1 //===- KernelOutlining.cpp - Implementation of GPU kernel outlining -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the GPU dialect kernel outlining pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/AsmParser/AsmParser.h" 15 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 16 #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" 17 #include "mlir/Dialect/DLTI/DLTI.h" 18 #include "mlir/Dialect/Func/IR/FuncOps.h" 19 #include "mlir/Dialect/GPU/IR/GPUDialect.h" 20 #include "mlir/Dialect/GPU/Transforms/Passes.h" 21 #include "mlir/Dialect/GPU/Transforms/Utils.h" 22 #include "mlir/Dialect/MemRef/IR/MemRef.h" 23 #include "mlir/IR/BlockAndValueMapping.h" 24 #include "mlir/IR/Builders.h" 25 #include "mlir/IR/Matchers.h" 26 #include "mlir/IR/SymbolTable.h" 27 #include "mlir/Support/LLVM.h" 28 #include "mlir/Transforms/RegionUtils.h" 29 30 using namespace mlir; 31 32 template <typename OpTy> 33 static void createForAllDimensions(OpBuilder &builder, Location loc, 34 SmallVectorImpl<Value> &values) { 35 for (auto dim : {gpu::Dimension::x, gpu::Dimension::y, gpu::Dimension::z}) 36 values.push_back(builder.create<OpTy>(loc, builder.getIndexType(), dim)); 37 } 38 39 /// Adds operations generating block/thread ids and grid/block dimensions at the 40 /// beginning of the `launchFuncOpBody` region. Add mapping from argument in 41 /// entry block of `launchOpBody`, to the corresponding result value of the 42 /// added operations. 43 static void injectGpuIndexOperations(Location loc, Region &launchFuncOpBody, 44 Region &launchOpBody, 45 BlockAndValueMapping &map) { 46 OpBuilder builder(loc->getContext()); 47 Block &firstBlock = launchOpBody.front(); 48 builder.setInsertionPointToStart(&launchFuncOpBody.front()); 49 SmallVector<Value, 12> indexOps; 50 createForAllDimensions<gpu::BlockIdOp>(builder, loc, indexOps); 51 createForAllDimensions<gpu::ThreadIdOp>(builder, loc, indexOps); 52 createForAllDimensions<gpu::GridDimOp>(builder, loc, indexOps); 53 createForAllDimensions<gpu::BlockDimOp>(builder, loc, indexOps); 54 // Replace the leading 12 function args with the respective thread/block index 55 // operations. Iterate backwards since args are erased and indices change. 56 for (const auto &indexOp : enumerate(indexOps)) 57 map.map(firstBlock.getArgument(indexOp.index()), indexOp.value()); 58 } 59 60 /// Identifies operations that are beneficial to sink into kernels. These 61 /// operations may not have side-effects, as otherwise sinking (and hence 62 /// duplicating them) is not legal. 63 static bool isLikelyAnIndexComputation(Operation *op) { 64 return matchPattern(op, m_Constant()) || 65 isa<memref::DimOp, arith::SelectOp, arith::CmpIOp>(op); 66 } 67 68 /// For a given operation `op`, computes whether it is beneficial to sink the 69 /// operation into the kernel. An operation can be sunk if doing so does not 70 /// introduce new kernel arguments. Whether a value is already available in the 71 /// kernel (and hence does not introduce new arguments) is checked by 72 /// querying `existingDependencies` and `availableValues`. 73 /// If an operand is not yet available, we recursively check whether it can be 74 /// made available by siking its defining op. 75 /// Operations that are indentified for sinking are added to `beneficiaryOps` in 76 /// the order they should appear in the kernel. Furthermore, `availableValues` 77 /// is updated with results that will be available after sinking the identified 78 /// ops. 79 static bool extractBeneficiaryOps( 80 Operation *op, const SetVector<Value> &existingDependencies, 81 SetVector<Operation *> &beneficiaryOps, 82 llvm::SmallPtrSetImpl<Value> &availableValues, 83 llvm::function_ref<bool(Operation *)> isSinkingBeneficiary) { 84 if (beneficiaryOps.count(op)) 85 return true; 86 87 if (!isSinkingBeneficiary(op)) 88 return false; 89 90 for (Value operand : op->getOperands()) { 91 // It is already visible in the kernel, keep going. 92 if (availableValues.count(operand)) 93 continue; 94 // Else check whether it can be made available via sinking or already is a 95 // dependency. 96 Operation *definingOp = operand.getDefiningOp(); 97 if ((!definingOp || !extractBeneficiaryOps(definingOp, existingDependencies, 98 beneficiaryOps, availableValues, 99 isSinkingBeneficiary)) && 100 !existingDependencies.count(operand)) 101 return false; 102 } 103 // We will sink the operation, mark its results as now available. 104 beneficiaryOps.insert(op); 105 for (Value result : op->getResults()) 106 availableValues.insert(result); 107 return true; 108 } 109 110 LogicalResult mlir::sinkOperationsIntoLaunchOp( 111 gpu::LaunchOp launchOp, 112 llvm::function_ref<bool(Operation *)> isSinkingBeneficiary) { 113 assert(isSinkingBeneficiary); 114 Region &launchOpBody = launchOp.body(); 115 116 // Identify uses from values defined outside of the scope of the launch 117 // operation. 118 SetVector<Value> sinkCandidates; 119 getUsedValuesDefinedAbove(launchOpBody, sinkCandidates); 120 121 SetVector<Operation *> toBeSunk; 122 llvm::SmallPtrSet<Value, 4> availableValues; 123 for (Value operand : sinkCandidates) { 124 Operation *operandOp = operand.getDefiningOp(); 125 if (!operandOp) 126 continue; 127 extractBeneficiaryOps(operandOp, sinkCandidates, toBeSunk, availableValues, 128 isSinkingBeneficiary); 129 } 130 131 // Insert operations so that the defs get cloned before uses. 132 BlockAndValueMapping map; 133 OpBuilder builder(launchOpBody); 134 for (Operation *op : toBeSunk) { 135 Operation *clonedOp = builder.clone(*op, map); 136 // Only replace uses within the launch op. 137 for (auto pair : llvm::zip(op->getResults(), clonedOp->getResults())) 138 replaceAllUsesInRegionWith(std::get<0>(pair), std::get<1>(pair), 139 launchOp.body()); 140 } 141 return success(); 142 } 143 144 /// Outline the `gpu.launch` operation body into a kernel function. Replace 145 /// `gpu.terminator` operations by `gpu.return` in the generated function. 146 static gpu::GPUFuncOp outlineKernelFuncImpl(gpu::LaunchOp launchOp, 147 StringRef kernelFnName, 148 SetVector<Value> &operands) { 149 Location loc = launchOp.getLoc(); 150 // Create a builder with no insertion point, insertion will happen separately 151 // due to symbol table manipulation. 152 OpBuilder builder(launchOp.getContext()); 153 Region &launchOpBody = launchOp.body(); 154 155 // Identify uses from values defined outside of the scope of the launch 156 // operation. 157 getUsedValuesDefinedAbove(launchOpBody, operands); 158 159 // Create the gpu.func operation. 160 SmallVector<Type, 4> kernelOperandTypes; 161 kernelOperandTypes.reserve(operands.size()); 162 for (Value operand : operands) { 163 kernelOperandTypes.push_back(operand.getType()); 164 } 165 FunctionType type = 166 FunctionType::get(launchOp.getContext(), kernelOperandTypes, {}); 167 auto outlinedFunc = builder.create<gpu::GPUFuncOp>(loc, kernelFnName, type); 168 outlinedFunc->setAttr(gpu::GPUDialect::getKernelFuncAttrName(), 169 builder.getUnitAttr()); 170 BlockAndValueMapping map; 171 172 // Map the arguments corresponding to the launch parameters like blockIdx, 173 // threadIdx, etc. 174 Region &outlinedFuncBody = outlinedFunc.body(); 175 injectGpuIndexOperations(loc, outlinedFuncBody, launchOpBody, map); 176 177 // Map arguments from gpu.launch region to the arguments of the gpu.func 178 // operation. 179 Block &entryBlock = outlinedFuncBody.front(); 180 for (const auto &operand : enumerate(operands)) 181 map.map(operand.value(), entryBlock.getArgument(operand.index())); 182 183 // Clone the region of the gpu.launch operation into the gpu.func operation. 184 // TODO: If cloneInto can be modified such that if a mapping for 185 // a block exists, that block will be used to clone operations into (at the 186 // end of the block), instead of creating a new block, this would be much 187 // cleaner. 188 launchOpBody.cloneInto(&outlinedFuncBody, map); 189 190 // Branch from entry of the gpu.func operation to the block that is cloned 191 // from the entry block of the gpu.launch operation. 192 Block &launchOpEntry = launchOpBody.front(); 193 Block *clonedLaunchOpEntry = map.lookup(&launchOpEntry); 194 builder.setInsertionPointToEnd(&entryBlock); 195 builder.create<cf::BranchOp>(loc, clonedLaunchOpEntry); 196 197 outlinedFunc.walk([](gpu::TerminatorOp op) { 198 OpBuilder replacer(op); 199 replacer.create<gpu::ReturnOp>(op.getLoc()); 200 op.erase(); 201 }); 202 return outlinedFunc; 203 } 204 205 gpu::GPUFuncOp mlir::outlineKernelFunc(gpu::LaunchOp launchOp, 206 StringRef kernelFnName, 207 llvm::SmallVectorImpl<Value> &operands) { 208 DenseSet<Value> inputOperandSet; 209 inputOperandSet.insert(operands.begin(), operands.end()); 210 SetVector<Value> operandSet(operands.begin(), operands.end()); 211 auto funcOp = outlineKernelFuncImpl(launchOp, kernelFnName, operandSet); 212 for (auto operand : operandSet) { 213 if (!inputOperandSet.count(operand)) 214 operands.push_back(operand); 215 } 216 return funcOp; 217 } 218 219 /// Replace `gpu.launch` operations with an `gpu.launch_func` operation 220 /// launching `kernelFunc`. The kernel func contains the body of the 221 /// `gpu.launch` with constant region arguments inlined. 222 static void convertToLaunchFuncOp(gpu::LaunchOp launchOp, 223 gpu::GPUFuncOp kernelFunc, 224 ValueRange operands) { 225 OpBuilder builder(launchOp); 226 // The launch op has an optional dynamic shared memory size. If it doesn't 227 // exist, we use zero. 228 Value asyncToken = launchOp.asyncToken(); 229 auto launchFunc = builder.create<gpu::LaunchFuncOp>( 230 launchOp.getLoc(), kernelFunc, launchOp.getGridSizeOperandValues(), 231 launchOp.getBlockSizeOperandValues(), launchOp.dynamicSharedMemorySize(), 232 operands, asyncToken ? asyncToken.getType() : nullptr, 233 launchOp.asyncDependencies()); 234 launchOp.replaceAllUsesWith(launchFunc); 235 launchOp.erase(); 236 } 237 238 namespace { 239 /// Pass that moves ops which are likely an index computation into gpu.launch 240 /// body. 241 class GpuLaunchSinkIndexComputationsPass 242 : public GpuLaunchSinkIndexComputationsBase< 243 GpuLaunchSinkIndexComputationsPass> { 244 public: 245 void runOnOperation() override { 246 Operation *op = getOperation(); 247 if (op->walk([](gpu::LaunchOp launch) { 248 // Pull in instructions that can be sunk 249 if (failed(sinkOperationsIntoLaunchOp(launch, 250 isLikelyAnIndexComputation))) 251 return WalkResult::interrupt(); 252 253 return WalkResult::advance(); 254 }).wasInterrupted()) 255 signalPassFailure(); 256 } 257 }; 258 259 /// Pass that moves the kernel of each LaunchOp into its separate nested module. 260 /// 261 /// This pass moves the kernel code of each LaunchOp into a function created 262 /// inside a nested module. It also creates an external function of the same 263 /// name in the parent module. 264 /// 265 /// The gpu.modules are intended to be compiled to a cubin blob independently in 266 /// a separate pass. The external functions can then be annotated with the 267 /// symbol of the cubin accessor function. 268 class GpuKernelOutliningPass 269 : public GpuKernelOutliningBase<GpuKernelOutliningPass> { 270 public: 271 GpuKernelOutliningPass(StringRef dlStr) { 272 if (!dlStr.empty() && !dataLayoutStr.hasValue()) 273 dataLayoutStr = dlStr.str(); 274 } 275 276 GpuKernelOutliningPass(const GpuKernelOutliningPass &other) 277 : GpuKernelOutliningBase(other), dataLayoutSpec(other.dataLayoutSpec) { 278 dataLayoutStr = other.dataLayoutStr.getValue(); 279 } 280 281 LogicalResult initialize(MLIRContext *context) override { 282 // Initialize the data layout specification from the data layout string. 283 if (!dataLayoutStr.empty()) { 284 Attribute resultAttr = mlir::parseAttribute(dataLayoutStr, context); 285 if (!resultAttr) 286 return failure(); 287 288 dataLayoutSpec = resultAttr.dyn_cast<DataLayoutSpecInterface>(); 289 if (!dataLayoutSpec) 290 return failure(); 291 } 292 293 return success(); 294 } 295 296 void runOnOperation() override { 297 SymbolTable symbolTable(getOperation()); 298 bool modified = false; 299 for (auto func : getOperation().getOps<func::FuncOp>()) { 300 // Insert just after the function. 301 Block::iterator insertPt(func->getNextNode()); 302 auto funcWalkResult = func.walk([&](gpu::LaunchOp op) { 303 SetVector<Value> operands; 304 std::string kernelFnName = 305 Twine(op->getParentOfType<func::FuncOp>().getName(), "_kernel") 306 .str(); 307 308 gpu::GPUFuncOp outlinedFunc = 309 outlineKernelFuncImpl(op, kernelFnName, operands); 310 311 // Create nested module and insert outlinedFunc. The module will 312 // originally get the same name as the function, but may be renamed on 313 // insertion into the parent module. 314 auto kernelModule = createKernelModule(outlinedFunc, symbolTable); 315 symbolTable.insert(kernelModule, insertPt); 316 317 // Potentially changes signature, pulling in constants. 318 convertToLaunchFuncOp(op, outlinedFunc, operands.getArrayRef()); 319 modified = true; 320 return WalkResult::advance(); 321 }); 322 if (funcWalkResult.wasInterrupted()) 323 return signalPassFailure(); 324 } 325 326 // If any new module was inserted in this module, annotate this module as 327 // a container module. 328 if (modified) 329 getOperation()->setAttr(gpu::GPUDialect::getContainerModuleAttrName(), 330 UnitAttr::get(&getContext())); 331 } 332 333 private: 334 /// Returns a gpu.module containing kernelFunc and all callees (recursive). 335 gpu::GPUModuleOp createKernelModule(gpu::GPUFuncOp kernelFunc, 336 const SymbolTable &parentSymbolTable) { 337 // TODO: This code cannot use an OpBuilder because it must be inserted into 338 // a SymbolTable by the caller. SymbolTable needs to be refactored to 339 // prevent manual building of Ops with symbols in code using SymbolTables 340 // and then this needs to use the OpBuilder. 341 auto *context = getOperation().getContext(); 342 OpBuilder builder(context); 343 auto kernelModule = builder.create<gpu::GPUModuleOp>(kernelFunc.getLoc(), 344 kernelFunc.getName()); 345 346 // If a valid data layout spec was provided, attach it to the kernel module. 347 // Otherwise, the default data layout will be used. 348 if (dataLayoutSpec) 349 kernelModule->setAttr(DLTIDialect::kDataLayoutAttrName, dataLayoutSpec); 350 351 SymbolTable symbolTable(kernelModule); 352 symbolTable.insert(kernelFunc); 353 354 SmallVector<Operation *, 8> symbolDefWorklist = {kernelFunc}; 355 while (!symbolDefWorklist.empty()) { 356 if (Optional<SymbolTable::UseRange> symbolUses = 357 SymbolTable::getSymbolUses(symbolDefWorklist.pop_back_val())) { 358 for (SymbolTable::SymbolUse symbolUse : *symbolUses) { 359 StringRef symbolName = 360 symbolUse.getSymbolRef().cast<FlatSymbolRefAttr>().getValue(); 361 if (symbolTable.lookup(symbolName)) 362 continue; 363 364 Operation *symbolDefClone = 365 parentSymbolTable.lookup(symbolName)->clone(); 366 symbolDefWorklist.push_back(symbolDefClone); 367 symbolTable.insert(symbolDefClone); 368 } 369 } 370 } 371 372 return kernelModule; 373 } 374 375 Option<std::string> dataLayoutStr{ 376 *this, "data-layout-str", 377 llvm::cl::desc("String containing the data layout specification to be " 378 "attached to the GPU kernel module")}; 379 380 DataLayoutSpecInterface dataLayoutSpec; 381 }; 382 383 } // namespace 384 385 std::unique_ptr<Pass> mlir::createGpuLauchSinkIndexComputationsPass() { 386 return std::make_unique<GpuLaunchSinkIndexComputationsPass>(); 387 } 388 389 std::unique_ptr<OperationPass<ModuleOp>> 390 mlir::createGpuKernelOutliningPass(StringRef dataLayoutStr) { 391 return std::make_unique<GpuKernelOutliningPass>(dataLayoutStr); 392 } 393