xref: /llvm-project/mlir/lib/Dialect/GPU/Transforms/KernelOutlining.cpp (revision d6ee6a031063cb99ca9828f1698a60536ffbb38a)
1 //===- KernelOutlining.cpp - Implementation of GPU kernel outlining -------===//
2 //
3 // Copyright 2019 The MLIR Authors.
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License");
6 // you may not use this file except in compliance with the License.
7 // You may obtain a copy of the License at
8 //
9 //   http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS,
13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 // See the License for the specific language governing permissions and
15 // limitations under the License.
16 // =============================================================================
17 //
18 // This file implements the GPU dialect kernel outlining pass.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "mlir/Dialect/GPU/GPUDialect.h"
23 #include "mlir/Dialect/GPU/Passes.h"
24 #include "mlir/Dialect/StandardOps/Ops.h"
25 #include "mlir/IR/BlockAndValueMapping.h"
26 #include "mlir/IR/Builders.h"
27 #include "mlir/IR/SymbolTable.h"
28 #include "mlir/Pass/Pass.h"
29 
30 using namespace mlir;
31 
32 template <typename OpTy>
33 static void createForAllDimensions(OpBuilder &builder, Location loc,
34                                    SmallVectorImpl<Value *> &values) {
35   for (StringRef dim : {"x", "y", "z"}) {
36     Value *v = builder.create<OpTy>(loc, builder.getIndexType(),
37                                     builder.getStringAttr(dim));
38     values.push_back(v);
39   }
40 }
41 
42 // Add operations generating block/thread ids and gird/block dimensions at the
43 // beginning of `kernelFunc` and replace uses of the respective function args.
44 static void injectGpuIndexOperations(Location loc, FuncOp kernelFunc) {
45   OpBuilder OpBuilder(kernelFunc.getBody());
46   SmallVector<Value *, 12> indexOps;
47   createForAllDimensions<gpu::BlockIdOp>(OpBuilder, loc, indexOps);
48   createForAllDimensions<gpu::ThreadIdOp>(OpBuilder, loc, indexOps);
49   createForAllDimensions<gpu::GridDimOp>(OpBuilder, loc, indexOps);
50   createForAllDimensions<gpu::BlockDimOp>(OpBuilder, loc, indexOps);
51   // Replace the leading 12 function args with the respective thread/block index
52   // operations. Iterate backwards since args are erased and indices change.
53   for (int i = 11; i >= 0; --i) {
54     auto &firstBlock = kernelFunc.front();
55     firstBlock.getArgument(i)->replaceAllUsesWith(indexOps[i]);
56     firstBlock.eraseArgument(i);
57   }
58 }
59 
60 static bool isInliningBeneficiary(Operation *op) {
61   return isa<ConstantOp>(op) || isa<DimOp>(op);
62 }
63 
64 // Move arguments of the given kernel function into the function if this reduces
65 // the number of kernel arguments.
66 static gpu::LaunchFuncOp inlineBeneficiaryOps(FuncOp kernelFunc,
67                                               gpu::LaunchFuncOp launch) {
68   OpBuilder kernelBuilder(kernelFunc.getBody());
69   auto &firstBlock = kernelFunc.getBody().front();
70   llvm::SmallVector<Value *, 8> newLaunchArgs;
71   BlockAndValueMapping map;
72   for (int i = 0, e = launch.getNumKernelOperands(); i < e; ++i) {
73     map.map(launch.getKernelOperand(i), kernelFunc.getArgument(i));
74   }
75   for (int i = launch.getNumKernelOperands() - 1; i >= 0; --i) {
76     auto operandOp = launch.getKernelOperand(i)->getDefiningOp();
77     if (!operandOp || !isInliningBeneficiary(operandOp)) {
78       newLaunchArgs.push_back(launch.getKernelOperand(i));
79       continue;
80     }
81     // Only inline operations that do not create new arguments.
82     if (!llvm::all_of(operandOp->getOperands(),
83                       [map](Value *value) { return map.contains(value); })) {
84       continue;
85     }
86     auto clone = kernelBuilder.clone(*operandOp, map);
87     firstBlock.getArgument(i)->replaceAllUsesWith(clone->getResult(0));
88     firstBlock.eraseArgument(i);
89   }
90   if (newLaunchArgs.size() == launch.getNumKernelOperands())
91     return launch;
92 
93   std::reverse(newLaunchArgs.begin(), newLaunchArgs.end());
94   OpBuilder LaunchBuilder(launch);
95   SmallVector<Type, 8> newArgumentTypes;
96   newArgumentTypes.reserve(firstBlock.getNumArguments());
97   for (auto value : firstBlock.getArguments()) {
98     newArgumentTypes.push_back(value->getType());
99   }
100   kernelFunc.setType(LaunchBuilder.getFunctionType(newArgumentTypes, {}));
101   auto newLaunch = LaunchBuilder.create<gpu::LaunchFuncOp>(
102       launch.getLoc(), kernelFunc, launch.getGridSizeOperandValues(),
103       launch.getBlockSizeOperandValues(), newLaunchArgs);
104   launch.erase();
105   return newLaunch;
106 }
107 
108 // Outline the `gpu.launch` operation body into a kernel function. Replace
109 // `gpu.return` operations by `std.return` in the generated function.
110 static FuncOp outlineKernelFunc(gpu::LaunchOp launchOp) {
111   Location loc = launchOp.getLoc();
112   SmallVector<Type, 4> kernelOperandTypes(launchOp.getKernelOperandTypes());
113   FunctionType type =
114       FunctionType::get(kernelOperandTypes, {}, launchOp.getContext());
115   std::string kernelFuncName =
116       Twine(launchOp.getParentOfType<FuncOp>().getName(), "_kernel").str();
117   FuncOp outlinedFunc = FuncOp::create(loc, kernelFuncName, type);
118   outlinedFunc.getBody().takeBody(launchOp.body());
119   Builder builder(launchOp.getContext());
120   outlinedFunc.setAttr(gpu::GPUDialect::getKernelFuncAttrName(),
121                        builder.getUnitAttr());
122   injectGpuIndexOperations(loc, outlinedFunc);
123   outlinedFunc.walk([](gpu::ReturnOp op) {
124     OpBuilder replacer(op);
125     replacer.create<ReturnOp>(op.getLoc());
126     op.erase();
127   });
128   return outlinedFunc;
129 }
130 
131 // Replace `gpu.launch` operations with an `gpu.launch_func` operation launching
132 // `kernelFunc`. The kernel func contains the body of the `gpu.launch` with
133 // constant region arguments inlined.
134 static void convertToLaunchFuncOp(gpu::LaunchOp &launchOp, FuncOp kernelFunc) {
135   OpBuilder builder(launchOp);
136   auto launchFuncOp = builder.create<gpu::LaunchFuncOp>(
137       launchOp.getLoc(), kernelFunc, launchOp.getGridSizeOperandValues(),
138       launchOp.getBlockSizeOperandValues(), launchOp.getKernelOperandValues());
139   inlineBeneficiaryOps(kernelFunc, launchFuncOp);
140   launchOp.erase();
141 }
142 
143 namespace {
144 
145 /// Pass that moves the kernel of each LaunchOp into its separate nested module.
146 ///
147 /// This pass moves the kernel code of each LaunchOp into a function created
148 /// inside a nested module. It also creates an external function of the same
149 /// name in the parent module.
150 ///
151 /// The kernel modules are intended to be compiled to a cubin blob independently
152 /// in a separate pass. The external functions can then be annotated with the
153 /// symbol of the cubin accessor function.
154 class GpuKernelOutliningPass : public ModulePass<GpuKernelOutliningPass> {
155 public:
156   void runOnModule() override {
157     SymbolTable symbolTable(getModule());
158     bool modified = false;
159     for (auto func : getModule().getOps<FuncOp>()) {
160       // Insert just after the function.
161       Block::iterator insertPt(func.getOperation()->getNextNode());
162       func.walk([&](gpu::LaunchOp op) {
163         FuncOp outlinedFunc = outlineKernelFunc(op);
164 
165         // Create nested module and insert outlinedFunc. The module will
166         // originally get the same name as the function, but may be renamed on
167         // insertion into the parent module.
168         auto kernelModule = createKernelModule(outlinedFunc, symbolTable);
169         symbolTable.insert(kernelModule, insertPt);
170 
171         // Potentially changes signature, pulling in constants.
172         convertToLaunchFuncOp(op, outlinedFunc);
173         modified = true;
174       });
175     }
176 
177     // If any new module was inserted in this module, annotate this module as
178     // a container module.
179     if (modified)
180       getModule().setAttr(gpu::GPUDialect::getContainerModuleAttrName(),
181                           UnitAttr::get(&getContext()));
182   }
183 
184 private:
185   // Returns a module containing kernelFunc and all callees (recursive).
186   ModuleOp createKernelModule(FuncOp kernelFunc,
187                               const SymbolTable &parentSymbolTable) {
188     auto context = getModule().getContext();
189     Builder builder(context);
190     auto kernelModule =
191         ModuleOp::create(builder.getUnknownLoc(), kernelFunc.getName());
192     kernelModule.setAttr(gpu::GPUDialect::getKernelModuleAttrName(),
193                          builder.getUnitAttr());
194     SymbolTable symbolTable(kernelModule);
195     symbolTable.insert(kernelFunc);
196 
197     llvm::SmallVector<Operation *, 8> symbolDefWorklist = {kernelFunc};
198     while (!symbolDefWorklist.empty()) {
199       if (Optional<SymbolTable::UseRange> symbolUses =
200               SymbolTable::getSymbolUses(symbolDefWorklist.pop_back_val())) {
201         for (SymbolTable::SymbolUse symbolUse : *symbolUses) {
202           StringRef symbolName =
203               symbolUse.getSymbolRef().cast<FlatSymbolRefAttr>().getValue();
204           if (symbolTable.lookup(symbolName))
205             continue;
206 
207           Operation *symbolDefClone =
208               parentSymbolTable.lookup(symbolName)->clone();
209           symbolDefWorklist.push_back(symbolDefClone);
210           symbolTable.insert(symbolDefClone);
211         }
212       }
213     }
214 
215     return kernelModule;
216   }
217 };
218 
219 } // namespace
220 
221 std::unique_ptr<OpPassBase<ModuleOp>> mlir::createGpuKernelOutliningPass() {
222   return std::make_unique<GpuKernelOutliningPass>();
223 }
224 
225 static PassRegistration<GpuKernelOutliningPass>
226     pass("gpu-kernel-outlining",
227          "Outline gpu.launch bodies to kernel functions.");
228