xref: /llvm-project/mlir/lib/Dialect/GPU/Transforms/KernelOutlining.cpp (revision 08b63db8bb3ea847543351e1268be31ea327ad6b)
1 //===- KernelOutlining.cpp - Implementation of GPU kernel outlining -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the GPU dialect kernel outlining pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Dialect/GPU/GPUDialect.h"
15 #include "mlir/Dialect/GPU/Passes.h"
16 #include "mlir/Dialect/GPU/Utils.h"
17 #include "mlir/Dialect/MemRef/IR/MemRef.h"
18 #include "mlir/Dialect/StandardOps/IR/Ops.h"
19 #include "mlir/IR/BlockAndValueMapping.h"
20 #include "mlir/IR/Builders.h"
21 #include "mlir/IR/SymbolTable.h"
22 #include "mlir/Support/LLVM.h"
23 #include "mlir/Transforms/RegionUtils.h"
24 
25 using namespace mlir;
26 
27 template <typename OpTy>
28 static void createForAllDimensions(OpBuilder &builder, Location loc,
29                                    SmallVectorImpl<Value> &values) {
30   for (StringRef dim : {"x", "y", "z"}) {
31     Value v = builder.create<OpTy>(loc, builder.getIndexType(),
32                                    builder.getStringAttr(dim));
33     values.push_back(v);
34   }
35 }
36 
37 /// Adds operations generating block/thread ids and grid/block dimensions at the
38 /// beginning of the `launchFuncOpBody` region. Add mapping from argument in
39 /// entry block of `launchOpBody`, to the corresponding result value of the
40 /// added operations.
41 static void injectGpuIndexOperations(Location loc, Region &launchFuncOpBody,
42                                      Region &launchOpBody,
43                                      BlockAndValueMapping &map) {
44   OpBuilder builder(loc->getContext());
45   Block &firstBlock = launchOpBody.front();
46   builder.setInsertionPointToStart(&launchFuncOpBody.front());
47   SmallVector<Value, 12> indexOps;
48   createForAllDimensions<gpu::BlockIdOp>(builder, loc, indexOps);
49   createForAllDimensions<gpu::ThreadIdOp>(builder, loc, indexOps);
50   createForAllDimensions<gpu::GridDimOp>(builder, loc, indexOps);
51   createForAllDimensions<gpu::BlockDimOp>(builder, loc, indexOps);
52   // Replace the leading 12 function args with the respective thread/block index
53   // operations. Iterate backwards since args are erased and indices change.
54   for (auto indexOp : enumerate(indexOps))
55     map.map(firstBlock.getArgument(indexOp.index()), indexOp.value());
56 }
57 
58 /// Identifies operations that are beneficial to sink into kernels. These
59 /// operations may not have side-effects, as otherwise sinking (and hence
60 /// duplicating them) is not legal.
61 static bool isSinkingBeneficiary(Operation *op) {
62   return isa<ConstantOp, memref::DimOp, SelectOp, CmpIOp>(op);
63 }
64 
65 /// For a given operation `op`, computes whether it is beneficial to sink the
66 /// operation into the kernel. An operation can be sunk if doing so does not
67 /// introduce new kernel arguments. Whether a value is already available in the
68 /// kernel (and hence does not introduce new arguments) is checked by
69 /// querying `existingDependencies` and `availableValues`.
70 /// If an operand is not yet available, we recursively check whether it can be
71 /// made available by siking its defining op.
72 /// Operations that are indentified for sinking are added to `beneficiaryOps` in
73 /// the order they should appear in the kernel. Furthermore, `availableValues`
74 /// is updated with results that will be available after sinking the identified
75 /// ops.
76 static bool
77 extractBeneficiaryOps(Operation *op, SetVector<Value> existingDependencies,
78                       SetVector<Operation *> &beneficiaryOps,
79                       llvm::SmallPtrSetImpl<Value> &availableValues) {
80   if (beneficiaryOps.count(op))
81     return true;
82 
83   if (!isSinkingBeneficiary(op))
84     return false;
85 
86   for (Value operand : op->getOperands()) {
87     // It is already visible in the kernel, keep going.
88     if (availableValues.count(operand))
89       continue;
90     // Else check whether it can be made available via sinking or already is a
91     // dependency.
92     Operation *definingOp = operand.getDefiningOp();
93     if ((!definingOp ||
94          !extractBeneficiaryOps(definingOp, existingDependencies,
95                                 beneficiaryOps, availableValues)) &&
96         !existingDependencies.count(operand))
97       return false;
98   }
99   // We will sink the operation, mark its results as now available.
100   beneficiaryOps.insert(op);
101   for (Value result : op->getResults())
102     availableValues.insert(result);
103   return true;
104 }
105 
106 LogicalResult mlir::sinkOperationsIntoLaunchOp(gpu::LaunchOp launchOp) {
107   Region &launchOpBody = launchOp.body();
108 
109   // Identify uses from values defined outside of the scope of the launch
110   // operation.
111   SetVector<Value> sinkCandidates;
112   getUsedValuesDefinedAbove(launchOpBody, sinkCandidates);
113 
114   SetVector<Operation *> toBeSunk;
115   llvm::SmallPtrSet<Value, 4> availableValues;
116   for (Value operand : sinkCandidates) {
117     Operation *operandOp = operand.getDefiningOp();
118     if (!operandOp)
119       continue;
120     extractBeneficiaryOps(operandOp, sinkCandidates, toBeSunk, availableValues);
121   }
122 
123   // Insert operations so that the defs get cloned before uses.
124   BlockAndValueMapping map;
125   OpBuilder builder(launchOpBody);
126   for (Operation *op : toBeSunk) {
127     Operation *clonedOp = builder.clone(*op, map);
128     // Only replace uses within the launch op.
129     for (auto pair : llvm::zip(op->getResults(), clonedOp->getResults()))
130       replaceAllUsesInRegionWith(std::get<0>(pair), std::get<1>(pair),
131                                  launchOp.body());
132   }
133   return success();
134 }
135 
136 /// Outline the `gpu.launch` operation body into a kernel function. Replace
137 /// `gpu.terminator` operations by `gpu.return` in the generated function.
138 static gpu::GPUFuncOp outlineKernelFuncImpl(gpu::LaunchOp launchOp,
139                                             StringRef kernelFnName,
140                                             SetVector<Value> &operands) {
141   Location loc = launchOp.getLoc();
142   // Create a builder with no insertion point, insertion will happen separately
143   // due to symbol table manipulation.
144   OpBuilder builder(launchOp.getContext());
145   Region &launchOpBody = launchOp.body();
146 
147   // Identify uses from values defined outside of the scope of the launch
148   // operation.
149   getUsedValuesDefinedAbove(launchOpBody, operands);
150 
151   // Create the gpu.func operation.
152   SmallVector<Type, 4> kernelOperandTypes;
153   kernelOperandTypes.reserve(operands.size());
154   for (Value operand : operands) {
155     kernelOperandTypes.push_back(operand.getType());
156   }
157   FunctionType type =
158       FunctionType::get(launchOp.getContext(), kernelOperandTypes, {});
159   auto outlinedFunc = builder.create<gpu::GPUFuncOp>(loc, kernelFnName, type);
160   outlinedFunc->setAttr(gpu::GPUDialect::getKernelFuncAttrName(),
161                         builder.getUnitAttr());
162   BlockAndValueMapping map;
163 
164   // Map the arguments corresponding to the launch parameters like blockIdx,
165   // threadIdx, etc.
166   Region &outlinedFuncBody = outlinedFunc.body();
167   injectGpuIndexOperations(loc, outlinedFuncBody, launchOpBody, map);
168 
169   // Map arguments from gpu.launch region to the arguments of the gpu.func
170   // operation.
171   Block &entryBlock = outlinedFuncBody.front();
172   for (auto operand : enumerate(operands))
173     map.map(operand.value(), entryBlock.getArgument(operand.index()));
174 
175   // Clone the region of the gpu.launch operation into the gpu.func operation.
176   // TODO: If cloneInto can be modified such that if a mapping for
177   // a block exists, that block will be used to clone operations into (at the
178   // end of the block), instead of creating a new block, this would be much
179   // cleaner.
180   launchOpBody.cloneInto(&outlinedFuncBody, map);
181 
182   // Branch from entry of the gpu.func operation to the block that is cloned
183   // from the entry block of the gpu.launch operation.
184   Block &launchOpEntry = launchOpBody.front();
185   Block *clonedLaunchOpEntry = map.lookup(&launchOpEntry);
186   builder.setInsertionPointToEnd(&entryBlock);
187   builder.create<BranchOp>(loc, clonedLaunchOpEntry);
188 
189   outlinedFunc.walk([](gpu::TerminatorOp op) {
190     OpBuilder replacer(op);
191     replacer.create<gpu::ReturnOp>(op.getLoc());
192     op.erase();
193   });
194   return outlinedFunc;
195 }
196 
197 gpu::GPUFuncOp mlir::outlineKernelFunc(gpu::LaunchOp launchOp,
198                                        StringRef kernelFnName,
199                                        llvm::SmallVectorImpl<Value> &operands) {
200   DenseSet<Value> inputOperandSet;
201   inputOperandSet.insert(operands.begin(), operands.end());
202   SetVector<Value> operandSet(operands.begin(), operands.end());
203   auto funcOp = outlineKernelFuncImpl(launchOp, kernelFnName, operandSet);
204   for (auto operand : operandSet) {
205     if (!inputOperandSet.count(operand))
206       operands.push_back(operand);
207   }
208   return funcOp;
209 }
210 
211 /// Replace `gpu.launch` operations with an `gpu.launch_func` operation
212 /// launching `kernelFunc`. The kernel func contains the body of the
213 /// `gpu.launch` with constant region arguments inlined.
214 static void convertToLaunchFuncOp(gpu::LaunchOp launchOp,
215                                   gpu::GPUFuncOp kernelFunc,
216                                   ValueRange operands) {
217   OpBuilder builder(launchOp);
218   // The launch op has an optional dynamic shared memory size. If it doesn't
219   // exist, we use zero.
220   builder.create<gpu::LaunchFuncOp>(
221       launchOp.getLoc(), kernelFunc, launchOp.getGridSizeOperandValues(),
222       launchOp.getBlockSizeOperandValues(), launchOp.dynamicSharedMemorySize(),
223       operands);
224   launchOp.erase();
225 }
226 
227 namespace {
228 /// Pass that moves the kernel of each LaunchOp into its separate nested module.
229 ///
230 /// This pass moves the kernel code of each LaunchOp into a function created
231 /// inside a nested module. It also creates an external function of the same
232 /// name in the parent module.
233 ///
234 /// The gpu.modules are intended to be compiled to a cubin blob independently in
235 /// a separate pass. The external functions can then be annotated with the
236 /// symbol of the cubin accessor function.
237 class GpuKernelOutliningPass
238     : public GpuKernelOutliningBase<GpuKernelOutliningPass> {
239 public:
240   void runOnOperation() override {
241     SymbolTable symbolTable(getOperation());
242     bool modified = false;
243     for (auto func : getOperation().getOps<FuncOp>()) {
244       // Insert just after the function.
245       Block::iterator insertPt(func->getNextNode());
246       auto funcWalkResult = func.walk([&](gpu::LaunchOp op) {
247         SetVector<Value> operands;
248         std::string kernelFnName =
249             Twine(op->getParentOfType<FuncOp>().getName(), "_kernel").str();
250 
251         // Pull in instructions that can be sunk
252         if (failed(sinkOperationsIntoLaunchOp(op)))
253           return WalkResult::interrupt();
254         gpu::GPUFuncOp outlinedFunc =
255             outlineKernelFuncImpl(op, kernelFnName, operands);
256 
257         // Create nested module and insert outlinedFunc. The module will
258         // originally get the same name as the function, but may be renamed on
259         // insertion into the parent module.
260         auto kernelModule = createKernelModule(outlinedFunc, symbolTable);
261         symbolTable.insert(kernelModule, insertPt);
262 
263         // Potentially changes signature, pulling in constants.
264         convertToLaunchFuncOp(op, outlinedFunc, operands.getArrayRef());
265         modified = true;
266         return WalkResult::advance();
267       });
268       if (funcWalkResult.wasInterrupted())
269         return signalPassFailure();
270     }
271 
272     // If any new module was inserted in this module, annotate this module as
273     // a container module.
274     if (modified)
275       getOperation()->setAttr(gpu::GPUDialect::getContainerModuleAttrName(),
276                               UnitAttr::get(&getContext()));
277   }
278 
279 private:
280   /// Returns a gpu.module containing kernelFunc and all callees (recursive).
281   gpu::GPUModuleOp createKernelModule(gpu::GPUFuncOp kernelFunc,
282                                       const SymbolTable &parentSymbolTable) {
283     // TODO: This code cannot use an OpBuilder because it must be inserted into
284     // a SymbolTable by the caller. SymbolTable needs to be refactored to
285     // prevent manual building of Ops with symbols in code using SymbolTables
286     // and then this needs to use the OpBuilder.
287     auto context = getOperation().getContext();
288     OpBuilder builder(context);
289     auto kernelModule = builder.create<gpu::GPUModuleOp>(kernelFunc.getLoc(),
290                                                          kernelFunc.getName());
291     SymbolTable symbolTable(kernelModule);
292     symbolTable.insert(kernelFunc);
293 
294     SmallVector<Operation *, 8> symbolDefWorklist = {kernelFunc};
295     while (!symbolDefWorklist.empty()) {
296       if (Optional<SymbolTable::UseRange> symbolUses =
297               SymbolTable::getSymbolUses(symbolDefWorklist.pop_back_val())) {
298         for (SymbolTable::SymbolUse symbolUse : *symbolUses) {
299           StringRef symbolName =
300               symbolUse.getSymbolRef().cast<FlatSymbolRefAttr>().getValue();
301           if (symbolTable.lookup(symbolName))
302             continue;
303 
304           Operation *symbolDefClone =
305               parentSymbolTable.lookup(symbolName)->clone();
306           symbolDefWorklist.push_back(symbolDefClone);
307           symbolTable.insert(symbolDefClone);
308         }
309       }
310     }
311 
312     return kernelModule;
313   }
314 };
315 
316 } // namespace
317 
318 std::unique_ptr<OperationPass<ModuleOp>> mlir::createGpuKernelOutliningPass() {
319   return std::make_unique<GpuKernelOutliningPass>();
320 }
321