xref: /llvm-project/mlir/lib/Dialect/GPU/Transforms/KernelOutlining.cpp (revision ace01605e04d094c243b0cad873e8919b80a0ced)
1 //===- KernelOutlining.cpp - Implementation of GPU kernel outlining -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the GPU dialect kernel outlining pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
15 #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
16 #include "mlir/Dialect/DLTI/DLTI.h"
17 #include "mlir/Dialect/GPU/GPUDialect.h"
18 #include "mlir/Dialect/GPU/Passes.h"
19 #include "mlir/Dialect/GPU/Utils.h"
20 #include "mlir/Dialect/MemRef/IR/MemRef.h"
21 #include "mlir/Dialect/StandardOps/IR/Ops.h"
22 #include "mlir/IR/BlockAndValueMapping.h"
23 #include "mlir/IR/Builders.h"
24 #include "mlir/IR/SymbolTable.h"
25 #include "mlir/Parser.h"
26 #include "mlir/Support/LLVM.h"
27 #include "mlir/Transforms/RegionUtils.h"
28 
29 using namespace mlir;
30 
31 template <typename OpTy>
32 static void createForAllDimensions(OpBuilder &builder, Location loc,
33                                    SmallVectorImpl<Value> &values) {
34   for (auto dim : {gpu::Dimension::x, gpu::Dimension::y, gpu::Dimension::z})
35     values.push_back(builder.create<OpTy>(loc, builder.getIndexType(), dim));
36 }
37 
38 /// Adds operations generating block/thread ids and grid/block dimensions at the
39 /// beginning of the `launchFuncOpBody` region. Add mapping from argument in
40 /// entry block of `launchOpBody`, to the corresponding result value of the
41 /// added operations.
42 static void injectGpuIndexOperations(Location loc, Region &launchFuncOpBody,
43                                      Region &launchOpBody,
44                                      BlockAndValueMapping &map) {
45   OpBuilder builder(loc->getContext());
46   Block &firstBlock = launchOpBody.front();
47   builder.setInsertionPointToStart(&launchFuncOpBody.front());
48   SmallVector<Value, 12> indexOps;
49   createForAllDimensions<gpu::BlockIdOp>(builder, loc, indexOps);
50   createForAllDimensions<gpu::ThreadIdOp>(builder, loc, indexOps);
51   createForAllDimensions<gpu::GridDimOp>(builder, loc, indexOps);
52   createForAllDimensions<gpu::BlockDimOp>(builder, loc, indexOps);
53   // Replace the leading 12 function args with the respective thread/block index
54   // operations. Iterate backwards since args are erased and indices change.
55   for (const auto &indexOp : enumerate(indexOps))
56     map.map(firstBlock.getArgument(indexOp.index()), indexOp.value());
57 }
58 
59 /// Identifies operations that are beneficial to sink into kernels. These
60 /// operations may not have side-effects, as otherwise sinking (and hence
61 /// duplicating them) is not legal.
62 static bool isSinkingBeneficiary(Operation *op) {
63   return isa<arith::ConstantOp, ConstantOp, memref::DimOp, arith::SelectOp,
64              arith::CmpIOp>(op);
65 }
66 
67 /// For a given operation `op`, computes whether it is beneficial to sink the
68 /// operation into the kernel. An operation can be sunk if doing so does not
69 /// introduce new kernel arguments. Whether a value is already available in the
70 /// kernel (and hence does not introduce new arguments) is checked by
71 /// querying `existingDependencies` and `availableValues`.
72 /// If an operand is not yet available, we recursively check whether it can be
73 /// made available by siking its defining op.
74 /// Operations that are indentified for sinking are added to `beneficiaryOps` in
75 /// the order they should appear in the kernel. Furthermore, `availableValues`
76 /// is updated with results that will be available after sinking the identified
77 /// ops.
78 static bool
79 extractBeneficiaryOps(Operation *op,
80                       const SetVector<Value> &existingDependencies,
81                       SetVector<Operation *> &beneficiaryOps,
82                       llvm::SmallPtrSetImpl<Value> &availableValues) {
83   if (beneficiaryOps.count(op))
84     return true;
85 
86   if (!isSinkingBeneficiary(op))
87     return false;
88 
89   for (Value operand : op->getOperands()) {
90     // It is already visible in the kernel, keep going.
91     if (availableValues.count(operand))
92       continue;
93     // Else check whether it can be made available via sinking or already is a
94     // dependency.
95     Operation *definingOp = operand.getDefiningOp();
96     if ((!definingOp ||
97          !extractBeneficiaryOps(definingOp, existingDependencies,
98                                 beneficiaryOps, availableValues)) &&
99         !existingDependencies.count(operand))
100       return false;
101   }
102   // We will sink the operation, mark its results as now available.
103   beneficiaryOps.insert(op);
104   for (Value result : op->getResults())
105     availableValues.insert(result);
106   return true;
107 }
108 
109 LogicalResult mlir::sinkOperationsIntoLaunchOp(gpu::LaunchOp launchOp) {
110   Region &launchOpBody = launchOp.body();
111 
112   // Identify uses from values defined outside of the scope of the launch
113   // operation.
114   SetVector<Value> sinkCandidates;
115   getUsedValuesDefinedAbove(launchOpBody, sinkCandidates);
116 
117   SetVector<Operation *> toBeSunk;
118   llvm::SmallPtrSet<Value, 4> availableValues;
119   for (Value operand : sinkCandidates) {
120     Operation *operandOp = operand.getDefiningOp();
121     if (!operandOp)
122       continue;
123     extractBeneficiaryOps(operandOp, sinkCandidates, toBeSunk, availableValues);
124   }
125 
126   // Insert operations so that the defs get cloned before uses.
127   BlockAndValueMapping map;
128   OpBuilder builder(launchOpBody);
129   for (Operation *op : toBeSunk) {
130     Operation *clonedOp = builder.clone(*op, map);
131     // Only replace uses within the launch op.
132     for (auto pair : llvm::zip(op->getResults(), clonedOp->getResults()))
133       replaceAllUsesInRegionWith(std::get<0>(pair), std::get<1>(pair),
134                                  launchOp.body());
135   }
136   return success();
137 }
138 
139 /// Outline the `gpu.launch` operation body into a kernel function. Replace
140 /// `gpu.terminator` operations by `gpu.return` in the generated function.
141 static gpu::GPUFuncOp outlineKernelFuncImpl(gpu::LaunchOp launchOp,
142                                             StringRef kernelFnName,
143                                             SetVector<Value> &operands) {
144   Location loc = launchOp.getLoc();
145   // Create a builder with no insertion point, insertion will happen separately
146   // due to symbol table manipulation.
147   OpBuilder builder(launchOp.getContext());
148   Region &launchOpBody = launchOp.body();
149 
150   // Identify uses from values defined outside of the scope of the launch
151   // operation.
152   getUsedValuesDefinedAbove(launchOpBody, operands);
153 
154   // Create the gpu.func operation.
155   SmallVector<Type, 4> kernelOperandTypes;
156   kernelOperandTypes.reserve(operands.size());
157   for (Value operand : operands) {
158     kernelOperandTypes.push_back(operand.getType());
159   }
160   FunctionType type =
161       FunctionType::get(launchOp.getContext(), kernelOperandTypes, {});
162   auto outlinedFunc = builder.create<gpu::GPUFuncOp>(loc, kernelFnName, type);
163   outlinedFunc->setAttr(gpu::GPUDialect::getKernelFuncAttrName(),
164                         builder.getUnitAttr());
165   BlockAndValueMapping map;
166 
167   // Map the arguments corresponding to the launch parameters like blockIdx,
168   // threadIdx, etc.
169   Region &outlinedFuncBody = outlinedFunc.body();
170   injectGpuIndexOperations(loc, outlinedFuncBody, launchOpBody, map);
171 
172   // Map arguments from gpu.launch region to the arguments of the gpu.func
173   // operation.
174   Block &entryBlock = outlinedFuncBody.front();
175   for (const auto &operand : enumerate(operands))
176     map.map(operand.value(), entryBlock.getArgument(operand.index()));
177 
178   // Clone the region of the gpu.launch operation into the gpu.func operation.
179   // TODO: If cloneInto can be modified such that if a mapping for
180   // a block exists, that block will be used to clone operations into (at the
181   // end of the block), instead of creating a new block, this would be much
182   // cleaner.
183   launchOpBody.cloneInto(&outlinedFuncBody, map);
184 
185   // Branch from entry of the gpu.func operation to the block that is cloned
186   // from the entry block of the gpu.launch operation.
187   Block &launchOpEntry = launchOpBody.front();
188   Block *clonedLaunchOpEntry = map.lookup(&launchOpEntry);
189   builder.setInsertionPointToEnd(&entryBlock);
190   builder.create<cf::BranchOp>(loc, clonedLaunchOpEntry);
191 
192   outlinedFunc.walk([](gpu::TerminatorOp op) {
193     OpBuilder replacer(op);
194     replacer.create<gpu::ReturnOp>(op.getLoc());
195     op.erase();
196   });
197   return outlinedFunc;
198 }
199 
200 gpu::GPUFuncOp mlir::outlineKernelFunc(gpu::LaunchOp launchOp,
201                                        StringRef kernelFnName,
202                                        llvm::SmallVectorImpl<Value> &operands) {
203   DenseSet<Value> inputOperandSet;
204   inputOperandSet.insert(operands.begin(), operands.end());
205   SetVector<Value> operandSet(operands.begin(), operands.end());
206   auto funcOp = outlineKernelFuncImpl(launchOp, kernelFnName, operandSet);
207   for (auto operand : operandSet) {
208     if (!inputOperandSet.count(operand))
209       operands.push_back(operand);
210   }
211   return funcOp;
212 }
213 
214 /// Replace `gpu.launch` operations with an `gpu.launch_func` operation
215 /// launching `kernelFunc`. The kernel func contains the body of the
216 /// `gpu.launch` with constant region arguments inlined.
217 static void convertToLaunchFuncOp(gpu::LaunchOp launchOp,
218                                   gpu::GPUFuncOp kernelFunc,
219                                   ValueRange operands) {
220   OpBuilder builder(launchOp);
221   // The launch op has an optional dynamic shared memory size. If it doesn't
222   // exist, we use zero.
223   builder.create<gpu::LaunchFuncOp>(
224       launchOp.getLoc(), kernelFunc, launchOp.getGridSizeOperandValues(),
225       launchOp.getBlockSizeOperandValues(), launchOp.dynamicSharedMemorySize(),
226       operands);
227   launchOp.erase();
228 }
229 
230 namespace {
231 /// Pass that moves the kernel of each LaunchOp into its separate nested module.
232 ///
233 /// This pass moves the kernel code of each LaunchOp into a function created
234 /// inside a nested module. It also creates an external function of the same
235 /// name in the parent module.
236 ///
237 /// The gpu.modules are intended to be compiled to a cubin blob independently in
238 /// a separate pass. The external functions can then be annotated with the
239 /// symbol of the cubin accessor function.
240 class GpuKernelOutliningPass
241     : public GpuKernelOutliningBase<GpuKernelOutliningPass> {
242 public:
243   GpuKernelOutliningPass(StringRef dlStr) {
244     if (!dlStr.empty() && !dataLayoutStr.hasValue())
245       dataLayoutStr = dlStr.str();
246   }
247 
248   GpuKernelOutliningPass(const GpuKernelOutliningPass &other)
249       : dataLayoutSpec(other.dataLayoutSpec) {
250     dataLayoutStr = other.dataLayoutStr;
251   }
252 
253   LogicalResult initialize(MLIRContext *context) override {
254     // Initialize the data layout specification from the data layout string.
255     if (!dataLayoutStr.empty()) {
256       Attribute resultAttr = mlir::parseAttribute(dataLayoutStr, context);
257       if (!resultAttr)
258         return failure();
259 
260       dataLayoutSpec = resultAttr.dyn_cast<DataLayoutSpecInterface>();
261       if (!dataLayoutSpec)
262         return failure();
263     }
264 
265     return success();
266   }
267 
268   void runOnOperation() override {
269     SymbolTable symbolTable(getOperation());
270     bool modified = false;
271     for (auto func : getOperation().getOps<FuncOp>()) {
272       // Insert just after the function.
273       Block::iterator insertPt(func->getNextNode());
274       auto funcWalkResult = func.walk([&](gpu::LaunchOp op) {
275         SetVector<Value> operands;
276         std::string kernelFnName =
277             Twine(op->getParentOfType<FuncOp>().getName(), "_kernel").str();
278 
279         // Pull in instructions that can be sunk
280         if (failed(sinkOperationsIntoLaunchOp(op)))
281           return WalkResult::interrupt();
282         gpu::GPUFuncOp outlinedFunc =
283             outlineKernelFuncImpl(op, kernelFnName, operands);
284 
285         // Create nested module and insert outlinedFunc. The module will
286         // originally get the same name as the function, but may be renamed on
287         // insertion into the parent module.
288         auto kernelModule = createKernelModule(outlinedFunc, symbolTable);
289         symbolTable.insert(kernelModule, insertPt);
290 
291         // Potentially changes signature, pulling in constants.
292         convertToLaunchFuncOp(op, outlinedFunc, operands.getArrayRef());
293         modified = true;
294         return WalkResult::advance();
295       });
296       if (funcWalkResult.wasInterrupted())
297         return signalPassFailure();
298     }
299 
300     // If any new module was inserted in this module, annotate this module as
301     // a container module.
302     if (modified)
303       getOperation()->setAttr(gpu::GPUDialect::getContainerModuleAttrName(),
304                               UnitAttr::get(&getContext()));
305   }
306 
307 private:
308   /// Returns a gpu.module containing kernelFunc and all callees (recursive).
309   gpu::GPUModuleOp createKernelModule(gpu::GPUFuncOp kernelFunc,
310                                       const SymbolTable &parentSymbolTable) {
311     // TODO: This code cannot use an OpBuilder because it must be inserted into
312     // a SymbolTable by the caller. SymbolTable needs to be refactored to
313     // prevent manual building of Ops with symbols in code using SymbolTables
314     // and then this needs to use the OpBuilder.
315     auto *context = getOperation().getContext();
316     OpBuilder builder(context);
317     auto kernelModule = builder.create<gpu::GPUModuleOp>(kernelFunc.getLoc(),
318                                                          kernelFunc.getName());
319 
320     // If a valid data layout spec was provided, attach it to the kernel module.
321     // Otherwise, the default data layout will be used.
322     if (dataLayoutSpec)
323       kernelModule->setAttr(DLTIDialect::kDataLayoutAttrName, dataLayoutSpec);
324 
325     SymbolTable symbolTable(kernelModule);
326     symbolTable.insert(kernelFunc);
327 
328     SmallVector<Operation *, 8> symbolDefWorklist = {kernelFunc};
329     while (!symbolDefWorklist.empty()) {
330       if (Optional<SymbolTable::UseRange> symbolUses =
331               SymbolTable::getSymbolUses(symbolDefWorklist.pop_back_val())) {
332         for (SymbolTable::SymbolUse symbolUse : *symbolUses) {
333           StringRef symbolName =
334               symbolUse.getSymbolRef().cast<FlatSymbolRefAttr>().getValue();
335           if (symbolTable.lookup(symbolName))
336             continue;
337 
338           Operation *symbolDefClone =
339               parentSymbolTable.lookup(symbolName)->clone();
340           symbolDefWorklist.push_back(symbolDefClone);
341           symbolTable.insert(symbolDefClone);
342         }
343       }
344     }
345 
346     return kernelModule;
347   }
348 
349   Option<std::string> dataLayoutStr{
350       *this, "data-layout-str",
351       llvm::cl::desc("String containing the data layout specification to be "
352                      "attached to the GPU kernel module")};
353 
354   DataLayoutSpecInterface dataLayoutSpec;
355 };
356 
357 } // namespace
358 
359 std::unique_ptr<OperationPass<ModuleOp>>
360 mlir::createGpuKernelOutliningPass(StringRef dataLayoutStr) {
361   return std::make_unique<GpuKernelOutliningPass>(dataLayoutStr);
362 }
363