xref: /llvm-project/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp (revision 04235d07ad5b44f639f329840b5ffec48bf96b44)
1 //===- Fusion.cpp - Implementation of linalg Fusion -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Fusion pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Dialect/Affine/IR/AffineOps.h"
15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
16 #include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
17 #include "mlir/Dialect/Linalg/IR/Linalg.h"
18 #include "mlir/Dialect/Linalg/Passes.h"
19 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
20 #include "mlir/Dialect/Linalg/Utils/Utils.h"
21 #include "mlir/Dialect/MemRef/IR/MemRef.h"
22 #include "mlir/Dialect/Tensor/IR/Tensor.h"
23 #include "mlir/IR/AffineExpr.h"
24 #include "mlir/IR/AffineMap.h"
25 #include "mlir/IR/Dominance.h"
26 #include "mlir/Support/LLVM.h"
27 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
28 #include "mlir/Transforms/RegionUtils.h"
29 #include "llvm/ADT/MapVector.h"
30 #include "llvm/ADT/ScopeExit.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 
34 #include <set>
35 
36 #define DEBUG_TYPE "linalg-fusion"
37 
38 using namespace mlir;
39 using namespace mlir::linalg;
40 
41 /// Implements a simple high-level fusion pass on linalg structured operations.
42 ///
43 /// In each block, linalg ops are processed in reverse textual order.
44 /// Given a linalg op `O`, fusion occurs by:
45 ///   1. inspecting the linalg ops that write into the views read by `O`. There
46 ///      are 2 cases:
47 ///      a) buffer case: use the SSA value of the views and a simple alias
48 ///         analysis on subview ops to determine producer-consumer dependences;
49 ///      b) tensor case: use SSA use-def chains on extract_slice ops;
50 ///   2. greedily fuse the linalg ops that produce the subview/extract_slice.
51 ///   3. inspect the fused ops and determine whether they have other remaining
52 ///      LinalgOp uses. If not, then erase the original producing linalg op.
53 ///
54 /// More advanced use cases, analyses as well as profitability heuristics are
55 /// left for future work.
56 
57 struct ShapeDimension {
58   Value shape;
59   unsigned dimension;
60 };
61 
62 // Given an `op`, returns the first (`shape`, `dimension`) pair that identifies
63 // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps
64 // guarantees at least one such dimension is found. If multiple candidates exist
65 // they must agree by construction (i.e. have the same size) and we just return
66 // the first one.
67 static ShapeDimension
68 getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth,
69                           bool fromSubViewOpOnly = false) {
70   // Iterate over the inputs and outputs in order.
71   // Extract the subranges from the linearized ranges.
72   for (OpOperand *opOperand : op.getInputAndOutputOperands()) {
73     // The method `getRangeFromOperandShape` requires using SubViewOp or
74     // ExtractSliceOps. If the value isn't defined from there continue.
75     // todo: The method should be adapted to get the values from
76     // `ViewInterface`. The interface needs a `getOrCreateRanges` method which
77     // currently returns a `linalg.range`. The fix here is to move this op to
78     // `std` dialect and add the method to `ViewInterface`.
79     if (fromSubViewOpOnly &&
80         !isa_and_nonnull<memref::SubViewOp, tensor::ExtractSliceOp>(
81             opOperand->get().getDefiningOp()))
82       continue;
83 
84     AffineMap map = op.getTiedIndexingMap(opOperand);
85     LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange I/O idx: "
86                             << opOperand->getOperandNumber() << "\n");
87     LLVM_DEBUG(llvm::dbgs()
88                << "getShapeDefiningLoopRange map: " << map << "\n");
89     SmallVector<Value, 8> shapeRanges(map.getNumResults(), nullptr);
90     for (const auto &en : llvm::enumerate(map.getResults())) {
91       auto dimExpr = en.value().dyn_cast<AffineDimExpr>();
92       if (!dimExpr)
93         continue;
94       if (loopDepth == en.value().cast<AffineDimExpr>().getPosition()) {
95         LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: "
96                                 << loopDepth << "\n");
97         LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange shape: "
98                                 << opOperand->get() << "\n");
99         return ShapeDimension{opOperand->get(),
100                               static_cast<unsigned>(en.index())};
101       }
102     }
103   }
104   llvm_unreachable("Expect to be able to extract a shape defining loop range");
105 }
106 
107 static SmallVector<Value> getTiledOperands(LinalgOp producer) {
108   return producer.getInputAndOutputOperands();
109 }
110 
111 /// Fuses the producer by cloning the `producer`. The `fusedLoopsAndRanges`
112 /// provides the loop range information for the fused loops. The rest are
113 /// obtained from the producer itself, since they are not tiled + fused.
114 static LinalgOp fuse(OpBuilder &b, LinalgOp producer,
115                      const DenseMap<unsigned, Range> &fusedLoopsAndRanges) {
116   SmallVector<Value, 8> ivs, tileSizes, sizeBounds;
117   SmallVector<Range, 8> loopRanges;
118   Location loc = producer.getLoc();
119   auto zero = b.create<arith::ConstantIndexOp>(loc, 0);
120   auto one = b.create<arith::ConstantIndexOp>(loc, 1);
121 
122   for (unsigned i = 0, e = producer.getNumLoops(); i < e; ++i) {
123     auto shapeDim = getShapeDefiningLoopRange(producer, i);
124     Value dim = createOrFoldDimOp(b, loc, shapeDim.shape, shapeDim.dimension);
125     sizeBounds.push_back(dim);
126     auto it = fusedLoopsAndRanges.find(i);
127     if (it != fusedLoopsAndRanges.end()) {
128       ivs.push_back(it->second.offset);
129       tileSizes.push_back(it->second.size);
130       loopRanges.push_back(it->second);
131       LLVM_DEBUG(llvm::dbgs() << "tiled loop#" << i << " with LoopRange "
132                               << loopRanges.back() << "\n");
133     } else {
134       tileSizes.push_back(zero);
135       loopRanges.push_back(Range{zero, dim, one});
136       LLVM_DEBUG(llvm::dbgs() << "full loop#" << i << " with LoopRange "
137                               << loopRanges.back() << "\n");
138     }
139   }
140 
141   SmallVector<Value, 8> clonedShapes;
142   clonedShapes.reserve(producer.getNumInputsAndOutputs());
143 
144   // Compute subranges for all tensor input/output operands.
145   clonedShapes.append(makeTiledShapes(
146       b, loc, producer, getTiledOperands(producer), ivs, tileSizes, sizeBounds,
147       /**omitPartialTileCheck=*/false));
148 
149   // Iterate over the results in order.
150   // Extract the subtensor type from the linearized range.
151   // Since we do not enforce any canonicalizations on the fly, this is always
152   // fully dynamic at construction time.
153   SmallVector<Type, 4> resultTypes;
154   resultTypes.reserve(producer->getNumResults());
155   for (RankedTensorType t : producer.getOutputTensorTypes()) {
156     unsigned rank = t.getRank();
157     SmallVector<int64_t, 4> staticOffsetsVector(
158         rank, ShapedType::kDynamicStrideOrOffset);
159     SmallVector<int64_t, 4> staticSizesVector(rank, ShapedType::kDynamicSize);
160     SmallVector<int64_t, 4> staticStridesVector(
161         rank, ShapedType::kDynamicStrideOrOffset);
162     resultTypes.push_back(tensor::ExtractSliceOp::inferResultType(
163         t.cast<RankedTensorType>(), staticOffsetsVector, staticSizesVector,
164         staticStridesVector));
165   }
166 
167   Operation *clonedOp = producer.clone(b, loc, resultTypes, clonedShapes);
168 
169   // Shift all IndexOp results by the tile offset.
170   SmallVector<Value> allIvs;
171   llvm::transform(loopRanges, std::back_inserter(allIvs),
172                   [](Range range) { return range.offset; });
173   addTileLoopIvsToIndexOpResults(b, clonedOp, allIvs);
174 
175   return clonedOp;
176 }
177 
178 /// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is
179 /// expected to be defined by a subview op or an extract_slice op.
180 static Range getRangeFromOperandShape(OpBuilder &b, Location loc,
181                                       Value shapedOperand, unsigned dim) {
182   Operation *shapeProducingOp = shapedOperand.getDefiningOp();
183   if (auto subViewOp = dyn_cast<memref::SubViewOp>(shapeProducingOp))
184     return subViewOp.getOrCreateRanges(b, loc)[dim];
185   if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(shapeProducingOp))
186     return sliceOp.getOrCreateRanges(b, loc)[dim];
187   llvm_unreachable("SubviewOp or ExtractSliceOp expected");
188 }
189 
190 /// Fuses the producer into the loop immediately enclosing the consumer.
191 /// This is achieved by "recomputing" the producer at the time it
192 /// is needed just before the consumer.
193 static LinalgOp fuse(OpBuilder &b, LinalgOp producerOp, AffineMap producerMap,
194                      OpOperand &consumerOpOperand) {
195   LLVM_DEBUG(llvm::dbgs() << "Producer map: " << producerMap << "\n");
196   DenseMap<unsigned, Range> fusedLoopsAndRanges;
197   Value shapedOperand = consumerOpOperand.get();
198   for (const auto &en : llvm::enumerate(producerMap.getResults())) {
199     unsigned posInProducerLoop = en.value().cast<AffineDimExpr>().getPosition();
200     fusedLoopsAndRanges[posInProducerLoop] = getRangeFromOperandShape(
201         b, consumerOpOperand.getOwner()->getLoc(), shapedOperand, en.index());
202   }
203   return fuse(b, producerOp, fusedLoopsAndRanges);
204 }
205 
206 // Encode structural fusion safety preconditions.
207 // Some of these will be lifted in the future with better analysis.
208 static bool isStructurallyFusableProducer(LinalgOp producer, Value consumedView,
209                                           LinalgOp consumer) {
210   assert(producer.hasBufferSemantics() &&
211          "expected linalg op with buffer semantics");
212   assert(consumer.hasBufferSemantics() &&
213          "expected linalg op with buffer semantics");
214   if (producer.getNumOutputs() != 1) {
215     LLVM_DEBUG(llvm::dbgs() << "\nNot structurally fusable (multi-output)");
216     return false;
217   }
218   // Only fuse when the producer block dominates.
219   DominanceInfo dom(producer.getOperation());
220   if (!dom.dominates(producer->getBlock(), consumer->getBlock())) {
221     LLVM_DEBUG(
222         llvm::dbgs()
223         << "\nNot structurally fusable (producer block does not dominate)");
224     return false;
225   }
226   return true;
227 }
228 
229 bool mlir::linalg::isProducerLastWriteOfView(const LinalgDependenceGraph &graph,
230                                              LinalgOp consumer,
231                                              Value consumedView,
232                                              LinalgOp producer) {
233   assert(producer.hasBufferSemantics() &&
234          "expected linalg op with buffer semantics");
235   assert(consumer.hasBufferSemantics() &&
236          "expected linalg op with buffer semantics");
237   // Make some simple structural checks that alleviate the need for more
238   // complex analyses.
239   if (!isStructurallyFusableProducer(producer, consumedView, consumer)) {
240     LLVM_DEBUG(llvm::dbgs() << "\n***Not static last write due to structure:\t"
241                             << *producer.getOperation());
242     return false;
243   }
244   // Check for any interleaved write to consumedView.
245   if (!graph.findCoveringWrites(producer, consumer, consumedView).empty()) {
246     LLVM_DEBUG(llvm::dbgs() << "\n***Not fusable due to interleaved write:\t"
247                             << *producer.getOperation());
248     return false;
249   }
250   return true;
251 }
252 
253 bool mlir::linalg::isFusableInto(const LinalgDependenceGraph &graph,
254                                  LinalgOp consumer, Value consumedView,
255                                  LinalgOp producer) {
256   assert(producer.hasBufferSemantics() &&
257          "expected linalg op with buffer semantics");
258   assert(consumer.hasBufferSemantics() &&
259          "expected linalg op with buffer semantics");
260   if (!isProducerLastWriteOfView(graph, consumer, consumedView, producer))
261     return false;
262   // Check for any fusion-preventing dependence to any shape read/written that
263   // would violate dependences.
264   if (!graph.findCoveringDependences(producer, consumer).empty()) {
265     LLVM_DEBUG(llvm::dbgs()
266                << "\n***Not fusable due to an interleaved dependence:\t"
267                << *producer.getOperation());
268     return false;
269   }
270   return true;
271 }
272 
273 /// For `consumer` with buffer semantics, find the Linalg operation on buffers
274 /// that is the last writer of `consumerOpOperand`. For now the fusable
275 /// dependence is returned as an instance of the `dependenceGraph`.
276 static FailureOr<LinalgDependenceGraph::LinalgDependenceGraphElem>
277 findFusableProducer(OpOperand &consumerOpOperand,
278                     const LinalgDependenceGraph &dependenceGraph) {
279   LLVM_DEBUG(llvm::dbgs() << "findFusableProducer for: "
280                           << consumerOpOperand.get() << " @"
281                           << consumerOpOperand.getOperandNumber() << " in "
282                           << *consumerOpOperand.getOwner() << "\n");
283   LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner());
284   if (!consumerOp)
285     return failure();
286 
287   // Only consider RAW and WAW atm.
288   for (auto depType : {
289            LinalgDependenceGraph::DependenceType::RAW,
290            LinalgDependenceGraph::DependenceType::WAW,
291        }) {
292     LLVM_DEBUG(llvm::dbgs()
293                << "Dependencies into: " << *consumerOp.getOperation() << "\n");
294     for (auto dependence : llvm::make_filter_range(
295              dependenceGraph.getDependencesInto(consumerOp, depType),
296              [&](LinalgDependenceGraph::LinalgDependenceGraphElem elem) {
297                LLVM_DEBUG(llvm::dbgs() << "Inspect dependence btw: "
298                                        << elem.getIndexingValue() << " and "
299                                        << elem.getDependentValue() << "\n");
300                Value v = elem.getIndexingValue();
301                Optional<unsigned> operandNum =
302                    elem.getIndexingOpViewOperandNum();
303                return isa<LinalgOp>(elem.getDependentOp()) &&
304                       v == consumerOpOperand.get() && operandNum &&
305                       *operandNum == consumerOpOperand.getOperandNumber();
306              })) {
307       // Consumer consumes this view, `isStructurallyFusableProducer` also
308       // checks whether it is a strict subview of the producer view.
309       auto producer = cast<LinalgOp>(dependence.getDependentOp());
310       LLVM_DEBUG(llvm::dbgs()
311                  << "\n"
312                  << LinalgDependenceGraph::getDependenceTypeStr(depType)
313                  << "producer: " << *dependence.getDependentOp()
314                  << " view: " << dependence.getDependentValue() << "\n");
315 
316       // If the producer and consumer have tensor semantics, the only dependence
317       // between them is through a RAW dependence and they are fusable by
318       // construction. For buffer semantics need additional checks.
319       if (producer.hasBufferSemantics() && consumerOp.hasBufferSemantics() &&
320           isFusableInto(dependenceGraph, consumerOp, consumerOpOperand.get(),
321                         producer))
322         return dependence;
323       if (producer.hasTensorSemantics() && consumerOp.hasTensorSemantics()) {
324         assert(dependence.dependenceType ==
325                LinalgDependenceGraph::DependenceType::RAW);
326         return dependence;
327       }
328     }
329   }
330   return failure();
331 }
332 
333 FailureOr<FusionInfo>
334 mlir::linalg::fuseProducerOfBuffer(OpBuilder &b, OpOperand &consumerOpOperand,
335                                    const LinalgDependenceGraph &graph) {
336   Optional<LinalgDependenceGraph::LinalgDependenceGraphElem> fusableDependence =
337       findFusableProducer(consumerOpOperand, graph);
338   if (!fusableDependence)
339     return failure();
340 
341   LinalgOp producerOp = dyn_cast<LinalgOp>(fusableDependence->getDependentOp());
342   if (!producerOp)
343     return failure();
344 
345   // If producer is already in the same block as consumer, we are done.
346   if (consumerOpOperand.get().getParentBlock() ==
347       fusableDependence->getDependentValue().getParentBlock())
348     return failure();
349 
350   Optional<AffineMap> producerMap =
351       fusableDependence->getDependentOpViewIndexingMap();
352   if (!producerMap)
353     return failure();
354 
355   // Must be a subview or an extract_slice to guarantee there are loops we can
356   // fuse into.
357   auto subView = consumerOpOperand.get().getDefiningOp<memref::SubViewOp>();
358   if (!subView) {
359     LLVM_DEBUG(llvm::dbgs() << "\nNot fusable (not a subview)");
360     return failure();
361   }
362 
363   // Fuse `producer` just before `consumer`.
364   OpBuilder::InsertionGuard g(b);
365   b.setInsertionPoint(consumerOpOperand.getOwner());
366   LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: "
367                           << *consumerOpOperand.getOwner() << "\n");
368 
369   auto fusedProducer = fuse(b, producerOp, *producerMap, consumerOpOperand);
370   return FusionInfo{producerOp, fusedProducer};
371 }
372 
373 /// Walk back use-def chain through scf::For yields.
374 /// Sets `producer` and `outputIndex` if it finds a producer LinalgOp
375 
376 // TODO(ravishankarm, ntv): This can be moved into the dependence graphs
377 // dependence tracking since the dependence tracking is similar to what is done
378 // w.r.t to buffers.
379 static void getProducerOfTensor(Value tensor, OpResult &opResult) {
380   if (!tensor.getType().isa<RankedTensorType>())
381     return;
382 
383   while (true) {
384     LLVM_DEBUG(llvm::dbgs() << "\ngetProducerOfTensor: " << tensor);
385     if (auto linalgOp = tensor.getDefiningOp<LinalgOp>()) {
386       opResult = tensor.cast<OpResult>();
387       return;
388     }
389     if (auto sliceOp = tensor.getDefiningOp<tensor::ExtractSliceOp>()) {
390       tensor = sliceOp.getSource();
391       continue;
392     }
393     if (auto blockArg = tensor.dyn_cast<BlockArgument>()) {
394       if (auto forOp = blockArg.getDefiningOp<scf::ForOp>()) {
395         tensor = *(forOp.getIterOperands().begin() + blockArg.getArgNumber());
396         continue;
397       }
398     }
399     return;
400   }
401 }
402 
403 FailureOr<FusionInfo>
404 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpOperand &consumerOpOperand) {
405   Value inputTensor = consumerOpOperand.get();
406   OpResult producerOpResult;
407   getProducerOfTensor(inputTensor, producerOpResult);
408   if (!producerOpResult) {
409     LLVM_DEBUG(llvm::dbgs() << "\nUnable to find producer");
410     return failure();
411   }
412   return fuseProducerOfTensor(b, producerOpResult, consumerOpOperand);
413 }
414 
415 FailureOr<FusionInfo>
416 mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpResult producerOpResult,
417                                    OpOperand &consumerOpOperand) {
418   auto producerOp = dyn_cast<LinalgOp>(producerOpResult.getOwner());
419   if (!producerOp)
420     return failure();
421 
422   LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner());
423   if (!consumerOp)
424     return failure();
425 
426   Value inputTensor = consumerOpOperand.get();
427 
428   // Must be an extract_slice op to guarantee there are loops we can fuse into.
429   auto sliceOp = inputTensor.getDefiningOp<tensor::ExtractSliceOp>();
430   if (!sliceOp) {
431     LLVM_DEBUG(llvm::dbgs()
432                << "\nNot fusable, not an extract_slice op: " << inputTensor);
433     return failure();
434   }
435 
436   // If producer is already in the same block as consumer, we are done.
437   if (consumerOpOperand.get().getParentBlock() ==
438       producerOpResult.getParentBlock())
439     return failure();
440 
441   // Insert fused `producer` just before `consumer`.
442   OpBuilder::InsertionGuard g(b);
443   b.setInsertionPoint(consumerOp);
444   LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumerOp << "\n");
445   OpOperand *opOperand =
446       producerOp.getOutputOperand(producerOpResult.getResultNumber());
447   LinalgOp fusedProducer =
448       fuse(b, producerOp, producerOp.getTiedIndexingMap(opOperand),
449            consumerOpOperand);
450 
451   // Replace use.
452   // Canonicalizations are not guaranteed to have happened before constructing
453   // `fusedProducer`. In the tensor case this can result in temporary type
454   // mismatches. Insert a `tensor.cast` op to propagate the transformation
455   // invariant that types are compatible.
456   Value def = fusedProducer->getResult(producerOpResult.getResultNumber());
457   Type consumerType = consumerOpOperand.get().getType();
458   if (consumerType != def.getType())
459     def = b.create<tensor::CastOp>(fusedProducer.getLoc(), consumerType, def);
460   consumerOpOperand.set(def);
461   return FusionInfo{cast<LinalgOp>(producerOpResult.getOwner()), fusedProducer};
462 }
463 
464 /// Prune all dimensions that are of reduction iterator type from `map`.
465 static AffineMap pruneReductionDimsFromMap(ArrayRef<Attribute> iteratorTypes,
466                                            AffineMap map) {
467   llvm::SmallBitVector projectedDims(iteratorTypes.size());
468   for (const auto &attr : llvm::enumerate(iteratorTypes)) {
469     if (!isParallelIterator(attr.value()))
470       projectedDims.set(attr.index());
471   }
472   return getProjectedMap(map, projectedDims);
473 }
474 
475 /// Returns the mapping from iterations in the consumer that write to the same
476 /// location as the iterations in the producer. To do so use
477 /// - indexing map of the fused view in the consumer : consumerIndexMap
478 /// - indexing map of the fused view in the producer : producerIndexMap
479 ///     consumerLoopToProducerLoop =
480 ///       inverse(producerIndexMap).compose(consumerIndexMap)
481 static FailureOr<AffineMap> getConsumerLoopToProducerLoopMap(
482     LinalgDependenceGraph::LinalgDependenceGraphElem dependence) {
483   auto producer = dyn_cast<LinalgOp>(dependence.getDependentOp());
484   if (!producer)
485     return failure();
486 
487   Optional<AffineMap> producerIndexingMap =
488       dependence.getDependentOpViewIndexingMap();
489   Optional<AffineMap> consumerIndexingMap =
490       dependence.getIndexingOpViewIndexingMap();
491   if (!producerIndexingMap || !consumerIndexingMap)
492     return failure();
493 
494   AffineMap prunedProducerIndexingMap = pruneReductionDimsFromMap(
495       producer.iterator_types().getValue(), *producerIndexingMap);
496   if (!prunedProducerIndexingMap.isPermutation())
497     return failure();
498 
499   if (consumerIndexingMap->getNumResults() !=
500       prunedProducerIndexingMap.getNumResults())
501     return failure();
502 
503   LLVM_DEBUG({
504     llvm::dbgs() << "\t producerMap : ";
505     producerIndexingMap->print(llvm::dbgs());
506     llvm::dbgs() << "  pruned : ";
507     prunedProducerIndexingMap.print(llvm::dbgs());
508     llvm::dbgs() << "\n";
509     llvm::dbgs() << "\t consumerMap : ";
510     consumerIndexingMap->print(llvm::dbgs());
511     llvm::dbgs() << "\n";
512   });
513 
514   AffineMap invProducerIndexMap = inversePermutation(prunedProducerIndexingMap);
515   if (!invProducerIndexMap)
516     return failure();
517 
518   return invProducerIndexMap.compose(*consumerIndexingMap);
519 }
520 
521 /// Given a projected permutation `map`, returns true if the map changes the
522 /// order in which the fused loop dimension appear.
523 static bool doesTransposeAccess(AffineMap map,
524                                 const std::set<unsigned> &fusableLoops) {
525   Optional<unsigned> lastFusableLoop;
526   for (unsigned pos : llvm::map_range(map.getResults(), [](AffineExpr expr) {
527          return expr.cast<AffineDimExpr>().getPosition();
528        })) {
529     if (!fusableLoops.count(pos))
530       continue;
531     if (!lastFusableLoop) {
532       lastFusableLoop = pos;
533       continue;
534     }
535     if (pos <= *lastFusableLoop)
536       return true;
537     lastFusableLoop = pos;
538   }
539   return false;
540 }
541 
542 /// Returns the positions of the loop in `op` that can be tiled based on the
543 /// operations that are to be fused with it. For example, in a
544 ///
545 ///   linalg.matmul ins(%a, %b : ...) outs(%c : ...)
546 ///
547 /// if the producer of %a needs to be fused with this op, only the `i` loop of
548 /// the matmul can be tiled while fusing. If producer of %a, and %b are to be
549 /// fused, then no loops can be tiled while fusing. The conditions used are:
550 /// 1. Only parallel loops can be used for tile + fuse. Find the number of
551 ///    common outer parallel loops between the op and its producers being fused.
552 /// 2. Of the parallel loops only some can be fused. Only those loops can be
553 ///    fused such where the fusable loops iteration space only touches one tile
554 ///    of the fused operation. This is because the producer (which is writing
555 ///    the fused subview) has update semantics.
556 ///
557 /// Since an inverse computation is needed, we need to consider the projection
558 /// of the producerIndexMap w.r.t the parallel loops.  The actual fusable loops
559 /// are the dimensions of the consumerLoopToProducerLoop map that correspond to
560 /// parallel loops and appear in the result of the map
561 ///
562 /// Example 1:
563 ///   linalg.fill(%cst, %c)
564 ///   linalg.matmul ins(%a, %b) outs(%c)
565 ///     Number of parallel loops : 2
566 ///     producerIndexMap = affine_map<(i, j) ->(i , j)>
567 ///     consumerIndexMap = affine_map<(i, j, k) -> (i, j)>
568 ///     consumerLoopToProducerLoop = affine_map<(i, j, k) -> (i, j)>
569 ///     Fused dimensions : i, j
570 ///
571 /// Example 2:
572 ///   linalg.matmul ins(%a, %b) outs(%c)
573 ///   linalg.generic {indexing_maps = [affine_map<(i, j) -> (j, i)>, ...
574 ///                   iterator_types = ["parallel", "parallel"]}
575 ///     ins(%c) ...
576 ///
577 ///     Number of parallel loops = 2:
578 ///     producerIndexMap (projected to parallel loops) =
579 ///       affine_map<(i, j) -> (i, j)>
580 ///     consumerLoopToProducerLoop2 = affine_map<(i, j) -> (j, i)>
581 ///     Fused dimensions : i, j
582 ///
583 /// Example 3:
584 ///   memref.copy(%s, %b)
585 ///   linalg.matmul ins(%a, %b) outs(%c)
586 ///
587 ///   Number of parallel loops = 2
588 ///   produceIndexMap : affine_map<(i, j) -> (i, j)>
589 ///   consumerLoopToProduceLoops = affine_map<(i, j, k) -> (k, j)>
590 ///     submap with only parallel loops = affine_map<(i, j) -> (j)>
591 ///   Fused dimensions : j
592 static std::set<unsigned>
593 collectFusableLoops(ArrayRef<LinalgOp> ops,
594                     const FusableOpDependencesTy &fusableDependences) {
595   assert(!ops.empty());
596   auto getNumOuterParallelLoops = [](LinalgOp linalgOp) {
597     return linalgOp.iterator_types()
598         .getValue()
599         .take_while([](Attribute attr) -> bool {
600           return attr.cast<StringAttr>().getValue() ==
601                  getParallelIteratorTypeName();
602         })
603         .size();
604   };
605 
606   size_t numOuterParallelLoops = getNumOuterParallelLoops(ops.back());
607   for (auto op : ops.drop_back()) {
608     numOuterParallelLoops =
609         std::min(numOuterParallelLoops, getNumOuterParallelLoops(op));
610   }
611 
612   std::set<unsigned> fusableLoops;
613   auto range = llvm::seq<unsigned>(0, numOuterParallelLoops);
614   fusableLoops.insert(range.begin(), range.end());
615 
616   for (auto op : reverse(ops)) {
617     for (auto dependence : fusableDependences.lookup(op)) {
618       LLVM_DEBUG({
619         llvm::dbgs() << "\t fusable :";
620         for (unsigned i : fusableLoops)
621           llvm::dbgs() << " " << i;
622         llvm::dbgs() << "\n";
623       });
624 
625       Optional<AffineMap> consumerLoopToProducerLoop =
626           getConsumerLoopToProducerLoopMap(dependence);
627       if (!consumerLoopToProducerLoop) {
628         op.emitRemark("failed to get map from consumer loop to producer loop");
629         return {};
630       }
631       // todo: This condition is only an implementation limitation. When fusing
632       // the operation, if the accesses in the producer/consumer are transposes
633       // of each other, the loop bounds for the tiled producer can be
634       // manipulated accordingly. This requires some additional bookkeeping in
635       // the implementation of tile+fuse that is deferred to later.
636       if (doesTransposeAccess(*consumerLoopToProducerLoop, fusableLoops)) {
637         op.emitRemark("unhandled fusion when fusion requires permutation");
638         return {};
639       }
640 
641       std::set<unsigned> candidates;
642       for (AffineExpr expr : consumerLoopToProducerLoop->getResults()) {
643         unsigned position = expr.cast<AffineDimExpr>().getPosition();
644         if (fusableLoops.count(position))
645           candidates.insert(position);
646       }
647       LLVM_DEBUG({
648         llvm::dbgs() << "\t candidates :";
649         for (unsigned i : candidates)
650           llvm::dbgs() << " " << i;
651         llvm::dbgs() << "\n";
652       });
653       if (candidates.empty())
654         return {};
655       std::swap(candidates, fusableLoops);
656     }
657   }
658 
659   return fusableLoops;
660 }
661 
662 /// Find all dependences that are fusable.
663 FusableOpDependencesTy mlir::linalg::findAllFusableDependences(
664     ArrayRef<LinalgOp> ops, const LinalgDependenceGraph &dependenceGraph) {
665   FusableOpDependencesTy fusableDependences;
666   DenseMap<Operation *, SmallVector<AffineMap, 1>> fusedProducerIndexingMap;
667   for (LinalgOp op : reverse(ops)) {
668     for (OpOperand *opOperand : op.getInputAndOutputOperands()) {
669       Optional<LinalgDependenceGraph::LinalgDependenceGraphElem>
670           fusableDependence = findFusableProducer(*opOperand, dependenceGraph);
671       if (!fusableDependence)
672         continue;
673       LinalgOp producerOp =
674           dyn_cast<LinalgOp>(fusableDependence->getDependentOp());
675       if (!producerOp)
676         continue;
677       // Do not fuse dependences that are to operations not in the same basic
678       // block. This avoid moving fused operations across loops that might
679       // themselves carry dependency making the fusion illegal.
680       if (producerOp->getBlock() != op->getBlock())
681         continue;
682 
683       // Make sure that the indexing map of the view used for fusion in the
684       // producer is a projected permutation.
685       Optional<AffineMap> producerMap =
686           fusableDependence->getDependentOpViewIndexingMap();
687       Optional<AffineMap> consumerMap =
688           fusableDependence->getIndexingOpViewIndexingMap();
689       assert(
690           consumerMap &&
691           "unable to find indexing map of operand/result of indexing OpView");
692       fusedProducerIndexingMap[producerOp.getOperation()].push_back(
693           *consumerMap);
694       if (!producerMap || !producerMap->isProjectedPermutation() ||
695           !consumerMap->isProjectedPermutation())
696         continue;
697 
698       fusableDependences[producerOp.getOperation()].push_back(
699           *fusableDependence);
700     }
701   }
702   // TODO: Currently fusion would not be legal if the fusable dependence is to
703   // the same producer but different indexing map in the consumer. Fix this, but
704   // in the meanwhile disallow such a fusion.
705   for (auto useIndexingMapsList : fusedProducerIndexingMap) {
706     AffineMap map1 = useIndexingMapsList.second.front();
707     for (AffineMap map2 :
708          ArrayRef<AffineMap>(useIndexingMapsList.second).drop_front()) {
709       if (map1 != map2) {
710         fusableDependences.erase(useIndexingMapsList.first);
711         break;
712       }
713     }
714   }
715   return fusableDependences;
716 }
717 
718 /// Tile the fused loops in the root operation, by setting the tile sizes for
719 /// all other loops to zero (those will be tiled later).
720 static FailureOr<TiledLinalgOp>
721 tileRootOperation(OpBuilder &b, LinalgOp op, ArrayRef<Value> tileSizeVector,
722                   const LinalgTilingOptions &options,
723                   const std::set<unsigned> &fusedLoops) {
724   SmallVector<Value, 4> tileSizes(tileSizeVector.begin(), tileSizeVector.end());
725   auto zero = b.create<arith::ConstantIndexOp>(op.getLoc(), 0);
726   for (unsigned i = 0, e = tileSizes.size(); i != e; ++i)
727     if (!fusedLoops.count(i))
728       tileSizes[i] = zero;
729   LinalgTilingOptions tileFusedLoopsOptions = options;
730   tileFusedLoopsOptions.setTileSizes(tileSizes);
731   // TODO: Propagate RewriterBase everywhere.
732   IRRewriter rewriter(b);
733   return tileLinalgOp(rewriter, op, tileFusedLoopsOptions);
734 }
735 
736 /// Fuse the operations in `fusionCandidates` with `tiledOp`. Latter is expected
737 /// to be a tiled operation such that it is valid to fuse all operations in
738 /// `fusionCandidates`, i.e. move the operation within the inter-tile loops of
739 /// `tiledOp`.
740 static SmallVector<LinalgOp, 1>
741 fuseOperations(OpBuilder &b, LinalgOp rootOp, TiledLinalgOp tiledLinalgOp,
742                ArrayRef<LinalgOp> fusionCandidates,
743                const FusableOpDependencesTy &fusableDependences,
744                const std::set<unsigned> &fusedLoops) {
745   LinalgOp tiledOp = tiledLinalgOp.op;
746   OpBuilder::InsertionGuard guard(b);
747   b.setInsertionPoint(tiledOp);
748 
749   DenseMap<unsigned, Range> fusedLoopsAndRanges;
750   for (unsigned loop : fusedLoops) {
751     ShapeDimension shapeDim = getShapeDefiningLoopRange(tiledOp, loop, true);
752     fusedLoopsAndRanges[loop] = getRangeFromOperandShape(
753         b, tiledOp.getLoc(), shapeDim.shape, shapeDim.dimension);
754   }
755 
756   SmallVector<LinalgOp, 1> fusedOps(fusionCandidates.size());
757   DenseMap<Operation *, LinalgOp> origOpToFusedOp;
758   origOpToFusedOp[rootOp.getOperation()] = tiledOp;
759   for (const auto &candidate : enumerate(llvm::reverse(fusionCandidates))) {
760     LinalgOp origOp = candidate.value();
761     LinalgOp fusedOp = fuse(b, origOp, fusedLoopsAndRanges);
762     origOpToFusedOp[origOp.getOperation()] = fusedOp;
763     fusedOps[fusionCandidates.size() - candidate.index() - 1] = fusedOp;
764 
765     // Prepare the builder for the next insertion point.
766     auto guard = llvm::make_scope_exit([&]() { b.setInsertionPoint(fusedOp); });
767     if (!origOp.hasTensorSemantics())
768       continue;
769 
770     // If the producer consumer operations are linalg operations on tensors, the
771     // dependence is due to value produced (as a return tensor) by the producer
772     // and used in the consumer. The returned value of the fused op needs to be
773     // made the operand of the tiled/fused consumer operation. By construction
774     // the value returned by the producer is the value used by the consumer.
775     for (auto &dependence : fusableDependences.lookup(origOp.getOperation())) {
776       if (dependence.dependenceType !=
777           LinalgDependenceGraph::DependenceType::RAW)
778         continue;
779 
780       unsigned resultIndex =
781           dependence.getDependentOpViewResultNum().getValue();
782       LinalgOp consumer = origOpToFusedOp.lookup(dependence.getIndexingOp());
783       if (!consumer)
784         continue;
785 
786       Value replacementValue = fusedOp.getOperation()->getResult(resultIndex);
787       consumer.getOperation()->setOperand(
788           dependence.getIndexingOpViewOperandNum().getValue(),
789           replacementValue);
790     }
791 
792     // At this point, all Linalg uses of the tensors produced by `origOp` have
793     // been replaced. However, there may still be "output tensor"-like uses
794     // coming from WAW dependencies.
795     // All these uses are iter_args of the outermost loop (TODO: add a check).
796     // Such iter_args uses serve 2 purposes:
797     //  1. give a shape to the output
798     //  2. encode destructive updates that may be inplaceable by bufferization.
799     // To keep the second type of information while letting the unfused op die
800     // unused, we need to forward the producer output operand.
801     if (auto forOp = dyn_cast<scf::ForOp>(tiledLinalgOp.loops.front())) {
802       for (auto &operand : forOp.getIterOpOperands()) {
803         if (auto opResult = operand.get().dyn_cast<OpResult>()) {
804           if (opResult.getOwner() == origOp) {
805             Value output =
806                 origOp.getOutputOperand(opResult.getResultNumber())->get();
807             assert(output.getType().isa<RankedTensorType>());
808             operand.set(output);
809           }
810         }
811       }
812     }
813   }
814   return fusedOps;
815 }
816 
817 static FailureOr<TiledAndFusedLinalgOps>
818 tileAndFuseLinalgOpsImpl(OpBuilder &b, ArrayRef<LinalgOp> ops,
819                          const LinalgDependenceGraph &dependenceGraph,
820                          const LinalgTilingOptions &tilingOptions) {
821   if (ops.size() < 2)
822     return failure();
823   LinalgOp rootOp = ops.back();
824   if (!llvm::all_of(
825           ops,
826           [](LinalgOp linalgOp) { return linalgOp.hasBufferSemantics(); }) &&
827       !llvm::all_of(ops, [](LinalgOp linalgOp) {
828         return linalgOp.hasTensorSemantics();
829       })) {
830     rootOp.emitError(
831         "unable to fuse operations that have tensor semantics with operations "
832         "that have buffer semantics and viceversa.");
833     return failure();
834   }
835   // TODO: Support interchange with tile + fuse. This might actually help do
836   // better fusion.
837   if (!tilingOptions.interchangeVector.empty()) {
838     rootOp.emitRemark("unable to handle tile and fuse with interchange");
839     return failure();
840   }
841 
842   OpBuilder::InsertionGuard guard(b);
843   b.setInsertionPoint(rootOp);
844 
845   // Find all the producers.
846   LLVM_DEBUG(llvm::dbgs() << "findAllFusableDependences\n");
847   FusableOpDependencesTy fusableDependences =
848       findAllFusableDependences(ops, dependenceGraph);
849   if (fusableDependences.empty()) {
850     LLVM_DEBUG(llvm::dbgs() << "no fusable dependencies found\n");
851     return failure();
852   }
853 
854   TiledAndFusedLinalgOps ret;
855   // Find the loops that can be tiled and fused.
856   LLVM_DEBUG(llvm::dbgs() << "collectFusableLoops\n");
857   ret.fusedLoopDims = collectFusableLoops(ops, fusableDependences);
858 
859   // If there are no fusable dependences or there are no tile+fusable loops,
860   // just return.
861   if (ret.fusedLoopDims.empty()) {
862     LLVM_DEBUG(llvm::dbgs() << "no fusable loops found\n");
863     return failure();
864   }
865 
866   // Tile the fused loops in the last operation in the list.
867   SmallVector<Value, 4> tileSizeVector =
868       tilingOptions.tileSizeComputationFunction(b, rootOp);
869   FailureOr<TiledLinalgOp> tiledRootOp = tileRootOperation(
870       b, rootOp, tileSizeVector, tilingOptions, ret.fusedLoopDims);
871   if (failed(tiledRootOp)) {
872     rootOp.emitRemark("failed to tile the fused loops");
873     return failure();
874   }
875   ret.op = tiledRootOp->op;
876   ret.fusedLoops.assign(tiledRootOp->loops.begin(), tiledRootOp->loops.end());
877 
878   // Fuse the other operations into the fused inter-tile loops produced above.
879   ret.fusedProducers = fuseOperations(b, rootOp, *tiledRootOp, ops.drop_back(),
880                                       fusableDependences, ret.fusedLoopDims);
881 
882   return ret;
883 }
884 
885 FailureOr<TiledAndFusedLinalgOps>
886 mlir::linalg::tileAndFuseLinalgOps(OpBuilder &b, ArrayRef<LinalgOp> ops,
887                                    const LinalgDependenceGraph &dependenceGraph,
888                                    const LinalgTilingOptions &tilingOptions) {
889   switch (tilingOptions.loopType) {
890   case LinalgTilingLoopType::Loops:
891   case LinalgTilingLoopType::ParallelLoops:
892   case LinalgTilingLoopType::TiledLoops:
893     return tileAndFuseLinalgOpsImpl(b, ops, dependenceGraph, tilingOptions);
894   default:;
895   }
896   return failure();
897 }
898