xref: /llvm-project/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp (revision 060208b4c8b78b2456b8440d9597c9f584676bf4)
1 //===- Fusion.cpp - Implementation of linalg Fusion -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Fusion pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Dialect/Affine/IR/AffineOps.h"
15 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
16 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
17 #include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
18 #include "mlir/Dialect/Linalg/Passes.h"
19 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
20 #include "mlir/Dialect/Linalg/Utils/Utils.h"
21 #include "mlir/Dialect/MemRef/IR/MemRef.h"
22 #include "mlir/Dialect/Tensor/IR/Tensor.h"
23 #include "mlir/IR/AffineExpr.h"
24 #include "mlir/IR/AffineMap.h"
25 #include "mlir/IR/Dominance.h"
26 #include "mlir/Support/LLVM.h"
27 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
28 #include "mlir/Transforms/RegionUtils.h"
29 #include "llvm/ADT/MapVector.h"
30 #include "llvm/ADT/ScopeExit.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 
34 #include <set>
35 
36 #define DEBUG_TYPE "linalg-fusion"
37 
38 using namespace mlir;
39 using namespace mlir::linalg;
40 
41 using llvm::dbgs;
42 
43 /// Implements a simple high-level fusion pass on linalg structured operations.
44 ///
45 /// In each block, linalg ops are processed in reverse textual order.
46 /// Given a linalg op `O`, fusion occurs by:
47 ///   1. inspecting the linalg ops that write into the views read by `O`. There
48 ///      are 2 cases:
49 ///      a) buffer case: use the SSA value of the views and a simple alias
50 ///         analysis on subview ops to determine producer-consumer dependences;
51 ///      b) tensor case: use SSA use-def chains on extract_slice ops;
52 ///   2. greedily fuse the linalg ops that produce the subview/extract_slice.
53 ///   3. inspect the fused ops and determine whether they have other remaining
54 ///      LinalgOp uses. If not, then erase the original producing linalg op.
55 ///
56 /// More advanced use cases, analyses as well as profitability heuristics are
57 /// left for future work.
58 
59 struct ShapeDimension {
60   Value shape;
61   unsigned dimension;
62 };
63 
64 // Given an `op`, returns the first (`shape`, `dimension`) pair that identifies
65 // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps
66 // guarantees at least one such dimension is found. If multiple candidates exist
67 // they must agree by construction (i.e. have the same size) and we just return
68 // the first one.
69 static ShapeDimension
70 getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth,
71                           bool fromSubViewOpOnly = false) {
72   // Iterate over the inputs and outputs in order.
73   // Extract the subranges from the linearized ranges.
74   for (OpOperand *opOperand : op.getInputAndOutputOperands()) {
75     // The method `getRangeFromOperandShape` requires using SubViewOp or
76     // ExtractSliceOps. If the value isn't defined from there continue.
77     // todo: The method should be adapted to get the values from
78     // `ViewInterface`. The interface needs a `getOrCreateRanges` method which
79     // currently returns a `linalg.range`. The fix here is to move this op to
80     // `std` dialect and add the method to `ViewInterface`.
81     if (fromSubViewOpOnly &&
82         !isa_and_nonnull<memref::SubViewOp, tensor::ExtractSliceOp>(
83             opOperand->get().getDefiningOp()))
84       continue;
85 
86     AffineMap map = op.getTiedIndexingMap(opOperand);
87     LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange I/O idx: "
88                             << opOperand->getOperandNumber() << "\n");
89     LLVM_DEBUG(llvm::dbgs()
90                << "getShapeDefiningLoopRange map: " << map << "\n");
91     SmallVector<Value, 8> shapeRanges(map.getNumResults(), nullptr);
92     for (auto en : llvm::enumerate(map.getResults())) {
93       auto dimExpr = en.value().dyn_cast<AffineDimExpr>();
94       if (!dimExpr)
95         continue;
96       if (loopDepth == en.value().cast<AffineDimExpr>().getPosition()) {
97         LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: "
98                                 << loopDepth << "\n");
99         LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange shape: "
100                                 << opOperand->get() << "\n");
101         return ShapeDimension{opOperand->get(),
102                               static_cast<unsigned>(en.index())};
103       }
104     }
105   }
106   llvm_unreachable("Expect to be able to extract a shape defining loop range");
107 }
108 
109 // Return tiled operands for the fused producer op. When fusing into
110 // `linalg.tiled_loop` one has to update `input` and `output` arguments of the
111 // loop correspondingly.
112 // Each input tensor of the producer op has to be added to `inputs` of the
113 // `tiled_loop` if it is not present there already. Each output tensor has to
114 // be added either to `inputs` or to `outputs` of `linalg.tiled_loop` depending
115 // on whether the correponding result is an input or an output to the loop.
116 //
117 // NOTE: This way of updating the arguments of the `tiled_loop` assumes that the
118 // intermediate result is not used by any other operation but the consumer. A
119 // more generic way is to append all missing output tensors of the producer to
120 // the tiled loop outputs and hence modify the number of the results, since we
121 // would need to add the intermediate results to `linalg.yield`. After that a
122 // canonicalization pass would move the unused output args of the `tiled_loop`
123 // to the `input` section.
124 static SmallVector<Value> getTiledOperands(OpBuilder &b, LinalgOp producer) {
125   auto tiledLoop = dyn_cast<TiledLoopOp>(b.getBlock()->getParentOp());
126   if (!tiledLoop)
127     return producer.getInputAndOutputOperands();
128 
129   SmallVector<Value> tiledOperands;
130   assert(producer.hasTensorSemantics() &&
131          "only fusion on tensors is currently supported for TiledLinalgOp");
132 
133   for (OpOperand *producerInput : producer.getInputOperands()) {
134     OpOperand *addedInput = tiledLoop.findInputOperand(producerInput->get());
135     if (addedInput == nullptr)
136       addedInput = &tiledLoop.appendInputOperand(b, producerInput->get());
137     BlockArgument addedBlockArg = tiledLoop.getTiedBlockArgument(*addedInput);
138     tiledOperands.push_back(addedBlockArg);
139   }
140   for (OpOperand *producerOutput : producer.getOutputOperands()) {
141     OpResult result = producer.getTiedOpResult(producerOutput);
142     OpOperand *resultInputOperand = tiledLoop.findInputOperand(result);
143     OpOperand *resultOutputOperand = tiledLoop.findOutputOperand(result);
144     assert((resultInputOperand != nullptr) ^ (resultOutputOperand != nullptr) &&
145            "The result should be present in `input` or `output` args of "
146            "`tiled_loop");
147 
148     bool isInput = resultInputOperand;
149     int opNumber = isInput ? resultInputOperand->getOperandNumber()
150                            : resultOutputOperand->getOperandNumber();
151 
152     OpOperand *addedOutput = tiledLoop.findOutputOperand(producerOutput->get());
153     if (addedOutput == nullptr)
154       addedOutput =
155           isInput ? &tiledLoop.appendInputOperand(b, producerOutput->get())
156                   : &tiledLoop.appendOutputOperand(b, producerOutput->get());
157 
158     OpOperand &resultOperand = tiledLoop->getOpOperand(opNumber);
159     auto addedBlockArg = tiledLoop.getTiedBlockArgument(*addedOutput);
160     auto resultOperandBlockArg = tiledLoop.getTiedBlockArgument(resultOperand);
161     resultOperandBlockArg.replaceAllUsesWith(addedBlockArg);
162     tiledLoop.eraseOperand(b, resultOperand);
163     tiledOperands.push_back(addedBlockArg);
164   }
165   return tiledOperands;
166 }
167 
168 /// Fuses the producer by cloning the `producer`. The `fusedLoopsAndRanges`
169 /// provides the loop range information for the fused loops. The rest are
170 /// obtained from the producer itself, since they are not tiled + fused.
171 static LinalgOp fuse(OpBuilder &b, LinalgOp producer,
172                      const DenseMap<unsigned, Range> &fusedLoopsAndRanges) {
173   SmallVector<Value, 8> ivs, tileSizes, sizeBounds;
174   SmallVector<Range, 8> loopRanges;
175   Location loc = producer.getLoc();
176   auto zero = b.create<ConstantIndexOp>(loc, 0);
177   auto one = b.create<ConstantIndexOp>(loc, 1);
178 
179   for (unsigned i = 0, e = producer.getNumLoops(); i < e; ++i) {
180     auto it = fusedLoopsAndRanges.find(i);
181     if (it != fusedLoopsAndRanges.end()) {
182       ivs.push_back(it->second.offset);
183       tileSizes.push_back(it->second.size);
184       sizeBounds.push_back(nullptr);
185       loopRanges.push_back(it->second);
186       LLVM_DEBUG(llvm::dbgs() << "tiled loop#" << i << " with LoopRange "
187                               << loopRanges.back() << "\n");
188     } else {
189       auto shapeDim = getShapeDefiningLoopRange(producer, i);
190       Value dim = b.createOrFold<memref::DimOp>(loc, shapeDim.shape,
191                                                 shapeDim.dimension);
192       tileSizes.push_back(zero);
193       sizeBounds.push_back(dim);
194       loopRanges.push_back(Range{zero, dim, one});
195       LLVM_DEBUG(llvm::dbgs() << "full loop#" << i << " with LoopRange "
196                               << loopRanges.back() << "\n");
197     }
198   }
199 
200   SmallVector<Value, 8> clonedShapes;
201   clonedShapes.reserve(producer.getNumInputsAndOutputs());
202 
203   // Compute subranges for all tensor input/output operands.
204   clonedShapes.append(makeTiledShapes(b, loc, producer,
205                                       getTiledOperands(b, producer), ivs,
206                                       tileSizes, sizeBounds));
207 
208   // Append the other operands.
209   auto operands = producer.getAssumedNonShapedOperands();
210   clonedShapes.append(operands.begin(), operands.end());
211 
212   // Iterate over the results in order.
213   // Extract the subtensor type from the linearized range.
214   // Since we do not enforce any canonicalizations on the fly, this is always
215   // fully dynamic at construction time.
216   SmallVector<Type, 4> resultTypes;
217   resultTypes.reserve(producer->getNumResults());
218   for (RankedTensorType t : producer.getOutputTensorTypes()) {
219     unsigned rank = t.getRank();
220     SmallVector<int64_t, 4> staticOffsetsVector(
221         rank, ShapedType::kDynamicStrideOrOffset);
222     SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamicSize);
223     SmallVector<int64_t, 4> staticStridesVector(
224         rank, ShapedType::kDynamicStrideOrOffset);
225     resultTypes.push_back(tensor::ExtractSliceOp::inferResultType(
226         t.cast<RankedTensorType>(), staticOffsetsVector, staticSizesVector,
227         staticStridesVector));
228   }
229 
230   Operation *clonedOp = producer.clone(b, loc, resultTypes, clonedShapes);
231   // When the producer has index semantics, we have to transform the indices of
232   // the producer according to the tiling of the consumer, i.e. offset them by
233   // the values computed in `loopRanges`.
234   if (producer.hasIndexSemantics()) {
235     assert(clonedOp->getNumRegions() == 1 &&
236            clonedOp->getRegion(0).getBlocks().size() == 1 &&
237            "expected producer to have one block.");
238     // Shift all indices by the tile offset.
239     Block &block = clonedOp->getRegion(0).front();
240     for (IndexOp indexOp : block.getOps<IndexOp>()) {
241       OpBuilder::InsertionGuard g(b);
242       b.setInsertionPointAfter(indexOp);
243       AffineExpr index, offset;
244       bindDims(b.getContext(), index, offset);
245       AffineApplyOp applyOp = b.create<AffineApplyOp>(
246           indexOp.getLoc(), index + offset,
247           ValueRange{indexOp.getResult(), loopRanges[indexOp.dim()].offset});
248       indexOp.getResult().replaceAllUsesExcept(applyOp, applyOp);
249     }
250   }
251 
252   return clonedOp;
253 }
254 
255 /// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is
256 /// expected to be defined by a subview op or an extract_slice op.
257 static Range getRangeFromOperandShape(OpBuilder &b, Location loc,
258                                       Value shapedOperand, unsigned dim) {
259   Operation *shapeProducingOp = shapedOperand.getDefiningOp();
260   if (auto subViewOp = dyn_cast<memref::SubViewOp>(shapeProducingOp))
261     return subViewOp.getOrCreateRanges(b, loc)[dim];
262   if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(shapeProducingOp))
263     return sliceOp.getOrCreateRanges(b, loc)[dim];
264   llvm_unreachable("SubviewOp or ExtractSliceOp expected");
265 }
266 
267 /// Fuses the producer into the loop immediately enclosing the consumer.
268 /// This is achieved by "recomputing" the producer at the time it
269 /// is needed just before the consumer.
270 static LinalgOp fuse(OpBuilder &b, LinalgOp producerOp, AffineMap producerMap,
271                      OpOperand &consumerOpOperand) {
272   LLVM_DEBUG(llvm::dbgs() << "Producer map: " << producerMap << "\n");
273   DenseMap<unsigned, Range> fusedLoopsAndRanges;
274   Value shapedOperand = consumerOpOperand.get();
275   for (auto en : llvm::enumerate(producerMap.getResults())) {
276     unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition();
277     fusedLoopsAndRanges[posInProducerLoop] = getRangeFromOperandShape(
278         b, consumerOpOperand.getOwner()->getLoc(), shapedOperand, en.index());
279   }
280   return fuse(b, producerOp, fusedLoopsAndRanges);
281 }
282 
283 // Encode structural fusion safety preconditions.
284 // Some of these will be lifted in the future with better analysis.
285 static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView,
286                                           LinalgOp consumer) {
287   assert(producer.hasBufferSemantics() &&
288          "expected linalg op with buffer semantics");
289   assert(consumer.hasBufferSemantics() &&
290          "expected linalg op with buffer semantics");
291   if (producer.getNumOutputs() != 1) {
292     LLVM_DEBUG(llvm::dbgs() << "\nNot structurally fusable (multi-output)");
293     return false;
294   }
295   // Only fuse when the producer block dominates.
296   DominanceInfo dom(producer.getOperation());
297   if (!dom.dominates(producer->getBlock(), consumer->getBlock())) {
298     LLVM_DEBUG(
299         llvm::dbgs()
300         << "\nNot structurally fusable (producer block does not dominate)");
301     return false;
302   }
303   return true;
304 }
305 
306 bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph,
307                                              LinalgOp consumer,
308                                              Value consumedView,
309                                              LinalgOp producer) {
310   assert(producer.hasBufferSemantics() &&
311          "expected linalg op with buffer semantics");
312   assert(consumer.hasBufferSemantics() &&
313          "expected linalg op with buffer semantics");
314   // Make some simple structural checks that alleviate the need for more
315   // complex analyses.
316   if (!isStructurallyFusableProducer(producer, consumedView, consumer)) {
317     LLVM_DEBUG(llvm::dbgs() << "\n***Not static last write due to structure:\t"
318                             << *producer.getOperation());
319     return false;
320   }
321   // Check for any interleaved write to consumedView.
322   if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) {
323     LLVM_DEBUG(llvm::dbgs() << "\n***Not fusable due to interleaved write:\t"
324                             << *producer.getOperation());
325     return false;
326   }
327   return true;
328 }
329 
330 bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph,
331                                  LinalgOp consumer, Value consumedView,
332                                  LinalgOp producer) {
333   assert(producer.hasBufferSemantics() &&
334          "expected linalg op with buffer semantics");
335   assert(consumer.hasBufferSemantics() &&
336          "expected linalg op with buffer semantics");
337   if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer))
338     return false;
339   // Check for any fusion-preventing dependence to any shape read/written that
340   // would violate dependences.
341   if (!graph.findCoveringDependences(producer, consumer).empty()) {
342     LLVM_DEBUG(llvm::dbgs()
343                << "\n***Not fusable due to an interleaved dependence:\t"
344                << *producer.getOperation());
345     return false;
346   }
347   if (auto convOp = dyn_cast<linalg::ConvOp>(producer.getOperation())) {
348     // TODO: add a level of indirection to linalg.generic.
349     if (convOp.padding())
350       return false;
351   }
352   if (auto convOp = dyn_cast<linalg::ConvOp>(consumer.getOperation())) {
353     // TODO: add a level of indirection to linalg.generic.
354     if (convOp.padding())
355       return false;
356   }
357   return true;
358 }
359 
360 /// For `consumer` with buffer semantics, find the Linalg operation on buffers
361 /// that is the last writer of `consumerOpOperand`. For now the fusable
362 /// dependence is returned as an instance of the `dependenceGraph`.
363 static Optional<LinalgDependenceGraph::LinalgDependenceGraphElem>
364 findFusableProducer(OpOperand &consumerOpOperand,
365                     const LinalgDependenceGraph &dependenceGraph) {
366   LLVM_DEBUG(llvm::dbgs() << "findFusableProducer for: "
367                           << consumerOpOperand.get() << " @"
368                           << consumerOpOperand.getOperandNumber() << " in "
369                           << *consumerOpOperand.getOwner() << "\n");
370   LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner());
371   if (!consumerOp)
372     return {};
373 
374   // Only consider RAW and WAW atm.
375   for (auto depType : {
376            LinalgDependenceGraph::DependenceType::RAW,
377            LinalgDependenceGraph::DependenceType::WAW,
378        }) {
379     LLVM_DEBUG(llvm::dbgs()
380                << "Dependencies into: " << *consumerOp.getOperation() << "\n");
381     for (auto dependence : llvm::make_filter_range(
382              dependenceGraph.getDependencesInto(consumerOp, depType),
383              [&](LinalgDependenceGraph::LinalgDependenceGraphElem elem) {
384                LLVM_DEBUG(llvm::dbgs() << "Inspect dependence btw: "
385                                        << elem.getIndexingValue() << " and "
386                                        << elem.getDependentValue() << "\n");
387                Value v = elem.getIndexingValue();
388                Optional<unsigned> operandNum =
389                    elem.getIndexingOpViewOperandNum();
390                return isa<LinalgOp>(elem.getDependentOp()) &&
391                       v == consumerOpOperand.get() && operandNum &&
392                       operandNum.getValue() ==
393                           consumerOpOperand.getOperandNumber();
394              })) {
395       // Consumer consumes this view, `isStructurallyFusableProducer` also
396       // checks whether it is a strict subview of the producer view.
397       auto producer = cast<LinalgOp>(dependence.getDependentOp());
398       LLVM_DEBUG(llvm::dbgs()
399                  << "\n"
400                  << LinalgDependenceGraph::getDependenceTypeStr(depType)
401                  << "producer: " << *dependence.getDependentOp()
402                  << " view: " << dependence.getDependentValue() << "\n");
403 
404       // If the producer and consumer have tensor semantics, the only dependence
405       // between them is through a RAW dependence and they are fusable by
406       // construction. For buffer semantics need additional checks.
407       if (producer.hasBufferSemantics() && consumerOp.hasBufferSemantics() &&
408           isFusableInto(dependenceGraph, consumerOp, consumerOpOperand.get(),
409                         producer))
410         return dependence;
411       if (producer.hasTensorSemantics() && consumerOp.hasTensorSemantics()) {
412         assert(dependence.dependenceType ==
413                LinalgDependenceGraph::DependenceType::RAW);
414         return dependence;
415       }
416     }
417   }
418   return {};
419 }
420 
421 Optional<FusionInfo>
422 mlir::linalg::fuseProducerOfBuffer(OpBuilder &b, OpOperand &consumerOpOperand,
423                                    const LinalgDependenceGraph &graph) {
424   Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependence =
425       findFusableProducer(consumerOpOperand, graph);
426   if (!fusableDependence)
427     return llvm::None;
428 
429   LinalgOp producerOp = dyn_cast<LinalgOp>(fusableDependence->getDependentOp());
430   if (!producerOp)
431     return llvm::None;
432 
433   // If producer is already in the same block as consumer, we are done.
434   if (consumerOpOperand.get().getParentBlock() ==
435       fusableDependence->getDependentValue().getParentBlock())
436     return llvm::None;
437 
438   Optional<AffineMap> producerMap =
439       fusableDependence->getDependentOpViewIndexingMap();
440   if (!producerMap)
441     return llvm::None;
442 
443   // Must be a subview or an extract_slice to guarantee there are loops we can
444   // fuse into.
445   auto subView = consumerOpOperand.get().getDefiningOp<memref::SubViewOp>();
446   if (!subView) {
447     LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subview)");
448     return llvm::None;
449   }
450 
451   // Fuse `producer` just before `consumer`.
452   OpBuilder::InsertionGuard g(b);
453   b.setInsertionPoint(consumerOpOperand.getOwner());
454   LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: "
455                           << *consumerOpOperand.getOwner() << "\n");
456 
457   auto fusedProducer = fuse(b, producerOp, *producerMap, consumerOpOperand);
458   return FusionInfo{producerOp, fusedProducer};
459 }
460 
461 /// Walk back use-def chain through scf::For yields.
462 /// Sets `producer` and `outputIndex` if it finds a producer LinalgOp
463 
464 // TODO(ravishankarm, ntv): This can be moved into the dependence graphs
465 // dependence tracking since the dependence tracking is similar to what is done
466 // w.r.t to buffers.
467 static void getProducerOfTensor(Value tensor, OpResult &opResult) {
468   if (!tensor.getType().isa<RankedTensorType>())
469     return;
470 
471   while (true) {
472     LLVM_DEBUG(llvm::dbgs() << "\ngetProducerOfTensor: " << tensor);
473     if (auto linalgOp = tensor.getDefiningOp<LinalgOp>()) {
474       opResult = tensor.cast<OpResult>();
475       return;
476     }
477     if (auto sliceOp = tensor.getDefiningOp<tensor::ExtractSliceOp>()) {
478       tensor = sliceOp.source();
479       continue;
480     }
481     if (auto blockArg = tensor.dyn_cast<BlockArgument>()) {
482       if (auto forOp = blockArg.getDefiningOp<scf::ForOp>()) {
483         tensor = *(forOp.getIterOperands().begin() + blockArg.getArgNumber());
484         continue;
485       }
486     }
487     return;
488   }
489 }
490 
491 Optional<FusionInfo>
492 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpOperand &consumerOpOperand) {
493   Value inputTensor = consumerOpOperand.get();
494   OpResult producerOpResult;
495   getProducerOfTensor(inputTensor, producerOpResult);
496   if (!producerOpResult) {
497     LLVM_DEBUG(llvm::dbgs() << "\nUnable to find producer");
498     return {};
499   }
500   return fuseProducerOfTensor(b, producerOpResult, consumerOpOperand);
501 }
502 
503 Optional<FusionInfo>
504 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpResult producerOpResult,
505                                    OpOperand &consumerOpOperand) {
506   auto producerOp = dyn_cast<LinalgOp>(producerOpResult.getOwner());
507   if (!producerOp)
508     return llvm::None;
509 
510   LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner());
511   if (!consumerOp)
512     return llvm::None;
513 
514   Value inputTensor = consumerOpOperand.get();
515 
516   // Must be an extract_slice op to guarantee there are loops we can fuse into.
517   auto sliceOp = inputTensor.getDefiningOp<tensor::ExtractSliceOp>();
518   if (!sliceOp) {
519     LLVM_DEBUG(llvm::dbgs()
520                << "\nNot fusable, not an extract_slice op: " << inputTensor);
521     return {};
522   }
523 
524   // If producer is already in the same block as consumer, we are done.
525   if (consumerOpOperand.get().getParentBlock() ==
526       producerOpResult.getParentBlock())
527     return {};
528 
529   // Insert fused `producer` just before `consumer`.
530   OpBuilder::InsertionGuard g(b);
531   b.setInsertionPoint(consumerOp);
532   LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumerOp << "\n");
533   OpOperand *opOperand =
534       producerOp.getOutputOperand(producerOpResult.getResultNumber());
535   LinalgOp fusedProducer =
536       fuse(b, producerOp, producerOp.getTiedIndexingMap(opOperand),
537            consumerOpOperand);
538 
539   // Replace use.
540   // Canonicalizations are not guaranteed to have happened before constructing
541   // `fusedProducer`. In the tensor case this can result in temporary type
542   // mismatches. Insert a `tensor.cast` op to propagate the transformation
543   // invariant that types are compatible.
544   Value def = fusedProducer->getResult(producerOpResult.getResultNumber());
545   Type consumerType = consumerOpOperand.get().getType();
546   if (consumerType != def.getType())
547     def = b.create<tensor::CastOp>(fusedProducer.getLoc(), consumerType, def);
548   consumerOpOperand.set(def);
549   return FusionInfo{cast<LinalgOp>(producerOpResult.getOwner()), fusedProducer};
550 }
551 
552 /// Prune all dimensions that are of reduction iterator type from `map`.
553 static AffineMap pruneReductionDimsFromMap(ArrayRef<Attribute> iteratorTypes,
554                                            AffineMap map) {
555   llvm::SmallDenseSet<unsigned> projectedDims;
556   for (auto attr : llvm::enumerate(iteratorTypes)) {
557     if (!isParallelIterator(attr.value()))
558       projectedDims.insert(attr.index());
559   }
560   return getProjectedMap(map, projectedDims);
561 }
562 
563 /// Returns the mapping from iterations in the consumer that write to the same
564 /// location as the iterations in the producer. To do so use
565 /// - indexing map of the fused view in the consumer : consumerIndexMap
566 /// - indexing map of the fused view in the producer : producerIndexMap
567 ///     consumerLoopToProducerLoop =
568 ///       inverse(producerIndexMap).compose(consumerIndexMap)
569 static Optional<AffineMap> getConsumerLoopToProducerLoopMap(
570     LinalgDependenceGraph::LinalgDependenceGraphElem dependence) {
571   auto producer = dyn_cast<LinalgOp>(dependence.getDependentOp());
572   if (!producer)
573     return None;
574 
575   Optional<AffineMap> producerIndexingMap =
576       dependence.getDependentOpViewIndexingMap();
577   Optional<AffineMap> consumerIndexingMap =
578       dependence.getIndexingOpViewIndexingMap();
579   if (!producerIndexingMap || !consumerIndexingMap)
580     return None;
581 
582   AffineMap prunedProducerIndexingMap = pruneReductionDimsFromMap(
583       producer.iterator_types().getValue(), *producerIndexingMap);
584   if (!prunedProducerIndexingMap.isPermutation())
585     return None;
586 
587   if (consumerIndexingMap->getNumResults() !=
588       prunedProducerIndexingMap.getNumResults())
589     return None;
590 
591   LLVM_DEBUG({
592     llvm::dbgs() << "\t producerMap : ";
593     producerIndexingMap->print(llvm::dbgs());
594     llvm::dbgs() << "  pruned : ";
595     prunedProducerIndexingMap.print(llvm::dbgs());
596     llvm::dbgs() << "\n";
597     llvm::dbgs() << "\t consumerMap : ";
598     consumerIndexingMap->print(llvm::dbgs());
599     llvm::dbgs() << "\n";
600   });
601 
602   AffineMap invProducerIndexMap = inversePermutation(prunedProducerIndexingMap);
603   if (!invProducerIndexMap)
604     return None;
605 
606   return invProducerIndexMap.compose(*consumerIndexingMap);
607 }
608 
609 /// Given a projected permutation `map`, returns true if the map changes the
610 /// order in which the fused loop dimension appear.
611 static bool doesTransposeAccess(AffineMap map,
612                                 const std::set<unsigned> &fusableLoops) {
613   Optional<unsigned> lastFusableLoop;
614   for (unsigned pos : llvm::map_range(map.getResults(), [](AffineExpr expr) {
615          return expr.cast<AffineDimExpr>().getPosition();
616        })) {
617     if (!fusableLoops.count(pos))
618       continue;
619     if (!lastFusableLoop) {
620       lastFusableLoop = pos;
621       continue;
622     }
623     if (pos <= lastFusableLoop.getValue())
624       return true;
625     lastFusableLoop = pos;
626   }
627   return false;
628 }
629 
630 /// Returns the positions of the loop in `op` that can be tiled based on the
631 /// operations that are to be fused with it. For example, in a
632 ///
633 ///   linalg.matmul ins(%a, %b : ...) outs(%c : ...)
634 ///
635 /// if the producer of %a needs to be fused with this op, only the `i` loop of
636 /// the matmul can be tiled while fusing. If producer of %a, and %b are to be
637 /// fused, then no loops can be tiled while fusing. The conditions used are:
638 /// 1. Only parallel loops can be used for tile + fuse. Find the number of
639 ///    common outer parallel loops between the op and its producers being fused.
640 /// 2. Of the parallel loops only some can be fused. Only those loops can be
641 ///    fused such where the fusable loops iteration space only touches one tile
642 ///    of the fused operation. This is because the producer (which is writing
643 ///    the fused subview) has update semantics.
644 ///
645 /// Since an inverse computation is needed, we need to consider the projection
646 /// of the producerIndexMap w.r.t the parallel loops.  The actual fusable loops
647 /// are the dimensions of the consumerLoopToProducerLoop map that correspond to
648 /// parallel loops and appear in the result of the map
649 ///
650 /// Example 1:
651 ///   linalg.fill(%c, %cst)
652 ///   linalg.matmul ins(%a, %b) outs(%c)
653 ///     Number of parallel loops : 2
654 ///     producerIndexMap = affine_map<(i, j) ->(i , j)>
655 ///     consumerIndexMap = affine_map<(i, j, k) -> (i, j)>
656 ///     consumerLoopToProducerLoop = affine_map<(i, j, k) -> (i, j)>
657 ///     Fused dimensions : i, j
658 ///
659 /// Example 2:
660 ///   linalg.matmul ins(%a, %b) outs(%c)
661 ///   linalg.generic {indexing_maps = [affine_map<(i, j) -> (j, i)>, ...
662 ///                   iterator_types = ["parallel", "parallel"]}
663 ///     ins(%c) ...
664 ///
665 ///     Number of parallel loops = 2:
666 ///     producerIndexMap (projected to parallel loops) =
667 ///       affine_map<(i, j) -> (i, j)>
668 ///     consumerLoopToProducerLoop2 = affine_map<(i, j) -> (j, i)>
669 ///     Fused dimensions : i, j
670 ///
671 /// Example 3:
672 ///   linalg.copy(%s, %b)
673 ///   linalg.matmul ins(%a, %b) outs(%c)
674 ///
675 ///   Number of parallel loops = 2
676 ///   produceIndexMap : affine_map<(i, j) -> (i, j)>
677 ///   consumerLoopToProduceLoops = affine_map<(i, j, k) -> (k, j)>
678 ///     submap with only parallel loops = affine_map<(i, j) -> (j)>
679 ///   Fused dimensions : j
680 static std::set<unsigned>
681 collectFusableLoops(ArrayRef<LinalgOp> ops,
682                     const FusableOpDependencesTy &fusableDependences) {
683   assert(!ops.empty());
684   auto getNumOuterParallelLoops = [](LinalgOp linalgOp) {
685     return linalgOp.iterator_types()
686         .getValue()
687         .take_while([](Attribute attr) -> bool {
688           return attr.cast<StringAttr>().getValue() ==
689                  getParallelIteratorTypeName();
690         })
691         .size();
692   };
693 
694   size_t numOuterParallelLoops = getNumOuterParallelLoops(ops.back());
695   for (auto op : ops.drop_back()) {
696     numOuterParallelLoops =
697         std::min(numOuterParallelLoops, getNumOuterParallelLoops(op));
698   }
699 
700   std::set<unsigned> fusableLoops;
701   auto range = llvm::seq<unsigned>(0, numOuterParallelLoops);
702   fusableLoops.insert(range.begin(), range.end());
703 
704   for (auto op : reverse(ops)) {
705     for (auto dependence : fusableDependences.lookup(op)) {
706       LLVM_DEBUG({
707         llvm::dbgs() << "\t fusable :";
708         for (unsigned i : fusableLoops)
709           llvm::dbgs() << " " << i;
710         llvm::dbgs() << "\n";
711       });
712 
713       Optional<AffineMap> consumerLoopToProducerLoop =
714           getConsumerLoopToProducerLoopMap(dependence);
715       if (!consumerLoopToProducerLoop) {
716         op.emitRemark("failed to get map from consumer loop to producer loop");
717         return {};
718       }
719       // todo: This condition is only an implementation limitation. When fusing
720       // the operation, if the accesses in the producer/consumer are transposes
721       // of each other, the loop bounds for the tiled producer can be
722       // manipulated accordingly. This requires some additional bookkeeping in
723       // the implementation of tile+fuse that is deferred to later.
724       if (doesTransposeAccess(*consumerLoopToProducerLoop, fusableLoops)) {
725         op.emitRemark("unhandled fusion when fusion requires permutation");
726         return {};
727       }
728 
729       std::set<unsigned> candidates;
730       for (AffineExpr expr : consumerLoopToProducerLoop->getResults()) {
731         unsigned position = expr.cast<AffineDimExpr>().getPosition();
732         if (fusableLoops.count(position))
733           candidates.insert(position);
734       }
735       LLVM_DEBUG({
736         llvm::dbgs() << "\t candidates :";
737         for (unsigned i : candidates)
738           llvm::dbgs() << " " << i;
739         llvm::dbgs() << "\n";
740       });
741       if (candidates.empty())
742         return {};
743       std::swap(candidates, fusableLoops);
744     }
745   }
746 
747   return fusableLoops;
748 }
749 
750 /// Find all dependences that are fusable.
751 FusableOpDependencesTy mlir::linalg::findAllFusableDependences(
752     ArrayRef<LinalgOp> ops, const LinalgDependenceGraph &dependenceGraph) {
753   FusableOpDependencesTy fusableDependences;
754   DenseMap<Operation *, SmallVector<AffineMap, 1>> fusedProducerIndexingMap;
755   for (LinalgOp op : reverse(ops)) {
756     for (OpOperand *opOperand : op.getInputAndOutputOperands()) {
757       Optional<LinalgDependenceGraph::LinalgDependenceGraphElem>
758           fusableDependence = findFusableProducer(*opOperand, dependenceGraph);
759       if (!fusableDependence)
760         continue;
761       LinalgOp producerOp =
762           dyn_cast<LinalgOp>(fusableDependence->getDependentOp());
763       if (!producerOp)
764         continue;
765       // Do not fuse dependences that are to operations not in the same basic
766       // block. This avoid moving fused operations across loops that might
767       // themselves carry dependency making the fusion illegal.
768       if (producerOp->getBlock() != op->getBlock())
769         continue;
770 
771       // Make sure that the indexing map of the view used for fusion in the
772       // producer is a projected permutation.
773       Optional<AffineMap> producerMap =
774           fusableDependence->getDependentOpViewIndexingMap();
775       Optional<AffineMap> consumerMap =
776           fusableDependence->getIndexingOpViewIndexingMap();
777       assert(
778           consumerMap &&
779           "unable to find indexing map of operand/result of indexing OpView");
780       fusedProducerIndexingMap[producerOp.getOperation()].push_back(
781           *consumerMap);
782       if (!producerMap || !producerMap->isProjectedPermutation() ||
783           !consumerMap->isProjectedPermutation())
784         continue;
785 
786       fusableDependences[producerOp.getOperation()].push_back(
787           *fusableDependence);
788     }
789   }
790   // TODO: Currently fusion would not be legal if the fusable dependence is to
791   // the same producer but different indexing map in the consumer. Fix this, but
792   // in the meanwhile disallow such a fusion.
793   for (auto useIndexingMapsList : fusedProducerIndexingMap) {
794     AffineMap map1 = useIndexingMapsList.second.front();
795     for (AffineMap map2 :
796          ArrayRef<AffineMap>(useIndexingMapsList.second).drop_front()) {
797       if (map1 != map2) {
798         fusableDependences.erase(useIndexingMapsList.first);
799         break;
800       }
801     }
802   }
803   return fusableDependences;
804 }
805 
806 /// Tile the fused loops in the root operation, by setting the tile sizes for
807 /// all other loops to zero (those will be tiled later).
808 static Optional<TiledLinalgOp>
809 tileRootOperation(OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizeVector,
810                   const LinalgTilingOptions &options,
811                   const std::set<unsigned> &fusedLoops) {
812   SmallVector<Value, 4> tileSizes(tileSizeVector.begin(), tileSizeVector.end());
813   auto zero = b.create<ConstantIndexOp>(op.getLoc(), 0);
814   for (unsigned i = 0, e = tileSizes.size(); i != e; ++i)
815     if (!fusedLoops.count(i))
816       tileSizes[i] = zero;
817   LinalgTilingOptions tileFusedLoopsOptions = options;
818   tileFusedLoopsOptions.setTileSizes(tileSizes);
819   return tileLinalgOp(b, op, tileFusedLoopsOptions);
820 }
821 
822 /// Fuse the operations in `fusionCandidates` with `tiledOp`. Latter is expected
823 /// to be a tiled operation such that it is valid to fuse all operations in
824 /// `fusionCandidates`, i.e. move the operation within the inter-tile loops of
825 /// `tiledOp`.
826 static SmallVector<LinalgOp, 1>
827 fuseOperations(OpBuilder &b, LinalgOp rootOp, TiledLinalgOp tiledLinalgOp,
828                ArrayRef<LinalgOp> fusionCandidates,
829                const FusableOpDependencesTy &fusableDependences,
830                const std::set<unsigned> &fusedLoops) {
831   LinalgOp tiledOp = tiledLinalgOp.op;
832   OpBuilder::InsertionGuard guard(b);
833   b.setInsertionPoint(tiledOp);
834 
835   DenseMap<unsigned, Range> fusedLoopsAndRanges;
836   for (unsigned loop : fusedLoops) {
837     ShapeDimension shapeDim = getShapeDefiningLoopRange(tiledOp, loop, true);
838     fusedLoopsAndRanges[loop] = getRangeFromOperandShape(
839         b, tiledOp.getLoc(), shapeDim.shape, shapeDim.dimension);
840   }
841 
842   SmallVector<LinalgOp, 1> fusedOps(fusionCandidates.size());
843   DenseMap<Operation *, LinalgOp> origOpToFusedOp;
844   origOpToFusedOp[rootOp.getOperation()] = tiledOp;
845   for (auto candidate : enumerate(llvm::reverse(fusionCandidates))) {
846     LinalgOp origOp = candidate.value();
847     LinalgOp fusedOp = fuse(b, origOp, fusedLoopsAndRanges);
848     origOpToFusedOp[origOp.getOperation()] = fusedOp;
849     fusedOps[fusionCandidates.size() - candidate.index() - 1] = fusedOp;
850 
851     // Prepare the builder for the next insertion point.
852     auto guard = llvm::make_scope_exit([&]() { b.setInsertionPoint(fusedOp); });
853     if (!origOp.hasTensorSemantics())
854       continue;
855 
856     // If the producer consumer operations are linalg operations on tensors, the
857     // dependence is due to value produced (as a return tensor) by the producer
858     // and used in the consumer. The returned value of the fused op needs to be
859     // made the operand of the tiled/fused consumer operation. By construction
860     // the value returned by the producer is the value used by the consumer.
861     for (auto &dependence : fusableDependences.lookup(origOp.getOperation())) {
862       if (dependence.dependenceType !=
863           LinalgDependenceGraph::DependenceType::RAW)
864         continue;
865 
866       unsigned resultIndex =
867           dependence.getDependentOpViewResultNum().getValue();
868       LinalgOp consumer = origOpToFusedOp.lookup(dependence.getIndexingOp());
869       if (!consumer)
870         continue;
871 
872       Value replacementValue = fusedOp.getOperation()->getResult(resultIndex);
873       consumer.getOperation()->setOperand(
874           dependence.getIndexingOpViewOperandNum().getValue(),
875           replacementValue);
876     }
877 
878     // At this point, all Linalg uses of the tensors produced by `origOp` have
879     // been replaced. However, there may still be "output tensor"-like uses
880     // coming from WAW dependencies.
881     // All these uses are iter_args of the outermost loop (TODO: add a check).
882     // Such iter_args uses serve 2 purposes:
883     //  1. give a shape to the output
884     //  2. encode destructive updates that may be inplaceable by bufferization.
885     // To keep the second type of information while letting the unfused op die
886     // unused, we need to forward the producer output operand.
887     if (auto forOp = dyn_cast<scf::ForOp>(tiledLinalgOp.loops.front())) {
888       for (auto &operand : forOp.getIterOpOperands()) {
889         if (auto opResult = operand.get().dyn_cast<OpResult>()) {
890           if (opResult.getOwner() == origOp) {
891             Value output =
892                 origOp.getOutputOperand(opResult.getResultNumber())->get();
893             assert(output.getType().isa<RankedTensorType>());
894             operand.set(output);
895           }
896         }
897       }
898     }
899   }
900   return fusedOps;
901 }
902 
903 static Optional<TiledAndFusedLinalgOps>
904 tileAndFuseLinalgOpsImpl(OpBuilder &b, ArrayRef<LinalgOp> ops,
905                          const LinalgDependenceGraph &dependenceGraph,
906                          const LinalgTilingOptions &tilingOptions) {
907   if (ops.size() < 2)
908     return llvm::None;
909   LinalgOp rootOp = ops.back();
910   if (!llvm::all_of(
911           ops,
912           [](LinalgOp linalgOp) { return linalgOp.hasBufferSemantics(); }) &&
913       !llvm::all_of(ops, [](LinalgOp linalgOp) {
914         return linalgOp.hasTensorSemantics();
915       })) {
916     rootOp.emitError(
917         "unable to fuse operations that have tensor semantics with operations "
918         "that have buffer semantics and viceversa.");
919     return llvm::None;
920   }
921   // TODO: Support interchange with tile + fuse. This might actually help do
922   // better fusion.
923   if (!tilingOptions.interchangeVector.empty()) {
924     rootOp.emitRemark("unable to handle tile and fuse with interchange");
925     return llvm::None;
926   }
927 
928   OpBuilder::InsertionGuard guard(b);
929   b.setInsertionPoint(rootOp);
930 
931   // Find all the producers.
932   LLVM_DEBUG(llvm::dbgs() << "findAllFusableDependences\n");
933   FusableOpDependencesTy fusableDependences =
934       findAllFusableDependences(ops, dependenceGraph);
935   if (fusableDependences.empty()) {
936     LLVM_DEBUG(llvm::dbgs() << "no fusable dependencies found\n");
937     return llvm::None;
938   }
939 
940   TiledAndFusedLinalgOps ret;
941   // Find the loops that can be tiled and fused.
942   LLVM_DEBUG(llvm::dbgs() << "collectFusableLoops\n");
943   ret.fusedLoopDims = collectFusableLoops(ops, fusableDependences);
944 
945   // If there are no fusable dependences or there are no tile+fusable loops,
946   // just return.
947   if (ret.fusedLoopDims.empty()) {
948     LLVM_DEBUG(llvm::dbgs() << "no fusable loops found\n");
949     return llvm::None;
950   }
951 
952   // Tile the fused loops in the last operation in the list.
953   SmallVector<Value, 4> tileSizeVector =
954       tilingOptions.tileSizeComputationFunction(b, rootOp);
955   Optional<TiledLinalgOp> tiledRootOp = tileRootOperation(
956       b, rootOp, tileSizeVector, tilingOptions, ret.fusedLoopDims);
957   if (!tiledRootOp) {
958     rootOp.emitRemark("failed to tile the fused loops");
959     return llvm::None;
960   }
961   ret.op = tiledRootOp->op;
962   ret.fusedLoops.assign(tiledRootOp->loops.begin(), tiledRootOp->loops.end());
963 
964   // Fuse the other operations into the fused inter-tile loops produced above.
965   ret.fusedProducers = fuseOperations(b, rootOp, *tiledRootOp, ops.drop_back(),
966                                       fusableDependences, ret.fusedLoopDims);
967 
968   return ret;
969 }
970 
971 Optional<TiledAndFusedLinalgOps>
972 mlir::linalg::tileAndFuseLinalgOps(OpBuilder &b, ArrayRef<LinalgOp> ops,
973                                    const LinalgDependenceGraph &dependenceGraph,
974                                    const LinalgTilingOptions &tilingOptions) {
975   switch (tilingOptions.loopType) {
976   case LinalgTilingLoopType::Loops:
977   case LinalgTilingLoopType::ParallelLoops:
978   case LinalgTilingLoopType::TiledLoops:
979     return tileAndFuseLinalgOpsImpl(b, ops, dependenceGraph, tilingOptions);
980   default:;
981   }
982   return llvm::None;
983 }
984