xref: /llvm-project/mlir/lib/Dialect/GPU/Transforms/KernelOutlining.cpp (revision 0133cc60e4e230ee2c176c23eff5aa2f4ee17a75)
1 //===- KernelOutlining.cpp - Implementation of GPU kernel outlining -------===//
2 //
3 // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the GPU dialect kernel outlining pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/GPU/GPUDialect.h"
14 #include "mlir/Dialect/GPU/Passes.h"
15 #include "mlir/Dialect/StandardOps/Ops.h"
16 #include "mlir/IR/BlockAndValueMapping.h"
17 #include "mlir/IR/Builders.h"
18 #include "mlir/IR/SymbolTable.h"
19 #include "mlir/Pass/Pass.h"
20 
21 using namespace mlir;
22 
23 template <typename OpTy>
24 static void createForAllDimensions(OpBuilder &builder, Location loc,
25                                    SmallVectorImpl<Value> &values) {
26   for (StringRef dim : {"x", "y", "z"}) {
27     Value v = builder.create<OpTy>(loc, builder.getIndexType(),
28                                    builder.getStringAttr(dim));
29     values.push_back(v);
30   }
31 }
32 
33 // Add operations generating block/thread ids and grid/block dimensions at the
34 // beginning of the `body` region and replace uses of the respective function
35 // arguments.
36 static void injectGpuIndexOperations(Location loc, Region &body) {
37   OpBuilder builder(loc->getContext());
38   Block &firstBlock = body.front();
39   builder.setInsertionPointToStart(&firstBlock);
40   SmallVector<Value, 12> indexOps;
41   createForAllDimensions<gpu::BlockIdOp>(builder, loc, indexOps);
42   createForAllDimensions<gpu::ThreadIdOp>(builder, loc, indexOps);
43   createForAllDimensions<gpu::GridDimOp>(builder, loc, indexOps);
44   createForAllDimensions<gpu::BlockDimOp>(builder, loc, indexOps);
45   // Replace the leading 12 function args with the respective thread/block index
46   // operations. Iterate backwards since args are erased and indices change.
47   for (int i = 11; i >= 0; --i) {
48     firstBlock.getArgument(i).replaceAllUsesWith(indexOps[i]);
49     firstBlock.eraseArgument(i);
50   }
51 }
52 
53 static bool isInliningBeneficiary(Operation *op) {
54   return isa<ConstantOp>(op) || isa<DimOp>(op);
55 }
56 
57 // Move arguments of the given kernel function into the function if this reduces
58 // the number of kernel arguments.
59 static gpu::LaunchFuncOp inlineBeneficiaryOps(gpu::GPUFuncOp kernelFunc,
60                                               gpu::LaunchFuncOp launch) {
61   OpBuilder kernelBuilder(kernelFunc.getBody());
62   auto &firstBlock = kernelFunc.getBody().front();
63   SmallVector<Value, 8> newLaunchArgs;
64   BlockAndValueMapping map;
65   for (int i = 0, e = launch.getNumKernelOperands(); i < e; ++i) {
66     map.map(launch.getKernelOperand(i), kernelFunc.getArgument(i));
67   }
68   for (int i = launch.getNumKernelOperands() - 1; i >= 0; --i) {
69     auto operandOp = launch.getKernelOperand(i).getDefiningOp();
70     if (!operandOp || !isInliningBeneficiary(operandOp)) {
71       newLaunchArgs.push_back(launch.getKernelOperand(i));
72       continue;
73     }
74     // Only inline operations that do not create new arguments.
75     if (!llvm::all_of(operandOp->getOperands(),
76                       [map](Value value) { return map.contains(value); })) {
77       continue;
78     }
79     auto clone = kernelBuilder.clone(*operandOp, map);
80     firstBlock.getArgument(i).replaceAllUsesWith(clone->getResult(0));
81     firstBlock.eraseArgument(i);
82   }
83   if (newLaunchArgs.size() == launch.getNumKernelOperands())
84     return launch;
85 
86   std::reverse(newLaunchArgs.begin(), newLaunchArgs.end());
87   OpBuilder LaunchBuilder(launch);
88   SmallVector<Type, 8> newArgumentTypes;
89   newArgumentTypes.reserve(firstBlock.getNumArguments());
90   for (auto value : firstBlock.getArguments()) {
91     newArgumentTypes.push_back(value.getType());
92   }
93   kernelFunc.setType(LaunchBuilder.getFunctionType(newArgumentTypes, {}));
94   auto newLaunch = LaunchBuilder.create<gpu::LaunchFuncOp>(
95       launch.getLoc(), kernelFunc, launch.getGridSizeOperandValues(),
96       launch.getBlockSizeOperandValues(), newLaunchArgs);
97   launch.erase();
98   return newLaunch;
99 }
100 
101 // Outline the `gpu.launch` operation body into a kernel function. Replace
102 // `gpu.return` operations by `std.return` in the generated function.
103 static gpu::GPUFuncOp outlineKernelFunc(gpu::LaunchOp launchOp) {
104   Location loc = launchOp.getLoc();
105   // Create a builder with no insertion point, insertion will happen separately
106   // due to symbol table manipulation.
107   OpBuilder builder(launchOp.getContext());
108 
109   SmallVector<Type, 4> kernelOperandTypes(launchOp.getKernelOperandTypes());
110   FunctionType type =
111       FunctionType::get(kernelOperandTypes, {}, launchOp.getContext());
112   std::string kernelFuncName =
113       Twine(launchOp.getParentOfType<FuncOp>().getName(), "_kernel").str();
114   auto outlinedFunc = builder.create<gpu::GPUFuncOp>(loc, kernelFuncName, type);
115   outlinedFunc.setAttr(gpu::GPUDialect::getKernelFuncAttrName(),
116                        builder.getUnitAttr());
117   outlinedFunc.body().takeBody(launchOp.body());
118   injectGpuIndexOperations(loc, outlinedFunc.body());
119   return outlinedFunc;
120 }
121 
122 // Replace `gpu.launch` operations with an `gpu.launch_func` operation launching
123 // `kernelFunc`. The kernel func contains the body of the `gpu.launch` with
124 // constant region arguments inlined.
125 static void convertToLaunchFuncOp(gpu::LaunchOp &launchOp,
126                                   gpu::GPUFuncOp kernelFunc) {
127   OpBuilder builder(launchOp);
128   auto launchFuncOp = builder.create<gpu::LaunchFuncOp>(
129       launchOp.getLoc(), kernelFunc, launchOp.getGridSizeOperandValues(),
130       launchOp.getBlockSizeOperandValues(), launchOp.getKernelOperandValues());
131   inlineBeneficiaryOps(kernelFunc, launchFuncOp);
132   launchOp.erase();
133 }
134 
135 namespace {
136 
137 /// Pass that moves the kernel of each LaunchOp into its separate nested module.
138 ///
139 /// This pass moves the kernel code of each LaunchOp into a function created
140 /// inside a nested module. It also creates an external function of the same
141 /// name in the parent module.
142 ///
143 /// The kernel modules are intended to be compiled to a cubin blob independently
144 /// in a separate pass. The external functions can then be annotated with the
145 /// symbol of the cubin accessor function.
146 class GpuKernelOutliningPass : public ModulePass<GpuKernelOutliningPass> {
147 public:
148   void runOnModule() override {
149     SymbolTable symbolTable(getModule());
150     bool modified = false;
151     for (auto func : getModule().getOps<FuncOp>()) {
152       // Insert just after the function.
153       Block::iterator insertPt(func.getOperation()->getNextNode());
154       func.walk([&](gpu::LaunchOp op) {
155         gpu::GPUFuncOp outlinedFunc = outlineKernelFunc(op);
156 
157         // Create nested module and insert outlinedFunc. The module will
158         // originally get the same name as the function, but may be renamed on
159         // insertion into the parent module.
160         auto kernelModule = createKernelModule(outlinedFunc, symbolTable);
161         symbolTable.insert(kernelModule, insertPt);
162 
163         // Potentially changes signature, pulling in constants.
164         convertToLaunchFuncOp(op, outlinedFunc);
165         modified = true;
166       });
167     }
168 
169     // If any new module was inserted in this module, annotate this module as
170     // a container module.
171     if (modified)
172       getModule().setAttr(gpu::GPUDialect::getContainerModuleAttrName(),
173                           UnitAttr::get(&getContext()));
174   }
175 
176 private:
177   // Returns a module containing kernelFunc and all callees (recursive).
178   ModuleOp createKernelModule(gpu::GPUFuncOp kernelFunc,
179                               const SymbolTable &parentSymbolTable) {
180     auto context = getModule().getContext();
181     Builder builder(context);
182     auto kernelModule =
183         ModuleOp::create(builder.getUnknownLoc(), kernelFunc.getName());
184     kernelModule.setAttr(gpu::GPUDialect::getKernelModuleAttrName(),
185                          builder.getUnitAttr());
186     SymbolTable symbolTable(kernelModule);
187     symbolTable.insert(kernelFunc);
188 
189     SmallVector<Operation *, 8> symbolDefWorklist = {kernelFunc};
190     while (!symbolDefWorklist.empty()) {
191       if (Optional<SymbolTable::UseRange> symbolUses =
192               SymbolTable::getSymbolUses(symbolDefWorklist.pop_back_val())) {
193         for (SymbolTable::SymbolUse symbolUse : *symbolUses) {
194           StringRef symbolName =
195               symbolUse.getSymbolRef().cast<FlatSymbolRefAttr>().getValue();
196           if (symbolTable.lookup(symbolName))
197             continue;
198 
199           Operation *symbolDefClone =
200               parentSymbolTable.lookup(symbolName)->clone();
201           symbolDefWorklist.push_back(symbolDefClone);
202           symbolTable.insert(symbolDefClone);
203         }
204       }
205     }
206 
207     return kernelModule;
208   }
209 };
210 
211 } // namespace
212 
213 std::unique_ptr<OpPassBase<ModuleOp>> mlir::createGpuKernelOutliningPass() {
214   return std::make_unique<GpuKernelOutliningPass>();
215 }
216 
217 static PassRegistration<GpuKernelOutliningPass>
218     pass("gpu-kernel-outlining",
219          "Outline gpu.launch bodies to kernel functions.");
220