1 //===- KernelOutlining.cpp - Implementation of GPU kernel outlining -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the GPU dialect kernel outlining pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "PassDetail.h" 14 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 15 #include "mlir/Dialect/DLTI/DLTI.h" 16 #include "mlir/Dialect/GPU/GPUDialect.h" 17 #include "mlir/Dialect/GPU/Passes.h" 18 #include "mlir/Dialect/GPU/Utils.h" 19 #include "mlir/Dialect/MemRef/IR/MemRef.h" 20 #include "mlir/Dialect/StandardOps/IR/Ops.h" 21 #include "mlir/IR/BlockAndValueMapping.h" 22 #include "mlir/IR/Builders.h" 23 #include "mlir/IR/SymbolTable.h" 24 #include "mlir/Parser.h" 25 #include "mlir/Support/LLVM.h" 26 #include "mlir/Transforms/RegionUtils.h" 27 28 using namespace mlir; 29 30 template <typename OpTy> 31 static void createForAllDimensions(OpBuilder &builder, Location loc, 32 SmallVectorImpl<Value> &values) { 33 for (StringRef dim : {"x", "y", "z"}) { 34 Value v = builder.create<OpTy>(loc, builder.getIndexType(), 35 builder.getStringAttr(dim)); 36 values.push_back(v); 37 } 38 } 39 40 /// Adds operations generating block/thread ids and grid/block dimensions at the 41 /// beginning of the `launchFuncOpBody` region. Add mapping from argument in 42 /// entry block of `launchOpBody`, to the corresponding result value of the 43 /// added operations. 44 static void injectGpuIndexOperations(Location loc, Region &launchFuncOpBody, 45 Region &launchOpBody, 46 BlockAndValueMapping &map) { 47 OpBuilder builder(loc->getContext()); 48 Block &firstBlock = launchOpBody.front(); 49 builder.setInsertionPointToStart(&launchFuncOpBody.front()); 50 SmallVector<Value, 12> indexOps; 51 createForAllDimensions<gpu::BlockIdOp>(builder, loc, indexOps); 52 createForAllDimensions<gpu::ThreadIdOp>(builder, loc, indexOps); 53 createForAllDimensions<gpu::GridDimOp>(builder, loc, indexOps); 54 createForAllDimensions<gpu::BlockDimOp>(builder, loc, indexOps); 55 // Replace the leading 12 function args with the respective thread/block index 56 // operations. Iterate backwards since args are erased and indices change. 57 for (auto indexOp : enumerate(indexOps)) 58 map.map(firstBlock.getArgument(indexOp.index()), indexOp.value()); 59 } 60 61 /// Identifies operations that are beneficial to sink into kernels. These 62 /// operations may not have side-effects, as otherwise sinking (and hence 63 /// duplicating them) is not legal. 64 static bool isSinkingBeneficiary(Operation *op) { 65 return isa<arith::ConstantOp, ConstantOp, memref::DimOp, SelectOp, 66 arith::CmpIOp>(op); 67 } 68 69 /// For a given operation `op`, computes whether it is beneficial to sink the 70 /// operation into the kernel. An operation can be sunk if doing so does not 71 /// introduce new kernel arguments. Whether a value is already available in the 72 /// kernel (and hence does not introduce new arguments) is checked by 73 /// querying `existingDependencies` and `availableValues`. 74 /// If an operand is not yet available, we recursively check whether it can be 75 /// made available by siking its defining op. 76 /// Operations that are indentified for sinking are added to `beneficiaryOps` in 77 /// the order they should appear in the kernel. Furthermore, `availableValues` 78 /// is updated with results that will be available after sinking the identified 79 /// ops. 80 static bool 81 extractBeneficiaryOps(Operation *op, SetVector<Value> existingDependencies, 82 SetVector<Operation *> &beneficiaryOps, 83 llvm::SmallPtrSetImpl<Value> &availableValues) { 84 if (beneficiaryOps.count(op)) 85 return true; 86 87 if (!isSinkingBeneficiary(op)) 88 return false; 89 90 for (Value operand : op->getOperands()) { 91 // It is already visible in the kernel, keep going. 92 if (availableValues.count(operand)) 93 continue; 94 // Else check whether it can be made available via sinking or already is a 95 // dependency. 96 Operation *definingOp = operand.getDefiningOp(); 97 if ((!definingOp || 98 !extractBeneficiaryOps(definingOp, existingDependencies, 99 beneficiaryOps, availableValues)) && 100 !existingDependencies.count(operand)) 101 return false; 102 } 103 // We will sink the operation, mark its results as now available. 104 beneficiaryOps.insert(op); 105 for (Value result : op->getResults()) 106 availableValues.insert(result); 107 return true; 108 } 109 110 LogicalResult mlir::sinkOperationsIntoLaunchOp(gpu::LaunchOp launchOp) { 111 Region &launchOpBody = launchOp.body(); 112 113 // Identify uses from values defined outside of the scope of the launch 114 // operation. 115 SetVector<Value> sinkCandidates; 116 getUsedValuesDefinedAbove(launchOpBody, sinkCandidates); 117 118 SetVector<Operation *> toBeSunk; 119 llvm::SmallPtrSet<Value, 4> availableValues; 120 for (Value operand : sinkCandidates) { 121 Operation *operandOp = operand.getDefiningOp(); 122 if (!operandOp) 123 continue; 124 extractBeneficiaryOps(operandOp, sinkCandidates, toBeSunk, availableValues); 125 } 126 127 // Insert operations so that the defs get cloned before uses. 128 BlockAndValueMapping map; 129 OpBuilder builder(launchOpBody); 130 for (Operation *op : toBeSunk) { 131 Operation *clonedOp = builder.clone(*op, map); 132 // Only replace uses within the launch op. 133 for (auto pair : llvm::zip(op->getResults(), clonedOp->getResults())) 134 replaceAllUsesInRegionWith(std::get<0>(pair), std::get<1>(pair), 135 launchOp.body()); 136 } 137 return success(); 138 } 139 140 /// Outline the `gpu.launch` operation body into a kernel function. Replace 141 /// `gpu.terminator` operations by `gpu.return` in the generated function. 142 static gpu::GPUFuncOp outlineKernelFuncImpl(gpu::LaunchOp launchOp, 143 StringRef kernelFnName, 144 SetVector<Value> &operands) { 145 Location loc = launchOp.getLoc(); 146 // Create a builder with no insertion point, insertion will happen separately 147 // due to symbol table manipulation. 148 OpBuilder builder(launchOp.getContext()); 149 Region &launchOpBody = launchOp.body(); 150 151 // Identify uses from values defined outside of the scope of the launch 152 // operation. 153 getUsedValuesDefinedAbove(launchOpBody, operands); 154 155 // Create the gpu.func operation. 156 SmallVector<Type, 4> kernelOperandTypes; 157 kernelOperandTypes.reserve(operands.size()); 158 for (Value operand : operands) { 159 kernelOperandTypes.push_back(operand.getType()); 160 } 161 FunctionType type = 162 FunctionType::get(launchOp.getContext(), kernelOperandTypes, {}); 163 auto outlinedFunc = builder.create<gpu::GPUFuncOp>(loc, kernelFnName, type); 164 outlinedFunc->setAttr(gpu::GPUDialect::getKernelFuncAttrName(), 165 builder.getUnitAttr()); 166 BlockAndValueMapping map; 167 168 // Map the arguments corresponding to the launch parameters like blockIdx, 169 // threadIdx, etc. 170 Region &outlinedFuncBody = outlinedFunc.body(); 171 injectGpuIndexOperations(loc, outlinedFuncBody, launchOpBody, map); 172 173 // Map arguments from gpu.launch region to the arguments of the gpu.func 174 // operation. 175 Block &entryBlock = outlinedFuncBody.front(); 176 for (auto operand : enumerate(operands)) 177 map.map(operand.value(), entryBlock.getArgument(operand.index())); 178 179 // Clone the region of the gpu.launch operation into the gpu.func operation. 180 // TODO: If cloneInto can be modified such that if a mapping for 181 // a block exists, that block will be used to clone operations into (at the 182 // end of the block), instead of creating a new block, this would be much 183 // cleaner. 184 launchOpBody.cloneInto(&outlinedFuncBody, map); 185 186 // Branch from entry of the gpu.func operation to the block that is cloned 187 // from the entry block of the gpu.launch operation. 188 Block &launchOpEntry = launchOpBody.front(); 189 Block *clonedLaunchOpEntry = map.lookup(&launchOpEntry); 190 builder.setInsertionPointToEnd(&entryBlock); 191 builder.create<BranchOp>(loc, clonedLaunchOpEntry); 192 193 outlinedFunc.walk([](gpu::TerminatorOp op) { 194 OpBuilder replacer(op); 195 replacer.create<gpu::ReturnOp>(op.getLoc()); 196 op.erase(); 197 }); 198 return outlinedFunc; 199 } 200 201 gpu::GPUFuncOp mlir::outlineKernelFunc(gpu::LaunchOp launchOp, 202 StringRef kernelFnName, 203 llvm::SmallVectorImpl<Value> &operands) { 204 DenseSet<Value> inputOperandSet; 205 inputOperandSet.insert(operands.begin(), operands.end()); 206 SetVector<Value> operandSet(operands.begin(), operands.end()); 207 auto funcOp = outlineKernelFuncImpl(launchOp, kernelFnName, operandSet); 208 for (auto operand : operandSet) { 209 if (!inputOperandSet.count(operand)) 210 operands.push_back(operand); 211 } 212 return funcOp; 213 } 214 215 /// Replace `gpu.launch` operations with an `gpu.launch_func` operation 216 /// launching `kernelFunc`. The kernel func contains the body of the 217 /// `gpu.launch` with constant region arguments inlined. 218 static void convertToLaunchFuncOp(gpu::LaunchOp launchOp, 219 gpu::GPUFuncOp kernelFunc, 220 ValueRange operands) { 221 OpBuilder builder(launchOp); 222 // The launch op has an optional dynamic shared memory size. If it doesn't 223 // exist, we use zero. 224 builder.create<gpu::LaunchFuncOp>( 225 launchOp.getLoc(), kernelFunc, launchOp.getGridSizeOperandValues(), 226 launchOp.getBlockSizeOperandValues(), launchOp.dynamicSharedMemorySize(), 227 operands); 228 launchOp.erase(); 229 } 230 231 namespace { 232 /// Pass that moves the kernel of each LaunchOp into its separate nested module. 233 /// 234 /// This pass moves the kernel code of each LaunchOp into a function created 235 /// inside a nested module. It also creates an external function of the same 236 /// name in the parent module. 237 /// 238 /// The gpu.modules are intended to be compiled to a cubin blob independently in 239 /// a separate pass. The external functions can then be annotated with the 240 /// symbol of the cubin accessor function. 241 class GpuKernelOutliningPass 242 : public GpuKernelOutliningBase<GpuKernelOutliningPass> { 243 public: 244 GpuKernelOutliningPass(StringRef dlStr) { 245 if (!dlStr.empty() && !dataLayoutStr.hasValue()) 246 dataLayoutStr = dlStr.str(); 247 } 248 249 GpuKernelOutliningPass(const GpuKernelOutliningPass &other) 250 : dataLayoutSpec(other.dataLayoutSpec) { 251 dataLayoutStr = other.dataLayoutStr; 252 } 253 254 LogicalResult initialize(MLIRContext *context) override { 255 // Initialize the data layout specification from the data layout string. 256 if (!dataLayoutStr.empty()) { 257 Attribute resultAttr = mlir::parseAttribute(dataLayoutStr, context); 258 if (!resultAttr) 259 return failure(); 260 261 dataLayoutSpec = resultAttr.dyn_cast<DataLayoutSpecInterface>(); 262 if (!dataLayoutSpec) 263 return failure(); 264 } 265 266 return success(); 267 } 268 269 void runOnOperation() override { 270 SymbolTable symbolTable(getOperation()); 271 bool modified = false; 272 for (auto func : getOperation().getOps<FuncOp>()) { 273 // Insert just after the function. 274 Block::iterator insertPt(func->getNextNode()); 275 auto funcWalkResult = func.walk([&](gpu::LaunchOp op) { 276 SetVector<Value> operands; 277 std::string kernelFnName = 278 Twine(op->getParentOfType<FuncOp>().getName(), "_kernel").str(); 279 280 // Pull in instructions that can be sunk 281 if (failed(sinkOperationsIntoLaunchOp(op))) 282 return WalkResult::interrupt(); 283 gpu::GPUFuncOp outlinedFunc = 284 outlineKernelFuncImpl(op, kernelFnName, operands); 285 286 // Create nested module and insert outlinedFunc. The module will 287 // originally get the same name as the function, but may be renamed on 288 // insertion into the parent module. 289 auto kernelModule = createKernelModule(outlinedFunc, symbolTable); 290 symbolTable.insert(kernelModule, insertPt); 291 292 // Potentially changes signature, pulling in constants. 293 convertToLaunchFuncOp(op, outlinedFunc, operands.getArrayRef()); 294 modified = true; 295 return WalkResult::advance(); 296 }); 297 if (funcWalkResult.wasInterrupted()) 298 return signalPassFailure(); 299 } 300 301 // If any new module was inserted in this module, annotate this module as 302 // a container module. 303 if (modified) 304 getOperation()->setAttr(gpu::GPUDialect::getContainerModuleAttrName(), 305 UnitAttr::get(&getContext())); 306 } 307 308 private: 309 /// Returns a gpu.module containing kernelFunc and all callees (recursive). 310 gpu::GPUModuleOp createKernelModule(gpu::GPUFuncOp kernelFunc, 311 const SymbolTable &parentSymbolTable) { 312 // TODO: This code cannot use an OpBuilder because it must be inserted into 313 // a SymbolTable by the caller. SymbolTable needs to be refactored to 314 // prevent manual building of Ops with symbols in code using SymbolTables 315 // and then this needs to use the OpBuilder. 316 auto *context = getOperation().getContext(); 317 OpBuilder builder(context); 318 auto kernelModule = builder.create<gpu::GPUModuleOp>(kernelFunc.getLoc(), 319 kernelFunc.getName()); 320 321 // If a valid data layout spec was provided, attach it to the kernel module. 322 // Otherwise, the default data layout will be used. 323 if (dataLayoutSpec) 324 kernelModule->setAttr("dlspec", dataLayoutSpec); 325 326 SymbolTable symbolTable(kernelModule); 327 symbolTable.insert(kernelFunc); 328 329 SmallVector<Operation *, 8> symbolDefWorklist = {kernelFunc}; 330 while (!symbolDefWorklist.empty()) { 331 if (Optional<SymbolTable::UseRange> symbolUses = 332 SymbolTable::getSymbolUses(symbolDefWorklist.pop_back_val())) { 333 for (SymbolTable::SymbolUse symbolUse : *symbolUses) { 334 StringRef symbolName = 335 symbolUse.getSymbolRef().cast<FlatSymbolRefAttr>().getValue(); 336 if (symbolTable.lookup(symbolName)) 337 continue; 338 339 Operation *symbolDefClone = 340 parentSymbolTable.lookup(symbolName)->clone(); 341 symbolDefWorklist.push_back(symbolDefClone); 342 symbolTable.insert(symbolDefClone); 343 } 344 } 345 } 346 347 return kernelModule; 348 } 349 350 Option<std::string> dataLayoutStr{ 351 *this, "data-layout-str", 352 llvm::cl::desc("String containing the data layout specification to be " 353 "attached to the GPU kernel module")}; 354 355 DataLayoutSpecInterface dataLayoutSpec; 356 }; 357 358 } // namespace 359 360 std::unique_ptr<OperationPass<ModuleOp>> 361 mlir::createGpuKernelOutliningPass(StringRef dataLayoutStr) { 362 return std::make_unique<GpuKernelOutliningPass>(dataLayoutStr); 363 } 364