xref: /llvm-project/mlir/lib/Dialect/Linalg/Transforms/DataLayoutPropagation.cpp (revision 1609f1c2a5ecc0e0e28f433ec9205122478ddaa3)
1 //===- DataLayoutPropagation.cpp -----------------------------------------===///
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Dialect/Linalg/Passes.h"
10 
11 #include "mlir/Dialect/Affine/IR/AffineOps.h"
12 #include "mlir/Dialect/Linalg/IR/Linalg.h"
13 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
14 #include "mlir/Dialect/Linalg/Utils/Utils.h"
15 #include "mlir/Dialect/Tensor/IR/Tensor.h"
16 #include "mlir/Dialect/Tensor/Utils/Utils.h"
17 #include "mlir/Dialect/Utils/IndexingUtils.h"
18 #include "mlir/IR/Dominance.h"
19 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
20 #include "llvm/Support/Debug.h"
21 #include <optional>
22 
23 namespace mlir {
24 #define GEN_PASS_DEF_LINALGDATALAYOUTPROPAGATION
25 #include "mlir/Dialect/Linalg/Passes.h.inc"
26 } // namespace mlir
27 
28 using namespace mlir;
29 using namespace mlir::linalg;
30 
31 #define DEBUG_TYPE "linalg-data-layout-propagation"
32 
33 namespace {
34 
35 static bool hasGatherSemantics(linalg::GenericOp genericOp) {
36   for (Operation &op : genericOp.getBody()->getOperations())
37     if (isa<tensor::ExtractOp, linalg::IndexOp>(op))
38       return true;
39   return false;
40 }
41 
42 // The struct contains the infomation about mapping packing information to
43 // the iteration domain of Linalg ops.
44 struct PackInfo {
45   int64_t getNumTiledLoops() const { return tileToPointMapping.size(); };
46   // InnerDimsPos on iteration domain, which follows the order in pack ops.
47   SmallVector<int64_t> tiledDimsPos;
48   // The sizes of tiling data dimensions on iteration domain.
49   llvm::DenseMap<int64_t, OpFoldResult> domainDimAndTileMapping;
50   // The mapping from a dimension of iteration domain to the corresponding inner
51   // tiling dimension on iteration domain.
52   llvm::DenseMap<int64_t, int64_t> tileToPointMapping;
53   // The permutation of outer dims (on domain).
54   SmallVector<int64_t> outerDimsOnDomainPerm;
55 };
56 
57 template <typename OpTy>
58 static FailureOr<PackInfo>
59 getPackingInfoFromOperand(OpOperand *opOperand, linalg::GenericOp genericOp,
60                           OpTy packOrUnPackOp) {
61   static_assert(llvm::is_one_of<OpTy, tensor::PackOp, tensor::UnPackOp>::value,
62                 "applies to only pack or unpack operations");
63   LLVM_DEBUG(
64       { llvm::dbgs() << "--- Construct PackInfo From an operand ---\n"; });
65 
66   AffineMap indexingMap = genericOp.getMatchingIndexingMap(opOperand);
67   SmallVector<AffineMap> indexingMaps = genericOp.getIndexingMapsArray();
68   SmallVector<utils::IteratorType> iterators =
69       genericOp.getIteratorTypesArray();
70 
71   PackInfo packInfo;
72   int64_t origNumDims = indexingMap.getNumDims();
73   SmallVector<AffineExpr> exprs(indexingMap.getResults());
74   ArrayRef<int64_t> innerDimsPos = packOrUnPackOp.getInnerDimsPos();
75   for (auto [index, innerDimPos, tileSize] :
76        llvm::zip_equal(llvm::seq<unsigned>(0, innerDimsPos.size()),
77                        innerDimsPos, packOrUnPackOp.getMixedTiles())) {
78     auto expr = exprs[innerDimPos];
79     if (!isa<AffineDimExpr>(expr))
80       return failure();
81     int64_t domainDimPos =
82         cast<AffineDimExpr>(exprs[innerDimPos]).getPosition();
83     if (!isParallelIterator(iterators[domainDimPos]))
84       return failure();
85     packInfo.tiledDimsPos.push_back(domainDimPos);
86     packInfo.domainDimAndTileMapping[domainDimPos] = tileSize;
87     packInfo.tileToPointMapping[domainDimPos] = origNumDims + index;
88     LLVM_DEBUG({
89       llvm::dbgs() << "map innerDimPos=" << innerDimPos
90                    << " to iteration dimension (d" << domainDimPos << ", d"
91                    << packInfo.tileToPointMapping[domainDimPos]
92                    << "), which has size=("
93                    << packInfo.domainDimAndTileMapping[domainDimPos] << ")\n";
94     });
95   }
96 
97   // Bail out if a tiled dimension is present in a map but not as an affine dim
98   // expression.
99   auto areAllAffineDimExpr = [&](int dim) {
100     for (AffineMap map : indexingMaps) {
101       if (llvm::any_of(map.getResults(), [dim](AffineExpr expr) {
102             return expr.isFunctionOfDim(dim) && !isa<AffineDimExpr>(expr);
103           })) {
104         return false;
105       }
106     }
107     return true;
108   };
109   for (int64_t i : packInfo.tiledDimsPos)
110     if (!areAllAffineDimExpr(i))
111       return failure();
112 
113   // Get the outer dims perm on the iteration domain. Start by identifying the
114   // set of domain dims affected by the outer permutation along with the
115   // permuted ordering for those dims. Then the full outer dims permutation can
116   // be constructed by replacing the affected dims with the permuted result in a
117   // numLoops-rank identity. e.g.
118   //   outerDimsPerm = [1, 2, 0]
119   //   indexingMap = (d0, d1, d2, d3, d4) -> (d1, d4, d3)
120   //
121   //   permutedOuterDims =        [4,    3, 1]
122   //   outerDimsOnDomainPerm = [0, 4, 2, 3, 1]
123   //
124   // Non-affine dim expressions must not be permuted by the outer dims
125   // permutation.
126   SmallVector<int64_t> permutedOuterDims;
127   for (auto [index, dim] : llvm::enumerate(packOrUnPackOp.getOuterDimsPerm())) {
128     auto permutedExpr = indexingMap.getResult(dim);
129     if (auto dimExpr = dyn_cast<AffineDimExpr>(permutedExpr)) {
130       permutedOuterDims.push_back(dimExpr.getPosition());
131       continue;
132     }
133 
134     // TODO: Allow propagation with transposes on non affine dim expressions,
135     // e.g. d0 + d1 which implies transposing both dims simultaneously while
136     // maintaining the relative position between them.
137     if (static_cast<int64_t>(index) != dim)
138       return failure();
139   }
140   if (!permutedOuterDims.empty()) {
141     int64_t outerDimIndex = 0;
142     llvm::DenseSet<int64_t> permutedDomainDims(permutedOuterDims.begin(),
143                                                permutedOuterDims.end());
144     for (int i = 0, e = indexingMap.getNumDims(); i < e; i++)
145       packInfo.outerDimsOnDomainPerm.push_back(
146           permutedDomainDims.contains(i) ? permutedOuterDims[outerDimIndex++]
147                                          : i);
148     LLVM_DEBUG({
149       llvm::dbgs() << "map outer dimsDimsPerm to ";
150       for (auto dim : packInfo.outerDimsOnDomainPerm)
151         llvm::dbgs() << dim << " ";
152       llvm::dbgs() << "\n";
153     });
154   }
155 
156   return packInfo;
157 }
158 
159 static SmallVector<int64_t> computeOuterDims(ArrayRef<int64_t> perm,
160                                              ArrayRef<AffineExpr> exprs) {
161   // Compute `outer_dims_perm`. See example:
162   // current exprs      : (d0, d1, d2, d3) -> (d2, d3)
163   // perm               : [0, 3, 1, 2]
164   // First map d2, d3 with their position in the array as:
165   // currentPositionTileLoops: dim | pos
166   //                           d2  | 0
167   //                           d3  | 1
168   // then scan `perm` in order and get the `outer_dims_perm`
169   // to be used, here it would be [1, 0].
170   assert(!perm.empty() && "expect perm not to be empty");
171   assert(!exprs.empty() && "expect exprs not to be empty");
172   if (exprs.size() == 1)
173     return {};
174   SmallVector<int64_t> outerDimsPerm;
175   DenseMap<int64_t, int64_t> currentPositionTileLoops;
176   for (auto [pos, expr] : llvm::enumerate(exprs)) {
177     // Here we rely on the assumption that the outer dims permutation
178     // when propagating currently requires that non-affine dim expressions
179     // are not permuted, thus allowing the identity assignment below.
180     if (auto dimExpr = dyn_cast<AffineDimExpr>(expr))
181       currentPositionTileLoops[dimExpr.getPosition()] = pos;
182     else
183       currentPositionTileLoops[pos] = pos;
184   }
185   for (int64_t loopIdx : perm) {
186     if (currentPositionTileLoops.count(loopIdx))
187       outerDimsPerm.push_back(currentPositionTileLoops.lookup(loopIdx));
188   }
189   return outerDimsPerm;
190 }
191 
192 /// Returns a tuple for packed operand and indexing_map with the assumptions:
193 ///   1) The generic op is the producer of the pack op.
194 ///   2) The generic op has only one result.
195 /// If the operand is a scalar or packing dimensions are all irrelevant to the
196 /// operand, the operand and the updated indexing map will be returned.
197 /// Otherwise, it returns the packed operand and the updated indexing map. E.g.,
198 ///
199 ///   #map0 = affine_map<(d0, d1) -> (d0, d1)>
200 ///   #map1 = affine_map<(d0, d1) -> (d0)>
201 ///   #map2 = affine_map<(d0, d1) -> (d1)>
202 ///   %0 = linalg.generic {indexing_maps = [#map1, #map2, #map0],
203 ///                        iterator_types = ["parallel", "parallel"]}
204 ///      ins(%arg0, %arg1 : tensor<?xf32>, tensor<?xf32>)
205 ///      outs(%init : tensor<?x?xf32>) {
206 ///    ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):
207 ///      %4 = arith.addf %arg3, %arg4 : f32
208 ///      linalg.yield %4 : f32
209 ///  } -> tensor<?x?xf32>
210 ///  %1 = tensor.pack %0
211 ///    inner_dims_pos = [0, 1]
212 ///    inner_tiles = [8, 2]
213 ///    into %dest : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
214 ///
215 ///  Taking the first input operand as an example, the inner tile size of d1 is
216 ///  8. Thus, the below operation and `affine_map<(d0, d1, d2, d3)> ->
217 ///  affine_map<(d1, d3)>` will be returned.
218 ///
219 ///  %pack = tensor.pack %arg0
220 ///    inner_dims_pos = [0]
221 ///    inner_tiles = [8]
222 ///    into %init : tensor<?xf32> -> tensor<?x8xf32>
223 static std::tuple<Value, AffineMap>
224 getOrCreatePackedViewOfOperand(OpBuilder &b, Location loc, PackInfo packInfo,
225                                GenericOp genericOp, OpOperand *opOperand) {
226   int64_t numOrigLoops = genericOp.getNumLoops();
227   int64_t numInnerLoops = packInfo.getNumTiledLoops();
228   int64_t numLoops = numOrigLoops + numInnerLoops;
229   AffineMap origIndexingMap = genericOp.getMatchingIndexingMap(opOperand);
230   llvm::DenseMap<int64_t, int64_t> domainDimToOperandDim;
231   SmallVector<AffineExpr> exprs(origIndexingMap.getResults());
232 
233   // If the OpOperand is a scalar or a zero-rank tensor, no need to pack.
234   if (genericOp.isScalar(opOperand) || exprs.empty())
235     return std::make_tuple(opOperand->get(),
236                            AffineMap::get(numLoops, 0, exprs, b.getContext()));
237 
238   // Step 1. Construct the information of packing data dimensions; append inner
239   // dimensions to the indexing maps for the operand.
240   for (auto [index, expr] : llvm::enumerate(exprs)) {
241     if (auto dimExpr = dyn_cast<AffineDimExpr>(expr)) {
242       int64_t dimPos = dimExpr.getPosition();
243       domainDimToOperandDim[dimPos] = index;
244       continue;
245     }
246   }
247   SmallVector<int64_t> innerDimsPos;
248   SmallVector<OpFoldResult> innerTileSizes;
249   for (auto dimPos : packInfo.tiledDimsPos) {
250     if (!domainDimToOperandDim.count(dimPos))
251       continue;
252     int64_t index = domainDimToOperandDim[dimPos];
253     innerTileSizes.push_back(packInfo.domainDimAndTileMapping[dimPos]);
254     innerDimsPos.push_back(index);
255     exprs.push_back(b.getAffineDimExpr(packInfo.tileToPointMapping[dimPos]));
256   }
257 
258   // Step 2. Handle outer dim permutations.
259   SmallVector<int64_t> outerDimsPerm;
260   if (!packInfo.outerDimsOnDomainPerm.empty()) {
261     outerDimsPerm = computeOuterDims(packInfo.outerDimsOnDomainPerm, exprs);
262 
263     // Step 2.1: Fold transpose into the linalg.generic.
264     SmallVector<int64_t> inversedOuterPerm =
265         invertPermutationVector(packInfo.outerDimsOnDomainPerm);
266     for (auto i : llvm::seq<unsigned>(0, origIndexingMap.getNumResults())) {
267       if (auto dimExpr = dyn_cast<AffineDimExpr>(exprs[i])) {
268         int64_t dimPos = dimExpr.getPosition();
269         exprs[i] = b.getAffineDimExpr(inversedOuterPerm[dimPos]);
270         continue;
271       }
272       assert(isa<AffineConstantExpr>(exprs[i]) &&
273              "Attempted to permute non-constant and non-affine dim expression");
274     }
275     // Step 2.2: Undo the transposition on `exprs` and propagate the
276     // transposition on the pack using outerDimsPerm.
277     if (!outerDimsPerm.empty()) {
278       SmallVector<AffineExpr> auxVec = exprs;
279       for (const auto &en : enumerate(outerDimsPerm))
280         auxVec[en.index()] = exprs[en.value()];
281       exprs = auxVec;
282     }
283   }
284   auto indexingMap = AffineMap::get(numLoops, 0, exprs, b.getContext());
285 
286   // The operand does not have dimensions that relates to pack op.
287   if (innerDimsPos.empty() && outerDimsPerm.empty())
288     return std::make_tuple(opOperand->get(), indexingMap);
289 
290   auto empty = tensor::PackOp::createDestinationTensor(
291       b, loc, opOperand->get(), innerTileSizes, innerDimsPos, outerDimsPerm);
292   auto packedOperand = b.create<tensor::PackOp>(
293       loc, opOperand->get(), empty, innerDimsPos, innerTileSizes,
294       /*padding=*/std::nullopt, outerDimsPerm);
295   return std::make_tuple(packedOperand, indexingMap);
296 }
297 
298 /// Pack a genericOp and return it.
299 static GenericOp packGenericOp(RewriterBase &rewriter, GenericOp genericOp,
300                                Value dest, AffineMap packedOutIndexingMap,
301                                const PackInfo &packInfo) {
302   Location loc = genericOp.getLoc();
303   SmallVector<Value> inputOperands;
304   SmallVector<AffineMap> indexingMaps;
305   for (OpOperand *inputOperand : genericOp.getDpsInputOperands()) {
306     auto [packedOperand, packedIndexingMap] = getOrCreatePackedViewOfOperand(
307         rewriter, loc, packInfo, genericOp, inputOperand);
308     inputOperands.push_back(packedOperand);
309     indexingMaps.push_back(packedIndexingMap);
310   }
311 
312   int64_t numInnerLoops = packInfo.getNumTiledLoops();
313   SmallVector<utils::IteratorType> iterTypes =
314       genericOp.getIteratorTypesArray();
315   iterTypes.append(numInnerLoops, utils::IteratorType::parallel);
316 
317   indexingMaps.push_back(packedOutIndexingMap);
318 
319   auto newGenericOp = rewriter.create<linalg::GenericOp>(
320       loc, dest.getType(), inputOperands, dest, indexingMaps, iterTypes,
321       /*bodyBuild=*/nullptr, linalg::getPrunedAttributeList(genericOp));
322   rewriter.cloneRegionBefore(genericOp.getRegion(), newGenericOp.getRegion(),
323                              newGenericOp.getRegion().begin());
324   return newGenericOp;
325 }
326 
327 /// Bubbles up tensor.pack op through a producer generic op. This
328 /// swap pack(generic) to generic(pack). The new generic op works on packed
329 /// domain; pack ops are created for input and output operands. E.g.,
330 ///
331 ///     #map0 = affine_map<(d0, d1) -> (d0, d1)>
332 ///     %0 = tensor.dim %arg0, %c0 : tensor<?x?xf32>
333 ///     %1 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
334 ///     %2 = tensor.empty(%0, %1) : tensor<?x?xf32>
335 ///     %3 = linalg.generic {indexing_maps = [#map0, #map0],
336 ///                          iterator_types = ["parallel", "parallel"]}
337 ///         ins(%arg0 : tensor<?x?xf32>)
338 ///         outs(%2 : tensor<?x?xf32>) {
339 ///       ^bb0(%arg3: f32, %arg4: f32):
340 ///         %4 = arith.addf %arg3, %arg3 : f32
341 ///         linalg.yield %4 : f32
342 ///     } -> tensor<?x?xf32>
343 ///     %4 = tensor.pack %3
344 ///       inner_dims_pos = [0, 1]
345 ///       inner_tiles = [8, 2]
346 ///       into %dest : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
347 ///
348 /// will be converted to
349 ///
350 ///     #map = affine_map<()[s0] -> (s0 ceildiv 8)>
351 ///     #map1 = affine_map<()[s0] -> (s0 ceildiv 2)>
352 ///     #map2 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
353 ///     %dim = tensor.dim %arg0, %c0 : tensor<?x?xf32>
354 ///     %dim_0 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
355 ///     %0 = affine.apply #map()[%dim]
356 ///     %1 = affine.apply #map1()[%dim_0]
357 ///     %2 = tensor.empty(%0, %1) : tensor<?x?x8x2xf32>
358 ///     %pack = tensor.pack %arg0
359 ///       inner_dims_pos = [0, 1]
360 ///       inner_tiles = [8, 2]
361 ///       into %2 : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
362 ///     %3 = linalg.generic {indexing_maps = [#map2, #map2],
363 ///       iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
364 ///       ins(%pack : tensor<?x?x8x2xf32>)
365 ///       outs(%arg1 : tensor<?x?x8x2xf32>) {
366 ///     ^bb0(%in: f32, %out: f32):
367 ///       %4 = arith.addf %in, %in : f32
368 ///       linalg.yield %4 : f32
369 ///     } -> tensor<?x?x8x2xf32>
370 static FailureOr<GenericOp>
371 bubbleUpPackOpThroughGenericOp(RewriterBase &rewriter, tensor::PackOp packOp,
372                                ControlPropagationFn controlFn) {
373   auto genericOp = packOp.getSource().getDefiningOp<GenericOp>();
374   if (!genericOp)
375     return failure();
376 
377   // User controlled propagation function.
378   if (!controlFn(genericOp))
379     return failure();
380 
381   // TODO: Enable propagation in the presence of linalg.index and
382   // tensor.extract, likely as a separate pattern as the pack information and
383   // propagation decision needs to be inferred from the region of the generic.
384   if (hasGatherSemantics(genericOp))
385     return failure();
386 
387   // TODO: Relax the restriction. We are able to bubble up the pack op through
388   // multi-result generic op. It just needs more work.
389   if (genericOp.getNumResults() != 1)
390     return failure();
391 
392   // Bail-out if the result of the generic has multiple uses, as bubbling up
393   // creates recomputation if the generic has multiple users.
394   // TODO: Enable the case where every use is an identical pack op as no
395   // recomputation is needed in that case.
396   if (!genericOp->getResult(0).hasOneUse())
397     return failure();
398 
399   // We want to move the pack not the generic.
400   OpBuilder::InsertionGuard guard(rewriter);
401   rewriter.setInsertionPoint(genericOp);
402 
403   // We need to handle two cases:
404   // 1) The tensor.pack destination is a tensor.empty. If this is the case, we
405   // create a new tensor.empty to avoid breaking dominance, as we are moving the
406   // tensor.pack above the linalg.generic.
407   // 2) The destination is not a tensor.empty. In this case we can replace only
408   // if the destination of the tensor.pack dominates the linalg.generic.
409   Value packOpDest = packOp.getDest();
410   if (!packOpDest.hasOneUse())
411     return failure();
412   if (auto emptyOp = packOpDest.getDefiningOp<tensor::EmptyOp>()) {
413     packOpDest = rewriter.create<tensor::EmptyOp>(
414         genericOp->getLoc(), emptyOp.getMixedSizes(),
415         emptyOp.getType().getElementType());
416   } else {
417     DominanceInfo dom(genericOp);
418     if (!dom.properlyDominates(packOpDest, genericOp))
419       return failure();
420   }
421 
422   // TODO: Add an option for allowing padding values. It could introduce
423   // undefined behavior if we unconditionally propagate pack op through all
424   // the ops. E.g., if the padding value is zero and there are division ops in
425   // a generic op. Some values of padding area could be NaN (0/0).
426   if (packOp.getPaddingValue())
427     return failure();
428 
429   OpOperand *opOperand = genericOp.getDpsInitOperand(0);
430   auto packInfo = getPackingInfoFromOperand(opOperand, genericOp, packOp);
431   if (failed(packInfo))
432     return failure();
433 
434   // Rebuild the indexing map for the corresponding init operand.
435   auto [packedOutOperand, packedOutIndexingMap] =
436       getOrCreatePackedViewOfOperand(rewriter, genericOp.getLoc(), *packInfo,
437                                      genericOp, opOperand);
438 
439   // If the dps init operand of the generic is a tensor.empty forward the pack
440   // op destination.
441   Value dest = packedOutOperand;
442   if (auto initTensor = genericOp.getDpsInitOperand(0)
443                             ->get()
444                             .getDefiningOp<tensor::EmptyOp>()) {
445     dest = packOpDest;
446   }
447   return packGenericOp(rewriter, genericOp, dest, packedOutIndexingMap,
448                        *packInfo);
449 }
450 
451 /// Wrapper pattern that applies bubbleUpPackOpThroughGenericOp method.
452 struct BubbleUpPackOpThroughGenericOpPattern
453     : public OpRewritePattern<tensor::PackOp> {
454 public:
455   BubbleUpPackOpThroughGenericOpPattern(MLIRContext *context,
456                                         ControlPropagationFn fun)
457       : OpRewritePattern<tensor::PackOp>(context), controlFn(std::move(fun)) {}
458 
459   LogicalResult matchAndRewrite(tensor::PackOp packOp,
460                                 PatternRewriter &rewriter) const override {
461     auto genericOp =
462         bubbleUpPackOpThroughGenericOp(rewriter, packOp, controlFn);
463     if (failed(genericOp))
464       return failure();
465     rewriter.replaceOp(packOp, genericOp->getResults());
466     return success();
467   }
468 
469 private:
470   ControlPropagationFn controlFn;
471 };
472 
473 // TODO: Relax this restriction. We should unpack a generic op also
474 // in the presence of multiple unpack ops as producers.
475 /// Return the unpacked operand, if present, for the current generic op.
476 static FailureOr<OpOperand *> getUnPackedOperand(GenericOp genericOp) {
477   OpOperand *unPackedOperand = nullptr;
478   for (OpOperand &operand : genericOp->getOpOperands()) {
479     auto unPackOp = operand.get().getDefiningOp<tensor::UnPackOp>();
480     if (!unPackOp)
481       continue;
482     if (unPackedOperand)
483       return failure();
484     unPackedOperand = &operand;
485   }
486   if (!unPackedOperand)
487     return failure();
488   return unPackedOperand;
489 }
490 
491 /// Push down a tensor.unpack op through a generic op.
492 /// The new generic op works on packed domain; pack ops are created for input
493 /// and output operands. A tensor.unpack op is inserted right after the packed
494 /// generic. E.g.
495 ///
496 /// #map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
497 ///
498 /// %arg0 = tensor<12x2x56x56x32xf32> // packed arg.
499 ///
500 /// %0 = tensor.empty() : tensor<12x56x56x64xf32>
501 /// %1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2]
502 ///                          inner_dims_pos = [3] inner_tiles = [32] into %0
503 /// %2 = linalg.generic {indexing_maps = [#map],
504 ///      iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
505 ///      outs(%1 : tensor<12x56x56x64xf32>) {
506 ///      ^bb0(%out : f32):
507 ///         linalg.yield %out : f32
508 ///      } -> tensor<12x56x56x64xf32>
509 ///
510 /// will be converted to
511 ///
512 /// #map = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
513 ///
514 /// %0 = tensor.empty() : tensor<12x56x56x64xf32>
515 /// %1 = linalg.generic {indexing_maps = [#map],
516 ///      iterator_types = ["parallel", "parallel", "parallel",
517 ///                        "parallel", "parallel"]}
518 ///      outs(%arg0 : tensor<12x2x56x56x32xf32>) {
519 ///      ^bb0(%out : f32):
520 ///         linalg.yield %out : f32
521 ///      } -> tensor<12x2x56x56x32xf32>
522 /// %2 = tensor.unpack %1 outer_dims_perm = [0, 3, 1, 2]
523 ///                       inner_dims_pos = [3] inner_tiles = [32] into %0
524 ///
525 static FailureOr<std::tuple<GenericOp, Value>>
526 pushDownUnPackOpThroughGenericOp(RewriterBase &rewriter, GenericOp genericOp) {
527   if (genericOp.getNumResults() != 1)
528     return failure();
529 
530   if (hasGatherSemantics(genericOp))
531     return failure();
532 
533   // Collect the unPacked operand, if present.
534   auto maybeUnPackedOperand = getUnPackedOperand(genericOp);
535   if (failed(maybeUnPackedOperand))
536     return failure();
537   OpOperand *unPackedOperand = *(maybeUnPackedOperand);
538 
539   // Extract packing information.
540   tensor::UnPackOp producerUnPackOp =
541       unPackedOperand->get().getDefiningOp<tensor::UnPackOp>();
542   assert(producerUnPackOp && "expect a valid UnPackOp");
543   auto packInfo =
544       getPackingInfoFromOperand(unPackedOperand, genericOp, producerUnPackOp);
545   if (failed(packInfo))
546     return failure();
547 
548   // Rebuild the indexing map for the corresponding init operand.
549   auto [packedOutOperand, packedOutIndexingMap] =
550       getOrCreatePackedViewOfOperand(rewriter, genericOp.getLoc(), *packInfo,
551                                      genericOp, genericOp.getDpsInitOperand(0));
552   auto destPack = packedOutOperand.getDefiningOp<tensor::PackOp>();
553 
554   // If the dps init operand of the generic is a tensor.empty, do not pack it
555   // and forward the new tensor.empty as a destination.
556   Value dest = packedOutOperand;
557   if (auto initTensor = genericOp.getDpsInitOperand(0)
558                             ->get()
559                             .getDefiningOp<tensor::EmptyOp>()) {
560     if (destPack)
561       dest = destPack.getDest();
562   }
563 
564   // Pack the genericOp.
565   GenericOp newGenericOp =
566       packGenericOp(rewriter, genericOp, dest, packedOutIndexingMap, *packInfo);
567   Value newResult =
568       newGenericOp.getTiedOpResult(newGenericOp.getDpsInitOperand(0));
569 
570   // If the output is unaffected, no need to unpack.
571   if (!destPack)
572     return std::make_tuple(newGenericOp, newResult);
573 
574   auto mixedTiles = destPack.getMixedTiles();
575   auto innerDimsPos = destPack.getInnerDimsPos();
576   auto outerDimsPerm = destPack.getOuterDimsPerm();
577 
578   // If the output type for the generic differs from the source
579   // unpack op, we need to create a new destination tensor. In the
580   // dynamic case we always need a new destination.
581   auto loc = genericOp.getLoc();
582   Value unPackDest = producerUnPackOp.getDest();
583   auto genericOutType =
584       cast<RankedTensorType>(genericOp.getDpsInitOperand(0)->get().getType());
585   if (producerUnPackOp.getDestType() != genericOutType ||
586       !genericOutType.hasStaticShape()) {
587     unPackDest = tensor::UnPackOp::createDestinationTensor(
588         rewriter, loc, newResult, mixedTiles, innerDimsPos, outerDimsPerm);
589   }
590 
591   // Insert an unPackOp right after the packed generic.
592   Value unPackOpRes =
593       rewriter
594           .create<tensor::UnPackOp>(loc, newResult, unPackDest, innerDimsPos,
595                                     mixedTiles, outerDimsPerm)
596           .getResult();
597 
598   return std::make_tuple(newGenericOp, unPackOpRes);
599 }
600 
601 // Wrapper pattern that applies pushDownUnPackOpThroughGenericOp method.
602 struct PushDownUnPackOpThroughGenericOp : public OpRewritePattern<GenericOp> {
603 public:
604   PushDownUnPackOpThroughGenericOp(MLIRContext *context,
605                                    ControlPropagationFn fun)
606       : OpRewritePattern<GenericOp>(context), controlFn(std::move(fun)) {}
607 
608   LogicalResult matchAndRewrite(GenericOp genericOp,
609                                 PatternRewriter &rewriter) const override {
610     if (!controlFn(genericOp))
611       return failure();
612 
613     auto genericAndRepl = pushDownUnPackOpThroughGenericOp(rewriter, genericOp);
614     if (failed(genericAndRepl))
615       return failure();
616     rewriter.replaceOp(genericOp, std::get<1>(*genericAndRepl));
617     return success();
618   }
619 
620 private:
621   ControlPropagationFn controlFn;
622 };
623 
624 /// Propagate a tensor.unpack operation through a tensor.pad. The idea is to
625 /// add as many zero padding dimensions in `high` and `low` based on the number
626 /// of point loops.
627 struct PushDownUnPackThroughPadOp : public OpRewritePattern<tensor::PadOp> {
628   PushDownUnPackThroughPadOp(MLIRContext *context, ControlPropagationFn fun)
629       : OpRewritePattern<tensor::PadOp>(context), controlFn(std::move(fun)) {}
630 
631   LogicalResult matchAndRewrite(tensor::PadOp padOp,
632                                 PatternRewriter &rewriter) const override {
633     tensor::UnPackOp unpackOp =
634         padOp.getSource().getDefiningOp<tensor::UnPackOp>();
635     if (!unpackOp)
636       return failure();
637 
638     if (!controlFn(padOp))
639       return failure();
640 
641     Location loc = padOp.getLoc();
642     // Bail out if one of the padded dimension is a tiled one.
643     llvm::SmallBitVector paddedDims = padOp.getPaddedDims();
644     ArrayRef<int64_t> innerDimsPos = unpackOp.getInnerDimsPos();
645     llvm::SmallBitVector innerDims(paddedDims.size());
646     for (int64_t dim : innerDimsPos)
647       innerDims.flip(dim);
648     if (paddedDims.anyCommon(innerDims))
649       return failure();
650 
651     Value paddingVal = padOp.getConstantPaddingValue();
652     if (!paddingVal)
653       return failure();
654 
655     // If we have `outer_dims_perms` we need to adjust the padded dimensions.
656     ArrayRef<int64_t> outerDimsPerm = unpackOp.getOuterDimsPerm();
657     SmallVector<OpFoldResult> lowPad = padOp.getMixedLowPad();
658     SmallVector<OpFoldResult> highPad = padOp.getMixedHighPad();
659     if (!outerDimsPerm.empty()) {
660       applyPermutationToVector<OpFoldResult>(lowPad, outerDimsPerm);
661       applyPermutationToVector<OpFoldResult>(highPad, outerDimsPerm);
662     }
663     // Add zero padding for the point loops.
664     size_t pointLoopsSize = innerDimsPos.size();
665     lowPad.append(pointLoopsSize, rewriter.getIndexAttr(0));
666     highPad.append(pointLoopsSize, rewriter.getIndexAttr(0));
667 
668     auto newPadOp = rewriter.create<tensor::PadOp>(
669         loc, /*result=*/Type(), unpackOp.getSource(), lowPad, highPad,
670         paddingVal, padOp.getNofold());
671 
672     // Inject the tensor.unpack right after the packed padOp.
673     Value outputUnPack = rewriter.create<tensor::EmptyOp>(
674         loc, padOp.getResultType().getShape(),
675         padOp.getResultType().getElementType());
676 
677     Value replacement = rewriter.create<tensor::UnPackOp>(
678         loc, newPadOp.getResult(), outputUnPack, innerDimsPos,
679         unpackOp.getMixedTiles(), outerDimsPerm);
680     rewriter.replaceOp(padOp, replacement);
681     return success();
682   }
683 
684 private:
685   ControlPropagationFn controlFn;
686 };
687 
688 } // namespace
689 
690 void mlir::linalg::populateDataLayoutPropagationPatterns(
691     RewritePatternSet &patterns,
692     const ControlPropagationFn &controlPackUnPackPropagation) {
693   patterns.insert<BubbleUpPackOpThroughGenericOpPattern,
694                   PushDownUnPackOpThroughGenericOp, PushDownUnPackThroughPadOp>(
695       patterns.getContext(), controlPackUnPackPropagation);
696 }
697