xref: /llvm-project/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp (revision 485190df95f98c51c3f4a4ab4db96127cdc9ce78)
1 //===- Fusion.cpp - Implementation of linalg Fusion -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Fusion pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Dialect/Affine/IR/AffineOps.h"
15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
17 #include "mlir/Dialect/Linalg/IR/Linalg.h"
18 #include "mlir/Dialect/Linalg/Passes.h"
19 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
20 #include "mlir/Dialect/Linalg/Utils/Utils.h"
21 #include "mlir/Dialect/MemRef/IR/MemRef.h"
22 #include "mlir/Dialect/Tensor/IR/Tensor.h"
23 #include "mlir/IR/AffineExpr.h"
24 #include "mlir/IR/AffineMap.h"
25 #include "mlir/IR/Dominance.h"
26 #include "mlir/Support/LLVM.h"
27 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
28 #include "mlir/Transforms/RegionUtils.h"
29 #include "llvm/ADT/MapVector.h"
30 #include "llvm/ADT/ScopeExit.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 
34 #include <set>
35 
36 #define DEBUG_TYPE "linalg-fusion"
37 
38 using namespace mlir;
39 using namespace mlir::linalg;
40 
41 /// Implements a simple high-level fusion pass on linalg structured operations.
42 ///
43 /// In each block, linalg ops are processed in reverse textual order.
44 /// Given a linalg op `O`, fusion occurs by:
45 ///   1. inspecting the linalg ops that write into the views read by `O`. There
46 ///      are 2 cases:
47 ///      a) buffer case: use the SSA value of the views and a simple alias
48 ///         analysis on subview ops to determine producer-consumer dependences;
49 ///      b) tensor case: use SSA use-def chains on extract_slice ops;
50 ///   2. greedily fuse the linalg ops that produce the subview/extract_slice.
51 ///   3. inspect the fused ops and determine whether they have other remaining
52 ///      LinalgOp uses. If not, then erase the original producing linalg op.
53 ///
54 /// More advanced use cases, analyses as well as profitability heuristics are
55 /// left for future work.
56 
57 struct ShapeDimension {
58   Value shape;
59   unsigned dimension;
60 };
61 
62 // Given an `op`, returns the first (`shape`, `dimension`) pair that identifies
63 // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps
64 // guarantees at least one such dimension is found. If multiple candidates exist
65 // they must agree by construction (i.e. have the same size) and we just return
66 // the first one.
67 static ShapeDimension
68 getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth,
69                           bool fromSubViewOpOnly = false) {
70   // Iterate over the inputs and outputs in order.
71   // Extract the subranges from the linearized ranges.
72   for (OpOperand *opOperand : op.getInputAndOutputOperands()) {
73     // The method `getRangeFromOperandShape` requires using SubViewOp or
74     // ExtractSliceOps. If the value isn't defined from there continue.
75     // todo: The method should be adapted to get the values from
76     // `ViewInterface`. The interface needs a `getOrCreateRanges` method which
77     // currently returns a `linalg.range`. The fix here is to move this op to
78     // `std` dialect and add the method to `ViewInterface`.
79     if (fromSubViewOpOnly &&
80         !isa_and_nonnull<memref::SubViewOp, tensor::ExtractSliceOp>(
81             opOperand->get().getDefiningOp()))
82       continue;
83 
84     AffineMap map = op.getTiedIndexingMap(opOperand);
85     LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange I/O idx: "
86                             << opOperand->getOperandNumber() << "\n");
87     LLVM_DEBUG(llvm::dbgs()
88                << "getShapeDefiningLoopRange map: " << map << "\n");
89     SmallVector<Value, 8> shapeRanges(map.getNumResults(), nullptr);
90     for (const auto &en : llvm::enumerate(map.getResults())) {
91       auto dimExpr = en.value().dyn_cast<AffineDimExpr>();
92       if (!dimExpr)
93         continue;
94       if (loopDepth == en.value().cast<AffineDimExpr>().getPosition()) {
95         LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: "
96                                 << loopDepth << "\n");
97         LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange shape: "
98                                 << opOperand->get() << "\n");
99         return ShapeDimension{opOperand->get(),
100                               static_cast<unsigned>(en.index())};
101       }
102     }
103   }
104   llvm_unreachable("Expect to be able to extract a shape defining loop range");
105 }
106 
107 static SmallVector<Value> getTiledOperands(LinalgOp producer) {
108   return producer.getInputAndOutputOperands();
109 }
110 
111 /// Fuses the producer by cloning the `producer`. The `fusedLoopsAndRanges`
112 /// provides the loop range information for the fused loops. The rest are
113 /// obtained from the producer itself, since they are not tiled + fused.
114 static LinalgOp fuse(OpBuilder &b, LinalgOp producer,
115                      const DenseMap<unsigned, Range> &fusedLoopsAndRanges) {
116   SmallVector<Value, 8> ivs, tileSizes, sizeBounds;
117   SmallVector<Range, 8> loopRanges;
118   Location loc = producer.getLoc();
119   auto zero = b.create<arith::ConstantIndexOp>(loc, 0);
120   auto one = b.create<arith::ConstantIndexOp>(loc, 1);
121 
122   for (unsigned i = 0, e = producer.getNumLoops(); i < e; ++i) {
123     auto shapeDim = getShapeDefiningLoopRange(producer, i);
124     Value dim = createOrFoldDimOp(b, loc, shapeDim.shape, shapeDim.dimension);
125     sizeBounds.push_back(dim);
126     auto it = fusedLoopsAndRanges.find(i);
127     if (it != fusedLoopsAndRanges.end()) {
128       ivs.push_back(it->second.offset);
129       tileSizes.push_back(it->second.size);
130       loopRanges.push_back(it->second);
131       LLVM_DEBUG(llvm::dbgs() << "tiled loop#" << i << " with LoopRange "
132                               << loopRanges.back() << "\n");
133     } else {
134       tileSizes.push_back(zero);
135       loopRanges.push_back(Range{zero, dim, one});
136       LLVM_DEBUG(llvm::dbgs() << "full loop#" << i << " with LoopRange "
137                               << loopRanges.back() << "\n");
138     }
139   }
140 
141   SmallVector<Value, 8> clonedShapes;
142   clonedShapes.reserve(producer.getNumInputsAndOutputs());
143 
144   // Compute subranges for all tensor input/output operands.
145   clonedShapes.append(makeTiledShapes(
146       b, loc, producer, getTiledOperands(producer), ivs, tileSizes, sizeBounds,
147       /**omitPartialTileCheck=*/false));
148 
149   // Iterate over the results in order.
150   // Extract the subtensor type from the linearized range.
151   // Since we do not enforce any canonicalizations on the fly, this is always
152   // fully dynamic at construction time.
153   SmallVector<Type, 4> resultTypes;
154   resultTypes.reserve(producer->getNumResults());
155   for (RankedTensorType t : producer.getOutputTensorTypes()) {
156     unsigned rank = t.getRank();
157     SmallVector<int64_t, 4> staticOffsetsVector(
158         rank, ShapedType::kDynamicStrideOrOffset);
159     SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamicSize);
160     SmallVector<int64_t, 4> staticStridesVector(
161         rank, ShapedType::kDynamicStrideOrOffset);
162     resultTypes.push_back(tensor::ExtractSliceOp::inferResultType(
163         t.cast<RankedTensorType>(), staticOffsetsVector, staticSizesVector,
164         staticStridesVector));
165   }
166 
167   Operation *clonedOp = producer.clone(b, loc, resultTypes, clonedShapes);
168 
169   // Shift all IndexOp results by the tile offset.
170   SmallVector<Value> allIvs;
171   llvm::transform(loopRanges, std::back_inserter(allIvs),
172                   [](Range range) { return range.offset; });
173   offsetIndices(b, clonedOp, allIvs);
174 
175   return clonedOp;
176 }
177 
178 /// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is
179 /// expected to be defined by a subview op or an extract_slice op.
180 static Range getRangeFromOperandShape(OpBuilder &b, Location loc,
181                                       Value shapedOperand, unsigned dim) {
182   Operation *shapeProducingOp = shapedOperand.getDefiningOp();
183   if (auto subViewOp = dyn_cast<memref::SubViewOp>(shapeProducingOp))
184     return subViewOp.getOrCreateRanges(b, loc)[dim];
185   if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(shapeProducingOp))
186     return sliceOp.getOrCreateRanges(b, loc)[dim];
187   llvm_unreachable("SubviewOp or ExtractSliceOp expected");
188 }
189 
190 /// Fuses the producer into the loop immediately enclosing the consumer.
191 /// This is achieved by "recomputing" the producer at the time it
192 /// is needed just before the consumer.
193 static LinalgOp fuse(OpBuilder &b, LinalgOp producerOp, AffineMap producerMap,
194                      OpOperand &consumerOpOperand) {
195   LLVM_DEBUG(llvm::dbgs() << "Producer map: " << producerMap << "\n");
196   DenseMap<unsigned, Range> fusedLoopsAndRanges;
197   Value shapedOperand = consumerOpOperand.get();
198   for (const auto &en : llvm::enumerate(producerMap.getResults())) {
199     unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition();
200     fusedLoopsAndRanges[posInProducerLoop] = getRangeFromOperandShape(
201         b, consumerOpOperand.getOwner()->getLoc(), shapedOperand, en.index());
202   }
203   return fuse(b, producerOp, fusedLoopsAndRanges);
204 }
205 
206 // Encode structural fusion safety preconditions.
207 // Some of these will be lifted in the future with better analysis.
208 static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView,
209                                           LinalgOp consumer) {
210   assert(producer.hasBufferSemantics() &&
211          "expected linalg op with buffer semantics");
212   assert(consumer.hasBufferSemantics() &&
213          "expected linalg op with buffer semantics");
214   if (producer.getNumOutputs() != 1) {
215     LLVM_DEBUG(llvm::dbgs() << "\nNot structurally fusable (multi-output)");
216     return false;
217   }
218   // Only fuse when the producer block dominates.
219   DominanceInfo dom(producer.getOperation());
220   if (!dom.dominates(producer->getBlock(), consumer->getBlock())) {
221     LLVM_DEBUG(
222         llvm::dbgs()
223         << "\nNot structurally fusable (producer block does not dominate)");
224     return false;
225   }
226   return true;
227 }
228 
229 bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph,
230                                              LinalgOp consumer,
231                                              Value consumedView,
232                                              LinalgOp producer) {
233   assert(producer.hasBufferSemantics() &&
234          "expected linalg op with buffer semantics");
235   assert(consumer.hasBufferSemantics() &&
236          "expected linalg op with buffer semantics");
237   // Make some simple structural checks that alleviate the need for more
238   // complex analyses.
239   if (!isStructurallyFusableProducer(producer, consumedView, consumer)) {
240     LLVM_DEBUG(llvm::dbgs() << "\n***Not static last write due to structure:\t"
241                             << *producer.getOperation());
242     return false;
243   }
244   // Check for any interleaved write to consumedView.
245   if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) {
246     LLVM_DEBUG(llvm::dbgs() << "\n***Not fusable due to interleaved write:\t"
247                             << *producer.getOperation());
248     return false;
249   }
250   return true;
251 }
252 
253 bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph,
254                                  LinalgOp consumer, Value consumedView,
255                                  LinalgOp producer) {
256   assert(producer.hasBufferSemantics() &&
257          "expected linalg op with buffer semantics");
258   assert(consumer.hasBufferSemantics() &&
259          "expected linalg op with buffer semantics");
260   if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer))
261     return false;
262   // Check for any fusion-preventing dependence to any shape read/written that
263   // would violate dependences.
264   if (!graph.findCoveringDependences(producer, consumer).empty()) {
265     LLVM_DEBUG(llvm::dbgs()
266                << "\n***Not fusable due to an interleaved dependence:\t"
267                << *producer.getOperation());
268     return false;
269   }
270   return true;
271 }
272 
273 /// For `consumer` with buffer semantics, find the Linalg operation on buffers
274 /// that is the last writer of `consumerOpOperand`. For now the fusable
275 /// dependence is returned as an instance of the `dependenceGraph`.
276 static FailureOr<LinalgDependenceGraph::LinalgDependenceGraphElem>
277 findFusableProducer(OpOperand &consumerOpOperand,
278                     const LinalgDependenceGraph &dependenceGraph) {
279   LLVM_DEBUG(llvm::dbgs() << "findFusableProducer for: "
280                           << consumerOpOperand.get() << " @"
281                           << consumerOpOperand.getOperandNumber() << " in "
282                           << *consumerOpOperand.getOwner() << "\n");
283   LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner());
284   if (!consumerOp)
285     return failure();
286 
287   // Only consider RAW and WAW atm.
288   for (auto depType : {
289            LinalgDependenceGraph::DependenceType::RAW,
290            LinalgDependenceGraph::DependenceType::WAW,
291        }) {
292     LLVM_DEBUG(llvm::dbgs()
293                << "Dependencies into: " << *consumerOp.getOperation() << "\n");
294     for (auto dependence : llvm::make_filter_range(
295              dependenceGraph.getDependencesInto(consumerOp, depType),
296              [&](LinalgDependenceGraph::LinalgDependenceGraphElem elem) {
297                LLVM_DEBUG(llvm::dbgs() << "Inspect dependence btw: "
298                                        << elem.getIndexingValue() << " and "
299                                        << elem.getDependentValue() << "\n");
300                Value v = elem.getIndexingValue();
301                Optional<unsigned> operandNum =
302                    elem.getIndexingOpViewOperandNum();
303                return isa<LinalgOp>(elem.getDependentOp()) &&
304                       v == consumerOpOperand.get() && operandNum &&
305                       *operandNum == consumerOpOperand.getOperandNumber();
306              })) {
307       // Consumer consumes this view, `isStructurallyFusableProducer` also
308       // checks whether it is a strict subview of the producer view.
309       auto producer = cast<LinalgOp>(dependence.getDependentOp());
310       LLVM_DEBUG(llvm::dbgs()
311                  << "\n"
312                  << LinalgDependenceGraph::getDependenceTypeStr(depType)
313                  << "producer: " << *dependence.getDependentOp()
314                  << " view: " << dependence.getDependentValue() << "\n");
315 
316       // If the producer and consumer have tensor semantics, the only dependence
317       // between them is through a RAW dependence and they are fusable by
318       // construction. For buffer semantics need additional checks.
319       if (producer.hasBufferSemantics() && consumerOp.hasBufferSemantics() &&
320           isFusableInto(dependenceGraph, consumerOp, consumerOpOperand.get(),
321                         producer))
322         return dependence;
323       if (producer.hasTensorSemantics() && consumerOp.hasTensorSemantics()) {
324         assert(dependence.dependenceType ==
325                LinalgDependenceGraph::DependenceType::RAW);
326         return dependence;
327       }
328     }
329   }
330   return failure();
331 }
332 
333 FailureOr<FusionInfo>
334 mlir::linalg::fuseProducerOfBuffer(OpBuilder &b, OpOperand &consumerOpOperand,
335                                    const LinalgDependenceGraph &graph) {
336   Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependence =
337       findFusableProducer(consumerOpOperand, graph);
338   if (!fusableDependence)
339     return failure();
340 
341   LinalgOp producerOp = dyn_cast<LinalgOp>(fusableDependence->getDependentOp());
342   if (!producerOp)
343     return failure();
344 
345   // If producer is already in the same block as consumer, we are done.
346   if (consumerOpOperand.get().getParentBlock() ==
347       fusableDependence->getDependentValue().getParentBlock())
348     return failure();
349 
350   Optional<AffineMap> producerMap =
351       fusableDependence->getDependentOpViewIndexingMap();
352   if (!producerMap)
353     return failure();
354 
355   // Must be a subview or an extract_slice to guarantee there are loops we can
356   // fuse into.
357   auto subView = consumerOpOperand.get().getDefiningOp<memref::SubViewOp>();
358   if (!subView) {
359     LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subview)");
360     return failure();
361   }
362 
363   // Fuse `producer` just before `consumer`.
364   OpBuilder::InsertionGuard g(b);
365   b.setInsertionPoint(consumerOpOperand.getOwner());
366   LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: "
367                           << *consumerOpOperand.getOwner() << "\n");
368 
369   auto fusedProducer = fuse(b, producerOp, *producerMap, consumerOpOperand);
370   return FusionInfo{producerOp, fusedProducer};
371 }
372 
373 /// Walk back use-def chain through scf::For yields.
374 /// Sets `producer` and `outputIndex` if it finds a producer LinalgOp
375 
376 // TODO(ravishankarm, ntv): This can be moved into the dependence graphs
377 // dependence tracking since the dependence tracking is similar to what is done
378 // w.r.t to buffers.
379 static void getProducerOfTensor(Value tensor, OpResult &opResult) {
380   if (!tensor.getType().isa<RankedTensorType>())
381     return;
382 
383   while (true) {
384     LLVM_DEBUG(llvm::dbgs() << "\ngetProducerOfTensor: " << tensor);
385     if (auto linalgOp = tensor.getDefiningOp<LinalgOp>()) {
386       opResult = tensor.cast<OpResult>();
387       return;
388     }
389     if (auto sliceOp = tensor.getDefiningOp<tensor::ExtractSliceOp>()) {
390       tensor = sliceOp.getSource();
391       continue;
392     }
393     if (auto blockArg = tensor.dyn_cast<BlockArgument>()) {
394       if (auto forOp = blockArg.getDefiningOp<scf::ForOp>()) {
395         tensor = *(forOp.getIterOperands().begin() + blockArg.getArgNumber());
396         continue;
397       }
398     }
399     return;
400   }
401 }
402 
403 FailureOr<FusionInfo>
404 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpOperand &consumerOpOperand) {
405   Value inputTensor = consumerOpOperand.get();
406   OpResult producerOpResult;
407   getProducerOfTensor(inputTensor, producerOpResult);
408   if (!producerOpResult) {
409     LLVM_DEBUG(llvm::dbgs() << "\nUnable to find producer");
410     return failure();
411   }
412   return fuseProducerOfTensor(b, producerOpResult, consumerOpOperand);
413 }
414 
415 FailureOr<FusionInfo>
416 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpResult producerOpResult,
417                                    OpOperand &consumerOpOperand) {
418   auto producerOp = dyn_cast<LinalgOp>(producerOpResult.getOwner());
419   if (!producerOp)
420     return failure();
421 
422   LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner());
423   if (!consumerOp)
424     return failure();
425 
426   Value inputTensor = consumerOpOperand.get();
427 
428   // Must be an extract_slice op to guarantee there are loops we can fuse into.
429   auto sliceOp = inputTensor.getDefiningOp<tensor::ExtractSliceOp>();
430   if (!sliceOp) {
431     LLVM_DEBUG(llvm::dbgs()
432                << "\nNot fusable, not an extract_slice op: " << inputTensor);
433     return failure();
434   }
435 
436   // If producer is already in the same block as consumer, we are done.
437   if (consumerOpOperand.get().getParentBlock() ==
438       producerOpResult.getParentBlock())
439     return failure();
440 
441   // Insert fused `producer` just before `consumer`.
442   OpBuilder::InsertionGuard g(b);
443   b.setInsertionPoint(consumerOp);
444   LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumerOp << "\n");
445   OpOperand *opOperand =
446       producerOp.getOutputOperand(producerOpResult.getResultNumber());
447   LinalgOp fusedProducer =
448       fuse(b, producerOp, producerOp.getTiedIndexingMap(opOperand),
449            consumerOpOperand);
450 
451   // Replace use.
452   // Canonicalizations are not guaranteed to have happened before constructing
453   // `fusedProducer`. In the tensor case this can result in temporary type
454   // mismatches. Insert a `tensor.cast` op to propagate the transformation
455   // invariant that types are compatible.
456   Value def = fusedProducer->getResult(producerOpResult.getResultNumber());
457   Type consumerType = consumerOpOperand.get().getType();
458   if (consumerType != def.getType())
459     def = b.create<tensor::CastOp>(fusedProducer.getLoc(), consumerType, def);
460   consumerOpOperand.set(def);
461   return FusionInfo{cast<LinalgOp>(producerOpResult.getOwner()), fusedProducer};
462 }
463