOperation()->setOperand(
844           dependence.getIndexingOpViewOperandNum().getValue(),
845           replacementValue);
846     }
847 
848     // At this point, all Linalg uses of the tensors produced by `origOp` have
849     // been replaced. However, there may still be "output tensor"-like uses
850     // coming from WAW dependencies.
851     // All these uses are iter_args of the outermost loop (TODO: add a check).
852     // Such iter_args uses serve 2 purposes:
853     //  1. give a shape to the output
854     //  2. encode destructive updates that may be inplaceable by bufferization.
855     // To keep the second type of information while letting the unfused op die
856     // unused, we need to forward the producer output operand.
857     if (auto forOp = dyn_cast<scf::ForOp>(tiledLinalgOp.loops.front())) {
858       for (auto &operand : forOp.getIterOpOperands()) {
859         if (auto opResult = operand.get().dyn_cast<OpResult>()) {
860           if (opResult.getOwner() == origOp) {
861             Value output =
862                 origOp.getOutputOperand(opResult.getResultNumber())->get();
863             assert(output.getType().isa<RankedTensorType>());
864             operand.set(output);
865           }
866         }
867       }
868     }
869   }
870   return fusedOps;
871 }
872 
873 static FailureOr<TiledAndFusedLinalgOps>
874 tileAndFuseLinalgOpsImpl(OpBuilder &b, ArrayRef<LinalgOp> ops,
875                          const LinalgDependenceGraph &dependenceGraph,
876                          const LinalgTilingOptions &tilingOptions) {
877   if (ops.size() < 2)
878     return failure();
879   LinalgOp rootOp = ops.back();
880   if (!llvm::all_of(
881           ops,
882           [](LinalgOp linalgOp) { return linalgOp.hasBufferSemantics(); }) &&
883       !llvm::all_of(ops, [](LinalgOp linalgOp) {
884         return linalgOp.hasTensorSemantics();
885       })) {
886     rootOp.emitError(
887         "unable to fuse operations that have tensor semantics with operations "
888         "that have buffer semantics and viceversa.");
889     return failure();
890   }
891   // TODO: Support interchange with tile + fuse. This might actually help do
892   // better fusion.
893   if (!tilingOptions.interchangeVector.empty()) {
894     rootOp.emitRemark("unable to handle tile and fuse with interchange");
895     return failure();
896   }
897 
898   OpBuilder::InsertionGuard guard(b);
899   b.setInsertionPoint(rootOp);
900 
901   // Find all the producers.
902   LLVM_DEBUG(llvm::dbgs() << "findAllFusableDependences\n");
903   FusableOpDependencesTy fusableDependences =
904       findAllFusableDependences(ops, dependenceGraph);
905   if (fusableDependences.empty()) {
906     LLVM_DEBUG(llvm::dbgs() << "no fusable dependencies found\n");
907     return failure();
908   }
909 
910   TiledAndFusedLinalgOps ret;
911   // Find the loops that can be tiled and fused.
912   LLVM_DEBUG(llvm::dbgs() << "collectFusableLoops\n");
913   ret.fusedLoopDims = collectFusableLoops(ops, fusableDependences);
914 
915   // If there are no fusable dependences or there are no tile+fusable loops,
916   // just return.
917   if (ret.fusedLoopDims.empty()) {
918     LLVM_DEBUG(llvm::dbgs() << "no fusable loops found\n");
919     return failure();
920   }
921 
922   // Tile the fused loops in the last operation in the list.
923   SmallVector<Value, 4> tileSizeVector =
924       tilingOptions.tileSizeComputationFunction(b, rootOp);
925   FailureOr<TiledLinalgOp> tiledRootOp = tileRootOperation(
926       b, rootOp, tileSizeVector, tilingOptions, ret.fusedLoopDims);
927   if (failed(tiledRootOp)) {
928     rootOp.emitRemark("failed to tile the fused loops");
929     return failure();
930   }
931   ret.op = tiledRootOp->op;
932   ret.fusedLoops.assign(tiledRootOp->loops.begin(), tiledRootOp->loops.end());
933 
934   // Fuse the other operations into the fused inter-tile loops produced above.
935   ret.fusedProducers = fuseOperations(b, rootOp, *tiledRootOp, ops.drop_back(),
936                                       fusableDependences, ret.fusedLoopDims);
937 
938   return ret;
939 }
940 
941 FailureOr<TiledAndFusedLinalgOps>
942 mlir::linalg::tileAndFuseLinalgOps(OpBuilder &b, ArrayRef<LinalgOp> ops,
943                                    const LinalgDependenceGraph &dependenceGraph,
944                                    const LinalgTilingOptions &tilingOptions) {
945   switch (tilingOptions.loopType) {
946   case LinalgTilingLoopType::Loops:
947   case LinalgTilingLoopType::ParallelLoops:
948   case LinalgTilingLoopType::TiledLoops:
949     return tileAndFuseLinalgOpsImpl(b, ops, dependenceGraph, tilingOptions);
950   default:;
951   }
952   return failure();
953 }
954