1 //===- NVVMDialect.cpp - NVVM IR Ops and Dialect registration -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the types and operation details for the NVVM IR dialect in 10 // MLIR, and the LLVM IR dialect. It also registers the dialect. 11 // 12 // The NVVM dialect only contains GPU specific additions on top of the general 13 // LLVM dialect. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "mlir/Dialect/LLVMIR/NVVMDialect.h" 18 19 #include "mlir/Conversion/ConvertToLLVM/ToLLVMInterface.h" 20 #include "mlir/Dialect/GPU/IR/CompilationInterfaces.h" 21 #include "mlir/Dialect/Utils/StaticValueUtils.h" 22 #include "mlir/IR/Builders.h" 23 #include "mlir/IR/BuiltinAttributes.h" 24 #include "mlir/IR/BuiltinTypes.h" 25 #include "mlir/IR/Diagnostics.h" 26 #include "mlir/IR/DialectImplementation.h" 27 #include "mlir/IR/MLIRContext.h" 28 #include "mlir/IR/Operation.h" 29 #include "mlir/IR/OperationSupport.h" 30 #include "mlir/IR/Types.h" 31 #include "mlir/Support/LogicalResult.h" 32 #include "llvm/ADT/STLExtras.h" 33 #include "llvm/ADT/TypeSwitch.h" 34 #include "llvm/AsmParser/Parser.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/Type.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/SourceMgr.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cassert> 42 #include <optional> 43 #include <string> 44 45 using namespace mlir; 46 using namespace NVVM; 47 48 #include "mlir/Dialect/LLVMIR/NVVMOpsDialect.cpp.inc" 49 #include "mlir/Dialect/LLVMIR/NVVMOpsEnums.cpp.inc" 50 51 //===----------------------------------------------------------------------===// 52 // Printing/parsing for NVVM ops 53 //===----------------------------------------------------------------------===// 54 55 static void printNVVMIntrinsicOp(OpAsmPrinter &p, Operation *op) { 56 p << " " << op->getOperands(); 57 if (op->getNumResults() > 0) 58 p << " : " << op->getResultTypes(); 59 } 60 61 // <operation> ::= `llvm.nvvm.vote.ballot.sync %mask, %pred` : result_type 62 ParseResult VoteBallotOp::parse(OpAsmParser &parser, OperationState &result) { 63 MLIRContext *context = parser.getContext(); 64 auto int32Ty = IntegerType::get(context, 32); 65 auto int1Ty = IntegerType::get(context, 1); 66 67 SmallVector<OpAsmParser::UnresolvedOperand, 8> ops; 68 Type type; 69 return failure(parser.parseOperandList(ops) || 70 parser.parseOptionalAttrDict(result.attributes) || 71 parser.parseColonType(type) || 72 parser.addTypeToList(type, result.types) || 73 parser.resolveOperands(ops, {int32Ty, int1Ty}, 74 parser.getNameLoc(), result.operands)); 75 } 76 77 void VoteBallotOp::print(OpAsmPrinter &p) { printNVVMIntrinsicOp(p, *this); } 78 79 LogicalResult CpAsyncBulkTensorGlobalToSharedClusterOp::verify() { 80 if (getCoordinates().empty() || getCoordinates().size() > 5) 81 return emitError("expects coordinates between 1 to 5 dimension"); 82 83 // Check for im2col mode 84 if (!getIm2colOffsets().empty()) { 85 if (getCoordinates().size() < 3) 86 return emitError( 87 "to use im2col mode, the tensor has to be at least 3-dimensional"); 88 if (getCoordinates().size() != (getIm2colOffsets().size() + 2)) 89 return emitError( 90 "im2col offsets must be 2 less than number of coordinates"); 91 } 92 return success(); 93 } 94 95 LogicalResult CpAsyncBulkTensorSharedCTAToGlobalOp::verify() { 96 if (getCoordinates().size() > 5) 97 return emitError("Maximum 5 coordinates and dimension is supported."); 98 return success(); 99 } 100 101 LogicalResult CpAsyncOp::verify() { 102 if (getModifier() != LoadCacheModifierKind::CG && 103 getModifier() != LoadCacheModifierKind::CA) 104 return emitError("Only CG and CA cache modifiers are supported."); 105 if (getSize() != 4 && getSize() != 8 && getSize() != 16) 106 return emitError("expected byte size to be either 4, 8 or 16."); 107 if (getModifier() == LoadCacheModifierKind::CG && getSize() != 16) 108 return emitError("CG cache modifier is only support for 16 bytes copy."); 109 return success(); 110 } 111 112 // Given the element type of an operand and whether or not it is an accumulator, 113 // this function returns the PTX type (`NVVM::MMATypes`) that corresponds to the 114 // operand's element type. 115 std::optional<mlir::NVVM::MMATypes> 116 MmaOp::inferOperandMMAType(Type operandElType, bool isAccumulator) { 117 auto half2Type = 118 LLVM::getFixedVectorType(Float16Type::get(operandElType.getContext()), 2); 119 if (operandElType.isF64()) 120 return NVVM::MMATypes::f64; 121 if (operandElType.isF16() || operandElType == half2Type) 122 return NVVM::MMATypes::f16; 123 if (operandElType.isF32() && isAccumulator) 124 return NVVM::MMATypes::f32; 125 if (operandElType.isF32() && !isAccumulator) 126 return NVVM::MMATypes::tf32; 127 if (llvm::isa<IntegerType>(operandElType)) { 128 if (isAccumulator) 129 return NVVM::MMATypes::s32; 130 return std::nullopt; 131 } 132 133 if (auto structType = llvm::dyn_cast<LLVM::LLVMStructType>(operandElType)) { 134 if (structType.getBody().empty()) 135 return std::nullopt; 136 return inferOperandMMAType(structType.getBody()[0], isAccumulator); 137 } 138 139 return std::nullopt; 140 } 141 142 static bool isInt4PtxType(MMATypes type) { 143 return (type == MMATypes::u4 || type == MMATypes::s4); 144 } 145 146 static bool isInt8PtxType(MMATypes type) { 147 return (type == MMATypes::u8 || type == MMATypes::s8); 148 } 149 150 static bool isIntegerPtxType(MMATypes type) { 151 return isInt4PtxType(type) || isInt8PtxType(type) || type == MMATypes::b1 || 152 type == MMATypes::s32; 153 } 154 155 MMATypes MmaOp::accumPtxType() { 156 std::optional<mlir::NVVM::MMATypes> val = inferOperandMMAType( 157 getODSOperands(2).getTypes().front(), /*isAccum=*/true); 158 assert(val.has_value() && "accumulator PTX type should always be inferrable"); 159 return val.value(); 160 } 161 162 MMATypes MmaOp::resultPtxType() { 163 std::optional<mlir::NVVM::MMATypes> val = 164 inferOperandMMAType(getResult().getType(), /*isAccum=*/true); 165 assert(val.has_value() && "result PTX type should always be inferrable"); 166 return val.value(); 167 } 168 169 void MmaOp::print(OpAsmPrinter &p) { 170 SmallVector<Type, 4> regTypes; 171 struct OperandFragment { 172 StringRef operandName; 173 StringRef ptxTypeAttr; 174 SmallVector<Value, 4> regs; 175 explicit OperandFragment(StringRef name, StringRef ptxTypeName) 176 : operandName(name), ptxTypeAttr(ptxTypeName) {} 177 }; 178 179 std::array<OperandFragment, 3> frags{ 180 OperandFragment("A", getMultiplicandAPtxTypeAttrName()), 181 OperandFragment("B", getMultiplicandBPtxTypeAttrName()), 182 OperandFragment("C", "")}; 183 SmallVector<StringRef, 4> ignoreAttrNames{ 184 mlir::NVVM::MmaOp::getOperandSegmentSizeAttr()}; 185 186 for (unsigned fragIdx = 0; fragIdx < frags.size(); fragIdx++) { 187 auto &frag = frags[fragIdx]; 188 auto varOperandSpec = getODSOperandIndexAndLength(fragIdx); 189 for (auto operandIdx = varOperandSpec.first; 190 operandIdx < varOperandSpec.first + varOperandSpec.second; 191 operandIdx++) { 192 frag.regs.push_back(this->getOperand(operandIdx)); 193 if (operandIdx == 0) { 194 regTypes.push_back(this->getOperand(operandIdx).getType()); 195 } 196 } 197 std::optional<MMATypes> inferredType = 198 inferOperandMMAType(regTypes.back(), /*isAccum=*/fragIdx >= 2); 199 if (inferredType) 200 ignoreAttrNames.push_back(frag.ptxTypeAttr); 201 } 202 203 auto printMmaOperand = [&](const OperandFragment &frag) -> void { 204 p << " " << frag.operandName; 205 p << "["; 206 p.printOperands(frag.regs); 207 p << "] "; 208 }; 209 210 for (const auto &frag : frags) { 211 printMmaOperand(frag); 212 } 213 214 p.printOptionalAttrDict(this->getOperation()->getAttrs(), ignoreAttrNames); 215 216 // Print the types of the operands and result. 217 p << " : " << "("; 218 llvm::interleaveComma(SmallVector<Type, 3>{frags[0].regs[0].getType(), 219 frags[1].regs[0].getType(), 220 frags[2].regs[0].getType()}, 221 p); 222 p << ")"; 223 p.printArrowTypeList(TypeRange{this->getRes().getType()}); 224 } 225 226 void MmaOp::build(OpBuilder &builder, OperationState &result, Type resultType, 227 ValueRange operandA, ValueRange operandB, ValueRange operandC, 228 ArrayRef<int64_t> shape, std::optional<MMAB1Op> b1Op, 229 std::optional<MMAIntOverflow> intOverflow, 230 std::optional<std::array<MMATypes, 2>> multiplicandPtxTypes, 231 std::optional<std::array<MMALayout, 2>> multiplicandLayouts) { 232 233 assert(shape.size() == 3 && "expected shape to have size 3 (m, n, k)"); 234 MLIRContext *ctx = builder.getContext(); 235 result.addAttribute( 236 "shape", builder.getAttr<MMAShapeAttr>(shape[0], shape[1], shape[2])); 237 238 result.addOperands(operandA); 239 result.addOperands(operandB); 240 result.addOperands(operandC); 241 242 if (multiplicandPtxTypes) { 243 result.addAttribute("multiplicandAPtxType", 244 MMATypesAttr::get(ctx, (*multiplicandPtxTypes)[0])); 245 result.addAttribute("multiplicandBPtxType", 246 MMATypesAttr::get(ctx, (*multiplicandPtxTypes)[1])); 247 } else { 248 if (auto res = inferOperandMMAType(operandA[0].getType(), false)) 249 result.addAttribute("multiplicandAPtxType", MMATypesAttr::get(ctx, *res)); 250 if (auto res = inferOperandMMAType(operandB[0].getType(), false)) 251 result.addAttribute("multiplicandBPtxType", MMATypesAttr::get(ctx, *res)); 252 } 253 254 if (multiplicandLayouts) { 255 result.addAttribute("layoutA", 256 MMALayoutAttr::get(ctx, (*multiplicandLayouts)[0])); 257 result.addAttribute("layoutB", 258 MMALayoutAttr::get(ctx, (*multiplicandLayouts)[1])); 259 } else { 260 result.addAttribute("layoutA", MMALayoutAttr::get(ctx, MMALayout::row)); 261 result.addAttribute("layoutB", MMALayoutAttr::get(ctx, MMALayout::col)); 262 } 263 264 if (intOverflow.has_value()) 265 result.addAttribute("intOverflowBehavior", 266 MMAIntOverflowAttr::get(ctx, *intOverflow)); 267 if (b1Op.has_value()) 268 result.addAttribute("b1Op", MMAB1OpAttr::get(ctx, *b1Op)); 269 270 result.addTypes(resultType); 271 result.addAttribute( 272 MmaOp::getOperandSegmentSizeAttr(), 273 builder.getDenseI32ArrayAttr({static_cast<int32_t>(operandA.size()), 274 static_cast<int32_t>(operandB.size()), 275 static_cast<int32_t>(operandC.size())})); 276 } 277 278 // <operation> := 279 // A `[` $operandA `]` B `[` $operandB `]` C `[` $operandC `]` 280 // attr-dict : (type($operandA[0]), type($operandB[0]), type($operandC[0])) 281 // `->` type($res) 282 ParseResult MmaOp::parse(OpAsmParser &parser, OperationState &result) { 283 struct OperandFragment { 284 std::optional<MMATypes> elemtype; 285 SmallVector<OpAsmParser::UnresolvedOperand, 4> regs; 286 SmallVector<Type> regTypes; 287 }; 288 289 Builder &builder = parser.getBuilder(); 290 std::array<OperandFragment, 4> frags; 291 292 NamedAttrList namedAttributes; 293 294 // A helper to parse the operand segments. 295 auto parseMmaOperand = [&](StringRef operandName, 296 OperandFragment &frag) -> LogicalResult { 297 if (parser.parseKeyword(operandName).failed()) 298 return failure(); 299 if (parser 300 .parseOperandList(frag.regs, OpAsmParser::Delimiter::OptionalSquare) 301 .failed()) 302 return failure(); 303 return success(); 304 }; 305 306 // Parse the operand segments. 307 if (parseMmaOperand("A", frags[0]).failed()) 308 return failure(); 309 if (parseMmaOperand("B", frags[1]).failed()) 310 return failure(); 311 if (parseMmaOperand("C", frags[2]).failed()) 312 return failure(); 313 314 if (parser.parseOptionalAttrDict(namedAttributes).failed()) 315 return failure(); 316 317 // Parse the type specification and resolve operands. 318 SmallVector<Type, 3> operandTypes; 319 if (failed(parser.parseColon())) 320 return failure(); 321 if (failed(parser.parseLParen())) 322 return failure(); 323 if (failed(parser.parseTypeList(operandTypes))) 324 return failure(); 325 if (failed(parser.parseRParen())) 326 if (operandTypes.size() != 3) 327 return parser.emitError( 328 parser.getNameLoc(), 329 "expected one type for each operand segment but got " + 330 Twine(operandTypes.size()) + " types"); 331 for (const auto &iter : llvm::enumerate(operandTypes)) { 332 auto &frag = frags[iter.index()]; 333 frag.regTypes.resize(frag.regs.size(), iter.value()); 334 if (failed(parser.resolveOperands(frag.regs, frag.regTypes, 335 parser.getNameLoc(), result.operands))) 336 return failure(); 337 frag.elemtype = 338 inferOperandMMAType(frag.regTypes[0], /*isAccum=*/iter.index() < 2); 339 } 340 341 Type resultType; 342 if (parser.parseArrow() || parser.parseType(resultType)) 343 return failure(); 344 frags[3].elemtype = inferOperandMMAType(resultType, /*isAccum=*/true); 345 346 std::array<StringRef, 2> names{"multiplicandAPtxType", 347 "multiplicandBPtxType"}; 348 for (unsigned idx = 0; idx < names.size(); idx++) { 349 const auto &frag = frags[idx]; 350 std::optional<NamedAttribute> attr = namedAttributes.getNamed(names[idx]); 351 if (!frag.elemtype.has_value() && !attr.has_value()) { 352 return parser.emitError( 353 parser.getNameLoc(), 354 "attribute " + names[idx] + 355 " is not provided explicitly and cannot be inferred"); 356 } 357 if (!attr.has_value()) 358 result.addAttribute( 359 names[idx], MMATypesAttr::get(parser.getContext(), *frag.elemtype)); 360 } 361 362 result.addTypes(resultType); 363 if (!namedAttributes.empty()) 364 result.addAttributes(namedAttributes); 365 result.addAttribute(MmaOp::getOperandSegmentSizeAttr(), 366 builder.getDenseI32ArrayAttr({ 367 static_cast<int32_t>(frags[0].regs.size()), 368 static_cast<int32_t>(frags[1].regs.size()), 369 static_cast<int32_t>(frags[2].regs.size()), 370 })); 371 return success(); 372 } 373 374 LogicalResult MmaOp::verify() { 375 MLIRContext *context = getContext(); 376 auto f16Ty = Float16Type::get(context); 377 auto i32Ty = IntegerType::get(context, 32); 378 auto f16x2Ty = LLVM::getFixedVectorType(f16Ty, 2); 379 auto f32Ty = Float32Type::get(context); 380 auto f16x2x4StructTy = LLVM::LLVMStructType::getLiteral( 381 context, {f16x2Ty, f16x2Ty, f16x2Ty, f16x2Ty}); 382 383 auto s32x4StructTy = 384 LLVM::LLVMStructType::getLiteral(context, {i32Ty, i32Ty, i32Ty, i32Ty}); 385 auto f32x8StructTy = 386 LLVM::LLVMStructType::getLiteral(context, SmallVector<Type>(8, f32Ty)); 387 auto f16x2x2StructTy = 388 LLVM::LLVMStructType::getLiteral(context, {f16x2Ty, f16x2Ty}); 389 auto f32x4StructTy = 390 LLVM::LLVMStructType::getLiteral(context, {f32Ty, f32Ty, f32Ty, f32Ty}); 391 auto s32x2StructTy = 392 LLVM::LLVMStructType::getLiteral(context, {i32Ty, i32Ty}); 393 394 std::array<int64_t, 3> mmaShape{getShapeAttr().getM(), getShapeAttr().getN(), 395 getShapeAttr().getK()}; 396 397 // These variables define the set of allowed data types for matrices A, B, C, 398 // and result. 399 using AllowedShapes = SmallVector<std::array<int64_t, 3>, 2>; 400 using AllowedTypes = SmallVector<SmallVector<Type, 4>, 2>; 401 AllowedShapes allowedShapes; 402 AllowedTypes expectedA; 403 AllowedTypes expectedB; 404 AllowedTypes expectedC; 405 SmallVector<Type> expectedResult; 406 407 // When M = 16, we just need to calculate the number of 8xk tiles, where 408 // k is a factor that depends on the data type. 409 if (mmaShape[0] == 16) { 410 int64_t kFactor; 411 Type multiplicandFragType; 412 switch (*getMultiplicandAPtxType()) { 413 case MMATypes::tf32: 414 kFactor = 4; 415 multiplicandFragType = i32Ty; 416 expectedResult.push_back(LLVM::LLVMStructType::getLiteral( 417 context, {f32Ty, f32Ty, f32Ty, f32Ty})); 418 break; 419 case MMATypes::f16: 420 case MMATypes::bf16: 421 kFactor = 8; 422 multiplicandFragType = f16x2Ty; 423 expectedResult.push_back(f16x2x2StructTy); 424 expectedResult.push_back(f32x4StructTy); 425 break; 426 case MMATypes::s4: 427 case MMATypes::u4: 428 kFactor = 32; 429 break; 430 case MMATypes::b1: 431 kFactor = 128; 432 break; 433 case MMATypes::s8: 434 case MMATypes::u8: 435 kFactor = 16; 436 break; 437 default: 438 return emitError("invalid shape or multiplicand type: " + 439 stringifyEnum(getMultiplicandAPtxType().value())); 440 } 441 442 if (isIntegerPtxType(getMultiplicandAPtxType().value())) { 443 expectedResult.push_back(s32x4StructTy); 444 expectedC.emplace_back(4, i32Ty); 445 multiplicandFragType = i32Ty; 446 } else { 447 expectedC.emplace_back(2, f16x2Ty); 448 expectedC.emplace_back(4, f32Ty); 449 } 450 451 int64_t unitA = (mmaShape[0] / 8) * (mmaShape[2] / kFactor); 452 int64_t unitB = (mmaShape[1] / 8) * (mmaShape[2] / kFactor); 453 expectedA.emplace_back(unitA, multiplicandFragType); 454 expectedB.emplace_back(unitB, multiplicandFragType); 455 allowedShapes.push_back({16, 8, kFactor}); 456 allowedShapes.push_back({16, 8, kFactor * 2}); 457 } 458 459 // In the M=8 case, there is only 1 possible case per data type. 460 if (mmaShape[0] == 8) { 461 if (*getMultiplicandAPtxType() == MMATypes::f16) { 462 expectedA.emplace_back(2, f16x2Ty); 463 expectedB.emplace_back(2, f16x2Ty); 464 expectedResult.push_back(f16x2x4StructTy); 465 expectedResult.push_back(f32x8StructTy); 466 expectedC.emplace_back(4, f16x2Ty); 467 expectedC.emplace_back(8, f32Ty); 468 allowedShapes.push_back({8, 8, 4}); 469 } 470 if (*getMultiplicandAPtxType() == MMATypes::f64) { 471 Type f64Ty = Float64Type::get(context); 472 expectedA.emplace_back(1, f64Ty); 473 expectedB.emplace_back(1, f64Ty); 474 expectedC.emplace_back(2, f64Ty); 475 // expectedC.emplace_back(1, LLVM::getFixedVectorType(f64Ty, 2)); 476 expectedResult.emplace_back(LLVM::LLVMStructType::getLiteral( 477 context, SmallVector<Type>(2, f64Ty))); 478 allowedShapes.push_back({8, 8, 4}); 479 } 480 if (isIntegerPtxType(getMultiplicandAPtxType().value())) { 481 expectedA.push_back({i32Ty}); 482 expectedB.push_back({i32Ty}); 483 expectedC.push_back({i32Ty, i32Ty}); 484 expectedResult.push_back(s32x2StructTy); 485 if (isInt4PtxType(getMultiplicandAPtxType().value())) 486 allowedShapes.push_back({8, 8, 32}); 487 if (isInt8PtxType(getMultiplicandAPtxType().value())) 488 allowedShapes.push_back({8, 8, 16}); 489 if (getMultiplicandAPtxType().value() == MMATypes::b1) 490 allowedShapes.push_back({8, 8, 128}); 491 } 492 } 493 494 std::string errorMessage; 495 llvm::raw_string_ostream errorStream(errorMessage); 496 497 // Check that we matched an existing shape/dtype combination. 498 if (expectedA.empty() || expectedB.empty() || expectedC.empty() || 499 !llvm::is_contained(allowedShapes, mmaShape)) { 500 errorStream << "unimplemented variant for MMA shape <"; 501 llvm::interleaveComma(mmaShape, errorStream); 502 errorStream << ">"; 503 return emitOpError(errorMessage); 504 } 505 506 // Verify the operand types for segments of A, B, and C operands. 507 std::array<StringRef, 3> operandNames{"A", "B", "C"}; 508 for (const auto &iter : llvm::enumerate( 509 SmallVector<AllowedTypes, 3>{expectedA, expectedB, expectedC})) { 510 auto spec = this->getODSOperandIndexAndLength(iter.index()); 511 SmallVector<Type, 4> operandTySeg(operand_type_begin() + spec.first, 512 operand_type_begin() + spec.first + 513 spec.second); 514 bool match = llvm::is_contained(iter.value(), operandTySeg); 515 516 if (!match) { 517 errorStream << "Could not match types for the " 518 << operandNames[iter.index()] 519 << " operands; expected one of "; 520 for (const auto &x : iter.value()) { 521 errorStream << x.size() << "x" << x[0] << " "; 522 } 523 errorStream << "but got "; 524 llvm::interleaveComma(operandTySeg, errorStream); 525 return emitOpError(errorStream.str()); 526 } 527 } 528 529 // Check the result type 530 if (!llvm::any_of(expectedResult, [&](Type expectedResultType) { 531 return expectedResultType == getResult().getType(); 532 })) { 533 errorStream 534 << "Could not match allowed types for the result; expected one of "; 535 llvm::interleaveComma(expectedResult, errorStream); 536 errorStream << " but got " << getResult().getType(); 537 return emitOpError(errorStream.str()); 538 } 539 540 // Ensure that binary MMA variants have a b1 MMA operation defined. 541 if (getMultiplicandAPtxType() == MMATypes::b1 && !getB1Op()) { 542 return emitOpError("op requires " + getB1OpAttrName().strref() + 543 " attribute"); 544 } 545 546 // Ensure int4/int8 MMA variants specify the accum overflow behavior 547 // attribute. 548 if (isInt4PtxType(*getMultiplicandAPtxType()) || 549 isInt8PtxType(*getMultiplicandAPtxType())) { 550 if (!getIntOverflowBehavior()) 551 return emitOpError("op requires " + 552 getIntOverflowBehaviorAttrName().strref() + 553 " attribute"); 554 } 555 556 return success(); 557 } 558 559 LogicalResult ShflOp::verify() { 560 if (!(*this)->getAttrOfType<UnitAttr>("return_value_and_is_valid")) 561 return success(); 562 auto type = llvm::dyn_cast<LLVM::LLVMStructType>(getType()); 563 auto elementType = (type && type.getBody().size() == 2) 564 ? llvm::dyn_cast<IntegerType>(type.getBody()[1]) 565 : nullptr; 566 if (!elementType || elementType.getWidth() != 1) 567 return emitError("expected return type to be a two-element struct with " 568 "i1 as the second element"); 569 return success(); 570 } 571 572 std::pair<mlir::Type, unsigned> NVVM::inferMMAType(NVVM::MMATypes type, 573 NVVM::MMAFrag frag, int nRow, 574 int nCol, 575 MLIRContext *context) { 576 unsigned numberElements = 0; 577 Type elementType; 578 OpBuilder builder(context); 579 Type f16x2 = VectorType::get(2, builder.getF16Type()); 580 if (type == NVVM::MMATypes::f16) { 581 elementType = f16x2; 582 if (frag == NVVM::MMAFrag::a || frag == NVVM::MMAFrag::b) 583 numberElements = 8; 584 else 585 numberElements = 4; 586 } else if (type == NVVM::MMATypes::f32) { 587 elementType = builder.getF32Type(); 588 numberElements = 8; 589 } else if (type == NVVM::MMATypes::tf32) { 590 elementType = builder.getI32Type(); 591 numberElements = 4; 592 } else if (type == NVVM::MMATypes::s8 || type == NVVM::MMATypes::u8) { 593 elementType = builder.getI32Type(); 594 int parallelSize = 0; 595 if (frag == NVVM::MMAFrag::a) 596 parallelSize = nRow; 597 if (frag == NVVM::MMAFrag::b) 598 parallelSize = nCol; 599 600 // m == 16 && n == 16 && k == 16 601 if (parallelSize == 16) 602 numberElements = 2; 603 // m == 8 && n == 32 && k == 16 or m == 32 && n == 8 && k == 16 604 else if (parallelSize == 8) 605 numberElements = 1; 606 else if (parallelSize == 32) 607 numberElements = 4; 608 } else if (type == NVVM::MMATypes::s32) { 609 elementType = builder.getI32Type(); 610 numberElements = 8; 611 } 612 assert(numberElements != 0 && elementType != nullptr); 613 return std::make_pair(elementType, numberElements); 614 } 615 616 static std::pair<mlir::Type, unsigned> 617 inferMMATypeFromMNK(NVVM::MMATypes type, NVVM::MMAFrag frag, int m, int n, 618 int k, MLIRContext *context) { 619 int nRow, nCol; 620 if (frag == NVVM::MMAFrag::a) { 621 nRow = m; 622 nCol = k; 623 } else if (frag == NVVM::MMAFrag::b) { 624 nRow = k; 625 nCol = n; 626 } else { 627 nRow = m; 628 nCol = n; 629 } 630 assert(nRow && nCol); 631 return inferMMAType(type, frag, nRow, nCol, context); 632 } 633 634 LogicalResult NVVM::WMMALoadOp::verify() { 635 unsigned addressSpace = 636 llvm::cast<LLVM::LLVMPointerType>(getPtr().getType()).getAddressSpace(); 637 if (addressSpace != 0 && addressSpace != NVVM::kGlobalMemorySpace && 638 addressSpace != NVVM::kSharedMemorySpace) 639 return emitOpError("expected source pointer in memory " 640 "space 0, 1, 3"); 641 642 if (NVVM::WMMALoadOp::getIntrinsicID(getM(), getN(), getK(), getLayout(), 643 getEltype(), getFrag()) == 0) 644 return emitOpError() << "invalid attribute combination"; 645 std::pair<Type, unsigned> typeInfo = inferMMATypeFromMNK( 646 getEltype(), getFrag(), getM(), getN(), getK(), getContext()); 647 Type dstType = LLVM::LLVMStructType::getLiteral( 648 getContext(), SmallVector<Type, 8>(typeInfo.second, typeInfo.first)); 649 if (getType() != dstType) 650 return emitOpError("expected destination type is a structure of ") 651 << typeInfo.second << " elements of type " << typeInfo.first; 652 return success(); 653 } 654 655 LogicalResult NVVM::WMMAStoreOp::verify() { 656 unsigned addressSpace = 657 llvm::cast<LLVM::LLVMPointerType>(getPtr().getType()).getAddressSpace(); 658 if (addressSpace != 0 && addressSpace != NVVM::kGlobalMemorySpace && 659 addressSpace != NVVM::kSharedMemorySpace) 660 return emitOpError("expected operands to be a source pointer in memory " 661 "space 0, 1, 3"); 662 663 if (NVVM::WMMAStoreOp::getIntrinsicID(getM(), getN(), getK(), getLayout(), 664 getEltype()) == 0) 665 return emitOpError() << "invalid attribute combination"; 666 std::pair<Type, unsigned> typeInfo = inferMMATypeFromMNK( 667 getEltype(), NVVM::MMAFrag::c, getM(), getN(), getK(), getContext()); 668 if (getArgs().size() != typeInfo.second) 669 return emitOpError() << "expected " << typeInfo.second << " data operands"; 670 if (llvm::any_of(getArgs(), [&typeInfo](Value operands) { 671 return operands.getType() != typeInfo.first; 672 })) 673 return emitOpError() << "expected data operands of type " << typeInfo.first; 674 return success(); 675 } 676 677 LogicalResult NVVM::WMMAMmaOp::verify() { 678 if (NVVM::WMMAMmaOp::getIntrinsicID(getM(), getN(), getK(), getLayoutA(), 679 getLayoutB(), getEltypeA(), 680 getEltypeB()) == 0) 681 return emitOpError() << "invalid attribute combination"; 682 std::pair<Type, unsigned> typeInfoA = inferMMATypeFromMNK( 683 getEltypeA(), NVVM::MMAFrag::a, getM(), getN(), getK(), getContext()); 684 std::pair<Type, unsigned> typeInfoB = inferMMATypeFromMNK( 685 getEltypeA(), NVVM::MMAFrag::b, getM(), getN(), getK(), getContext()); 686 std::pair<Type, unsigned> typeInfoC = inferMMATypeFromMNK( 687 getEltypeB(), NVVM::MMAFrag::c, getM(), getN(), getK(), getContext()); 688 SmallVector<Type, 32> arguments; 689 arguments.append(typeInfoA.second, typeInfoA.first); 690 arguments.append(typeInfoB.second, typeInfoB.first); 691 arguments.append(typeInfoC.second, typeInfoC.first); 692 unsigned numArgs = arguments.size(); 693 if (getArgs().size() != numArgs) 694 return emitOpError() << "expected " << numArgs << " arguments"; 695 for (unsigned i = 0; i < numArgs; i++) { 696 if (getArgs()[i].getType() != arguments[i]) 697 return emitOpError() << "expected argument " << i << " to be of type " 698 << arguments[i]; 699 } 700 Type dstType = LLVM::LLVMStructType::getLiteral( 701 getContext(), SmallVector<Type, 8>(typeInfoC.second, typeInfoC.first)); 702 if (getType() != dstType) 703 return emitOpError("expected destination type is a structure of ") 704 << typeInfoC.second << " elements of type " << typeInfoC.first; 705 return success(); 706 } 707 708 LogicalResult NVVM::LdMatrixOp::verify() { 709 unsigned addressSpace = 710 llvm::cast<LLVM::LLVMPointerType>(getPtr().getType()).getAddressSpace(); 711 if (addressSpace != NVVM::kSharedMemorySpace) 712 return emitOpError("expected source pointer in memory space 3"); 713 714 if (getNum() != 1 && getNum() != 2 && getNum() != 4) 715 return emitOpError("expected num attribute to be 1, 2 or 4"); 716 717 Type i32 = IntegerType::get(getContext(), 32); 718 if (getNum() == 1 && getType() != i32) 719 return emitOpError("expected destination type is i32"); 720 if (getNum() == 2 || getNum() == 4) { 721 Type dstType = LLVM::LLVMStructType::getLiteral( 722 getContext(), SmallVector<Type>(getNum(), i32)); 723 if (getType() != dstType) 724 return emitOpError("expected destination type is a structure of ") 725 << getNum() << " elements of type i32"; 726 } 727 return success(); 728 } 729 730 LogicalResult NVVM::StMatrixOp::verify() { 731 unsigned addressSpace = 732 llvm::cast<LLVM::LLVMPointerType>(getPtr().getType()).getAddressSpace(); 733 if (addressSpace != NVVM::kSharedMemorySpace) 734 return emitOpError("expected source pointer in memory space 3"); 735 736 int numMatrix = getSources().size(); 737 if (numMatrix != 1 && numMatrix != 2 && numMatrix != 4) 738 return emitOpError("expected num attribute to be 1, 2 or 4"); 739 740 return success(); 741 } 742 743 FailureOr<int> getAllowedSizeK(NVVM::WGMMATypes typeA) { 744 if (typeA == NVVM::WGMMATypes::tf32) 745 return 8; 746 if (typeA == NVVM::WGMMATypes::f16 || typeA == NVVM::WGMMATypes::bf16) 747 return 16; 748 if (typeA == NVVM::WGMMATypes::s8 || typeA == NVVM::WGMMATypes::u8) 749 return 32; 750 if (typeA == NVVM::WGMMATypes::e4m3 || typeA == NVVM::WGMMATypes::e5m2) 751 return 32; 752 if (typeA == NVVM::WGMMATypes::b1) 753 return 256; 754 return failure(); 755 } 756 757 LogicalResult isAllowedWGMMADataType(NVVM::WGMMATypes typeD, 758 NVVM::WGMMATypes typeA, 759 NVVM::WGMMATypes typeB) { 760 switch (typeA) { 761 case NVVM::WGMMATypes::f16: 762 if ((typeD == NVVM::WGMMATypes::f32 || typeD == NVVM::WGMMATypes::f16) && 763 typeB == NVVM::WGMMATypes::f16) 764 return success(); 765 break; 766 case NVVM::WGMMATypes::tf32: 767 if (typeD == NVVM::WGMMATypes::f32 && typeB == NVVM::WGMMATypes::tf32) 768 return success(); 769 break; 770 case NVVM::WGMMATypes::u8: 771 case NVVM::WGMMATypes::s8: 772 if (typeD == NVVM::WGMMATypes::s32 && 773 (typeB == NVVM::WGMMATypes::u8 || typeB == NVVM::WGMMATypes::s8)) 774 return success(); 775 break; 776 case NVVM::WGMMATypes::b1: 777 if (typeD == NVVM::WGMMATypes::s32 && typeB == NVVM::WGMMATypes::b1) 778 return success(); 779 break; 780 case NVVM::WGMMATypes::bf16: 781 if ((typeD == NVVM::WGMMATypes::f32 || typeD == NVVM::WGMMATypes::f16) && 782 typeB == NVVM::WGMMATypes::bf16) 783 return success(); 784 break; 785 case NVVM::WGMMATypes::e4m3: 786 case NVVM::WGMMATypes::e5m2: 787 if ((typeD == NVVM::WGMMATypes::f32 || typeD == NVVM::WGMMATypes::f16) && 788 (typeB == NVVM::WGMMATypes::e5m2 || typeB == NVVM::WGMMATypes::e4m3)) 789 return success(); 790 break; 791 case WGMMATypes::f32: 792 case WGMMATypes::s32: 793 llvm_unreachable("unsupported input types"); 794 break; 795 } 796 return failure(); 797 } 798 799 LogicalResult isAllowedSizeN(int sizeN, NVVM::WGMMATypes typeA) { 800 SmallVector<int> allowedN = {8, 16, 24, 32, 40, 48, 56, 64, 801 72, 80, 88, 96, 104, 112, 120, 128, 802 136, 144, 152, 160, 168, 176, 184, 192, 803 200, 208, 216, 224, 232, 240, 248, 256}; 804 SmallVector<int> allowedNshort = {8, 16, 24, 32, 48, 64, 805 80, 96, 112, 128, 144, 160, 806 176, 192, 208, 224, 240, 256}; 807 switch (typeA) { 808 case WGMMATypes::f16: 809 case WGMMATypes::tf32: 810 case WGMMATypes::bf16: 811 case WGMMATypes::e4m3: 812 case WGMMATypes::e5m2: 813 if (llvm::is_contained(allowedN, sizeN)) 814 return success(); 815 break; 816 case WGMMATypes::u8: 817 case WGMMATypes::s8: 818 case WGMMATypes::b1: 819 if (llvm::is_contained(allowedNshort, sizeN)) 820 return success(); 821 break; 822 case WGMMATypes::f32: 823 case WGMMATypes::s32: 824 llvm_unreachable("unsupported input types"); 825 break; 826 } 827 return failure(); 828 } 829 830 LogicalResult NVVM::WgmmaMmaAsyncOp::verify() { 831 Value outValue = getResults(); 832 auto stype = dyn_cast<LLVM::LLVMStructType>(outValue.getType()); 833 if (!stype) 834 return emitOpError() << "expected results to be struct"; 835 int outputSize = stype.getBody().size(); 836 WGMMATypes typeD = getTypeD(); 837 WGMMATypes typeA = getTypeA(); 838 WGMMATypes typeB = getTypeB(); 839 840 for (Type t : stype.getBody()) { 841 if (t != stype.getBody().front()) 842 return emitOpError() 843 << "all elements in struct must be same type but there is " << t; 844 } 845 846 if (typeD != WGMMATypes::f32 && typeD != WGMMATypes::f16 && 847 typeD != WGMMATypes::s32) { 848 return emitOpError() << "does not support the given output type " 849 << NVVM::stringifyWGMMATypes(typeD); 850 } 851 if (typeD == WGMMATypes::s32 && 852 (getScaleA() == WGMMAScaleIn::neg || getScaleB() == WGMMAScaleIn::neg)) { 853 return emitOpError() << "has s32 output, scaleA and scaleB cannot be neg"; 854 } 855 856 if (failed(isAllowedWGMMADataType(typeD, typeA, typeB))) { 857 return emitOpError() << NVVM::stringifyWGMMATypes(typeD) 858 << " += " << NVVM::stringifyWGMMATypes(typeA) << " * " 859 << NVVM::stringifyWGMMATypes(typeB) 860 << ", it is not supported."; 861 } 862 863 // Check M 864 if (getShape().getM() != 64) 865 return emitOpError() << "shape 'm' must be 64"; 866 867 // Check K 868 FailureOr<int> allowedK = getAllowedSizeK(typeA); 869 if (failed(allowedK) || allowedK.value() != getShape().getK()) 870 return emitOpError() << "shape 'k' must be " << allowedK.value() 871 << " for input type " 872 << NVVM::stringifyWGMMATypes(typeA); 873 874 // Check N 875 if (failed(isAllowedSizeN(getShape().getN(), typeA))) { 876 return emitOpError() << "has input type " 877 << NVVM::stringifyWGMMATypes(typeA) << " n is set to " 878 << getShape().getN() << ", it is not supported."; 879 } 880 881 // Check transpose (only available for f16/bf16) 882 if ((typeA != WGMMATypes::f16 && typeA != WGMMATypes::bf16) && 883 (getLayoutA() == mlir::NVVM::MMALayout::col || 884 getLayoutB() == mlir::NVVM::MMALayout::col)) { 885 return emitOpError() 886 << "given layouts layout_a = " << stringifyMMALayout(getLayoutA()) 887 << " and layout_b = " << stringifyMMALayout(getLayoutB()) 888 << " for input types " << stringifyWGMMATypes(typeA) << " and " 889 << stringifyWGMMATypes(typeB) 890 << " requires transpose. However, this is only supported for: " 891 << stringifyMMATypes(MMATypes::f16) << " and " 892 << stringifyMMATypes(MMATypes::bf16); 893 } 894 895 // Check result registers 896 int expectedOutput = 0; 897 if (typeD == WGMMATypes::f32 || typeD == WGMMATypes::s32) 898 expectedOutput = getShape().getN() / 2; 899 if (typeD == WGMMATypes::f16) 900 expectedOutput = getShape().getN() / 4; 901 if (outputSize != expectedOutput) { 902 return emitOpError() << "results " << expectedOutput 903 << ", however output struct has " << outputSize 904 << " elements"; 905 } 906 // Check satfinite (only available for s32 accumulator) 907 if (typeD != WGMMATypes::s32 && 908 getSatfinite().value_or(NVVM::MMAIntOverflow::wrapped) == 909 NVVM::MMAIntOverflow::satfinite) { 910 return emitOpError() 911 << " `satfinite` can be only used with s32 accumulator, however " 912 "the current accumulator is " 913 << NVVM::stringifyWGMMATypes(typeD); 914 } 915 916 return success(); 917 } 918 919 std::string NVVM::WgmmaMmaAsyncOp::getPtx() { 920 921 int m = getShape().getM(), n = getShape().getN(), k = getShape().getK(); 922 bool isF16 = getTypeA() == WGMMATypes::f16 || getTypeA() == WGMMATypes::bf16; 923 924 StringRef outputTypeName = stringifyWGMMATypes(getTypeD()); 925 926 int expectedOutputRegisters = 0; 927 if (getTypeD() == WGMMATypes::f16) 928 expectedOutputRegisters = getShape().getN() / 4; 929 else 930 expectedOutputRegisters = getShape().getN() / 2; 931 932 std::string ptx; 933 llvm::raw_string_ostream ss(ptx); 934 935 ss << "{\n" 936 ".reg .pred p;\n" 937 "setp.ne.b32 p, $" 938 << ((expectedOutputRegisters * 2) + 2) 939 << ", 0;\n" 940 "wgmma.mma_async.sync.aligned.m" 941 << m << "n" << n << "k" << k << "." << outputTypeName << "." 942 << stringifyWGMMATypes(getTypeA()) << "." 943 << stringifyWGMMATypes(getTypeB()); 944 if (getSatfinite().value_or(NVVM::MMAIntOverflow::wrapped) == 945 NVVM::MMAIntOverflow::satfinite) 946 ss << ".satfinite"; 947 ss << " {"; 948 int regCnt = 0; 949 for (; regCnt < expectedOutputRegisters; ++regCnt) { 950 ss << "$" << regCnt; 951 if (regCnt != expectedOutputRegisters - 1) 952 ss << ", "; 953 } 954 955 ss << "},"; 956 // Need to map read/write registers correctly. 957 regCnt = (regCnt * 2); 958 ss << " $" << (regCnt) << "," << " $" << (regCnt + 1) << "," << " p"; 959 if (getTypeD() != WGMMATypes::s32) { 960 ss << ", $" << (regCnt + 3) << ", $" << (regCnt + 4); 961 } 962 // Don't add transpose parameters unless needed. 963 if (isF16) { 964 ss << ", $" << (regCnt + 5) << ", $" << (regCnt + 6); 965 } 966 ss << ";\n" 967 << "}\n"; 968 ss.flush(); 969 return ptx; 970 } 971 972 void NVVM::WgmmaMmaAsyncOp::getAsmValues( 973 RewriterBase &rewriter, 974 llvm::SmallVectorImpl<std::pair<mlir::Value, mlir::NVVM::PTXRegisterMod>> 975 &asmValues) { 976 bool isF16 = getTypeA() == WGMMATypes::f16 || getTypeA() == WGMMATypes::bf16; 977 if (getResults()) 978 asmValues.push_back({getResults(), mlir::NVVM::PTXRegisterMod::Write}); 979 if (getInouts()) 980 asmValues.push_back({getInouts(), mlir::NVVM::PTXRegisterMod::ReadWrite}); 981 asmValues.push_back({getDescriptorA(), mlir::NVVM::PTXRegisterMod::Read}); 982 asmValues.push_back({getDescriptorB(), mlir::NVVM::PTXRegisterMod::Read}); 983 asmValues.push_back({makeConstantI32(rewriter, static_cast<int>(getScaleD())), 984 mlir::NVVM::PTXRegisterMod::Read}); 985 if (getTypeD() != WGMMATypes::s32) { 986 asmValues.push_back( 987 {makeConstantI32(rewriter, 988 getScaleA() == NVVM::WGMMAScaleIn::neg ? -1 : 1), 989 mlir::NVVM::PTXRegisterMod::Read}); 990 asmValues.push_back( 991 {makeConstantI32(rewriter, 992 getScaleB() == NVVM::WGMMAScaleIn::neg ? -1 : 1), 993 mlir::NVVM::PTXRegisterMod::Read}); 994 } 995 if (isF16) { 996 asmValues.push_back( 997 {makeConstantI32(rewriter, static_cast<int>(getLayoutA())), 998 mlir::NVVM::PTXRegisterMod::Read}); 999 asmValues.push_back( 1000 {makeConstantI32(rewriter, 1 - static_cast<int>(getLayoutB())), 1001 mlir::NVVM::PTXRegisterMod::Read}); 1002 } 1003 } 1004 LogicalResult NVVM::FenceProxyOp::verify() { 1005 if (getKind() == NVVM::ProxyKind::async_shared && !getSpace().has_value()) { 1006 return emitOpError() << "async_shared fence requires space attribute"; 1007 } 1008 if (getKind() != NVVM::ProxyKind::async_shared && getSpace().has_value()) { 1009 return emitOpError() << "only async_shared fence can have space attribute"; 1010 } 1011 return success(); 1012 } 1013 1014 LogicalResult NVVM::SetMaxRegisterOp::verify() { 1015 if (getRegCount() % 8) 1016 return emitOpError("new register size must be multiple of 8"); 1017 if (getRegCount() < 24 || getRegCount() > 256) 1018 return emitOpError("new register size must be in between 24 to 256"); 1019 return success(); 1020 } 1021 1022 LogicalResult NVVM::BarrierOp::verify() { 1023 if (getNumberOfThreads() && !getBarrierId()) 1024 return emitOpError( 1025 "barrier id is missing, it should be set between 0 to 15"); 1026 return success(); 1027 } 1028 1029 //===----------------------------------------------------------------------===// 1030 // NVVMDialect initialization, type parsing, and registration. 1031 //===----------------------------------------------------------------------===// 1032 1033 // TODO: This should be the llvm.nvvm dialect once this is supported. 1034 void NVVMDialect::initialize() { 1035 addOperations< 1036 #define GET_OP_LIST 1037 #include "mlir/Dialect/LLVMIR/NVVMOps.cpp.inc" 1038 >(); 1039 addAttributes< 1040 #define GET_ATTRDEF_LIST 1041 #include "mlir/Dialect/LLVMIR/NVVMOpsAttributes.cpp.inc" 1042 >(); 1043 1044 // Support unknown operations because not all NVVM operations are 1045 // registered. 1046 allowUnknownOperations(); 1047 declarePromisedInterface<ConvertToLLVMPatternInterface, NVVMDialect>(); 1048 declarePromisedInterface<gpu::TargetAttrInterface, NVVMTargetAttr>(); 1049 } 1050 1051 LogicalResult NVVMDialect::verifyOperationAttribute(Operation *op, 1052 NamedAttribute attr) { 1053 StringAttr attrName = attr.getName(); 1054 // Kernel function attribute should be attached to functions. 1055 if (attrName == NVVMDialect::getKernelFuncAttrName()) { 1056 if (!isa<LLVM::LLVMFuncOp>(op)) { 1057 return op->emitError() << "'" << NVVMDialect::getKernelFuncAttrName() 1058 << "' attribute attached to unexpected op"; 1059 } 1060 } 1061 // If maxntid and reqntid exist, it must be an array with max 3 dim 1062 if (attrName == NVVMDialect::getMaxntidAttrName() || 1063 attrName == NVVMDialect::getReqntidAttrName()) { 1064 auto values = llvm::dyn_cast<DenseI32ArrayAttr>(attr.getValue()); 1065 if (!values || values.empty() || values.size() > 3) 1066 return op->emitError() 1067 << "'" << attrName 1068 << "' attribute must be integer array with maximum 3 index"; 1069 } 1070 // If minctasm and maxnreg exist, it must be an integer attribute 1071 if (attrName == NVVMDialect::getMinctasmAttrName() || 1072 attrName == NVVMDialect::getMaxnregAttrName()) { 1073 if (!llvm::dyn_cast<IntegerAttr>(attr.getValue())) 1074 return op->emitError() 1075 << "'" << attrName << "' attribute must be integer constant"; 1076 } 1077 1078 return success(); 1079 } 1080 1081 LogicalResult NVVMDialect::verifyRegionArgAttribute(Operation *op, 1082 unsigned regionIndex, 1083 unsigned argIndex, 1084 NamedAttribute argAttr) { 1085 auto funcOp = dyn_cast<FunctionOpInterface>(op); 1086 if (!funcOp) 1087 return success(); 1088 1089 bool isKernel = op->hasAttr(NVVMDialect::getKernelFuncAttrName()); 1090 StringAttr attrName = argAttr.getName(); 1091 if (attrName == NVVM::NVVMDialect::getGridConstantAttrName()) { 1092 if (!isKernel) { 1093 return op->emitError() 1094 << "'" << attrName 1095 << "' attribute must be present only on kernel arguments"; 1096 } 1097 if (!isa<UnitAttr>(argAttr.getValue())) 1098 return op->emitError() << "'" << attrName << "' must be a unit attribute"; 1099 if (!funcOp.getArgAttr(argIndex, LLVM::LLVMDialect::getByValAttrName())) { 1100 return op->emitError() 1101 << "'" << attrName 1102 << "' attribute requires the argument to also have attribute '" 1103 << LLVM::LLVMDialect::getByValAttrName() << "'"; 1104 } 1105 } 1106 1107 return success(); 1108 } 1109 1110 //===----------------------------------------------------------------------===// 1111 // NVVM target attribute. 1112 //===----------------------------------------------------------------------===// 1113 LogicalResult 1114 NVVMTargetAttr::verify(function_ref<InFlightDiagnostic()> emitError, 1115 int optLevel, StringRef triple, StringRef chip, 1116 StringRef features, DictionaryAttr flags, 1117 ArrayAttr files) { 1118 if (optLevel < 0 || optLevel > 3) { 1119 emitError() << "The optimization level must be a number between 0 and 3."; 1120 return failure(); 1121 } 1122 if (triple.empty()) { 1123 emitError() << "The target triple cannot be empty."; 1124 return failure(); 1125 } 1126 if (chip.empty()) { 1127 emitError() << "The target chip cannot be empty."; 1128 return failure(); 1129 } 1130 if (files && !llvm::all_of(files, [](::mlir::Attribute attr) { 1131 return attr && mlir::isa<StringAttr>(attr); 1132 })) { 1133 emitError() << "All the elements in the `link` array must be strings."; 1134 return failure(); 1135 } 1136 return success(); 1137 } 1138 1139 #define GET_OP_CLASSES 1140 #include "mlir/Dialect/LLVMIR/NVVMOps.cpp.inc" 1141 1142 #define GET_ATTRDEF_CLASSES 1143 #include "mlir/Dialect/LLVMIR/NVVMOpsAttributes.cpp.inc" 1144