1c30ab6c2SEugene Zhulenev //===- AsyncParallelFor.cpp - Implementation of Async Parallel For --------===// 2c30ab6c2SEugene Zhulenev // 3c30ab6c2SEugene Zhulenev // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4c30ab6c2SEugene Zhulenev // See https://llvm.org/LICENSE.txt for license information. 5c30ab6c2SEugene Zhulenev // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6c30ab6c2SEugene Zhulenev // 7c30ab6c2SEugene Zhulenev //===----------------------------------------------------------------------===// 8c30ab6c2SEugene Zhulenev // 986ad0af8SEugene Zhulenev // This file implements scf.parallel to scf.for + async.execute conversion pass. 10c30ab6c2SEugene Zhulenev // 11c30ab6c2SEugene Zhulenev //===----------------------------------------------------------------------===// 12c30ab6c2SEugene Zhulenev 1367d0d7acSMichele Scuttari #include "mlir/Dialect/Async/Passes.h" 141fc096afSMehdi Amini 15c30ab6c2SEugene Zhulenev #include "PassDetail.h" 16abc362a1SJakub Kuderski #include "mlir/Dialect/Arith/IR/Arith.h" 17c30ab6c2SEugene Zhulenev #include "mlir/Dialect/Async/IR/Async.h" 18ec0e4545Sbakhtiyar #include "mlir/Dialect/Async/Transforms.h" 1923aa5a74SRiver Riddle #include "mlir/Dialect/Func/IR/FuncOps.h" 208b68da2cSAlex Zinenko #include "mlir/Dialect/SCF/IR/SCF.h" 214d67b278SJeff Niu #include "mlir/IR/IRMapping.h" 2286ad0af8SEugene Zhulenev #include "mlir/IR/ImplicitLocOpBuilder.h" 239f151b78SEugene Zhulenev #include "mlir/IR/Matchers.h" 24c30ab6c2SEugene Zhulenev #include "mlir/IR/PatternMatch.h" 25149311b4Sbakhtiyar #include "mlir/Support/LLVM.h" 26c30ab6c2SEugene Zhulenev #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 2786ad0af8SEugene Zhulenev #include "mlir/Transforms/RegionUtils.h" 2867d0d7acSMichele Scuttari #include <utility> 2967d0d7acSMichele Scuttari 3067d0d7acSMichele Scuttari namespace mlir { 3167d0d7acSMichele Scuttari #define GEN_PASS_DEF_ASYNCPARALLELFOR 3267d0d7acSMichele Scuttari #include "mlir/Dialect/Async/Passes.h.inc" 3367d0d7acSMichele Scuttari } // namespace mlir 34c30ab6c2SEugene Zhulenev 35c30ab6c2SEugene Zhulenev using namespace mlir; 36c30ab6c2SEugene Zhulenev using namespace mlir::async; 37c30ab6c2SEugene Zhulenev 38c30ab6c2SEugene Zhulenev #define DEBUG_TYPE "async-parallel-for" 39c30ab6c2SEugene Zhulenev 40c30ab6c2SEugene Zhulenev namespace { 41c30ab6c2SEugene Zhulenev 42c30ab6c2SEugene Zhulenev // Rewrite scf.parallel operation into multiple concurrent async.execute 43c30ab6c2SEugene Zhulenev // operations over non overlapping subranges of the original loop. 44c30ab6c2SEugene Zhulenev // 45c30ab6c2SEugene Zhulenev // Example: 46c30ab6c2SEugene Zhulenev // 4786ad0af8SEugene Zhulenev // scf.parallel (%i, %j) = (%lbi, %lbj) to (%ubi, %ubj) step (%si, %sj) { 48c30ab6c2SEugene Zhulenev // "do_some_compute"(%i, %j): () -> () 49c30ab6c2SEugene Zhulenev // } 50c30ab6c2SEugene Zhulenev // 51c30ab6c2SEugene Zhulenev // Converted to: 52c30ab6c2SEugene Zhulenev // 5386ad0af8SEugene Zhulenev // // Parallel compute function that executes the parallel body region for 5486ad0af8SEugene Zhulenev // // a subset of the parallel iteration space defined by the one-dimensional 5586ad0af8SEugene Zhulenev // // compute block index. 5686ad0af8SEugene Zhulenev // func parallel_compute_function(%block_index : index, %block_size : index, 5786ad0af8SEugene Zhulenev // <parallel operation properties>, ...) { 5886ad0af8SEugene Zhulenev // // Compute multi-dimensional loop bounds for %block_index. 5986ad0af8SEugene Zhulenev // %block_lbi, %block_lbj = ... 6086ad0af8SEugene Zhulenev // %block_ubi, %block_ubj = ... 61c30ab6c2SEugene Zhulenev // 6286ad0af8SEugene Zhulenev // // Clone parallel operation body into the scf.for loop nest. 6386ad0af8SEugene Zhulenev // scf.for %i = %blockLbi to %blockUbi { 6486ad0af8SEugene Zhulenev // scf.for %j = block_lbj to %block_ubj { 65c30ab6c2SEugene Zhulenev // "do_some_compute"(%i, %j): () -> () 66c30ab6c2SEugene Zhulenev // } 67c30ab6c2SEugene Zhulenev // } 68c30ab6c2SEugene Zhulenev // } 69c30ab6c2SEugene Zhulenev // 7086ad0af8SEugene Zhulenev // And a dispatch function depending on the `asyncDispatch` option. 7186ad0af8SEugene Zhulenev // 7286ad0af8SEugene Zhulenev // When async dispatch is on: (pseudocode) 7386ad0af8SEugene Zhulenev // 7486ad0af8SEugene Zhulenev // %block_size = ... compute parallel compute block size 7586ad0af8SEugene Zhulenev // %block_count = ... compute the number of compute blocks 7686ad0af8SEugene Zhulenev // 7786ad0af8SEugene Zhulenev // func @async_dispatch(%block_start : index, %block_end : index, ...) { 7886ad0af8SEugene Zhulenev // // Keep splitting block range until we reached a range of size 1. 7986ad0af8SEugene Zhulenev // while (%block_end - %block_start > 1) { 8086ad0af8SEugene Zhulenev // %mid_index = block_start + (block_end - block_start) / 2; 8186ad0af8SEugene Zhulenev // async.execute { call @async_dispatch(%mid_index, %block_end); } 8286ad0af8SEugene Zhulenev // %block_end = %mid_index 83c30ab6c2SEugene Zhulenev // } 84c30ab6c2SEugene Zhulenev // 8586ad0af8SEugene Zhulenev // // Call parallel compute function for a single block. 8686ad0af8SEugene Zhulenev // call @parallel_compute_fn(%block_start, %block_size, ...); 8786ad0af8SEugene Zhulenev // } 88c30ab6c2SEugene Zhulenev // 8986ad0af8SEugene Zhulenev // // Launch async dispatch for [0, block_count) range. 9086ad0af8SEugene Zhulenev // call @async_dispatch(%c0, %block_count); 91c30ab6c2SEugene Zhulenev // 9286ad0af8SEugene Zhulenev // When async dispatch is off: 93c30ab6c2SEugene Zhulenev // 9486ad0af8SEugene Zhulenev // %block_size = ... compute parallel compute block size 9586ad0af8SEugene Zhulenev // %block_count = ... compute the number of compute blocks 9686ad0af8SEugene Zhulenev // 9786ad0af8SEugene Zhulenev // scf.for %block_index = %c0 to %block_count { 9886ad0af8SEugene Zhulenev // call @parallel_compute_fn(%block_index, %block_size, ...) 9986ad0af8SEugene Zhulenev // } 10086ad0af8SEugene Zhulenev // 10186ad0af8SEugene Zhulenev struct AsyncParallelForPass 10267d0d7acSMichele Scuttari : public impl::AsyncParallelForBase<AsyncParallelForPass> { 10386ad0af8SEugene Zhulenev AsyncParallelForPass() = default; 10434a164c9SEugene Zhulenev 10534a164c9SEugene Zhulenev AsyncParallelForPass(bool asyncDispatch, int32_t numWorkerThreads, 10655dfab39Sbakhtiyar int32_t minTaskSize) { 10734a164c9SEugene Zhulenev this->asyncDispatch = asyncDispatch; 10834a164c9SEugene Zhulenev this->numWorkerThreads = numWorkerThreads; 10955dfab39Sbakhtiyar this->minTaskSize = minTaskSize; 11034a164c9SEugene Zhulenev } 11134a164c9SEugene Zhulenev 11286ad0af8SEugene Zhulenev void runOnOperation() override; 11386ad0af8SEugene Zhulenev }; 11486ad0af8SEugene Zhulenev 115c30ab6c2SEugene Zhulenev struct AsyncParallelForRewrite : public OpRewritePattern<scf::ParallelOp> { 116c30ab6c2SEugene Zhulenev public: 117ec0e4545Sbakhtiyar AsyncParallelForRewrite( 118ec0e4545Sbakhtiyar MLIRContext *ctx, bool asyncDispatch, int32_t numWorkerThreads, 119ec0e4545Sbakhtiyar AsyncMinTaskSizeComputationFunction computeMinTaskSize) 12086ad0af8SEugene Zhulenev : OpRewritePattern(ctx), asyncDispatch(asyncDispatch), 121ec0e4545Sbakhtiyar numWorkerThreads(numWorkerThreads), 1221fc096afSMehdi Amini computeMinTaskSize(std::move(computeMinTaskSize)) {} 123c30ab6c2SEugene Zhulenev 124c30ab6c2SEugene Zhulenev LogicalResult matchAndRewrite(scf::ParallelOp op, 125c30ab6c2SEugene Zhulenev PatternRewriter &rewriter) const override; 126c30ab6c2SEugene Zhulenev 127c30ab6c2SEugene Zhulenev private: 12886ad0af8SEugene Zhulenev bool asyncDispatch; 12986ad0af8SEugene Zhulenev int32_t numWorkerThreads; 130ec0e4545Sbakhtiyar AsyncMinTaskSizeComputationFunction computeMinTaskSize; 131c30ab6c2SEugene Zhulenev }; 132c30ab6c2SEugene Zhulenev 13386ad0af8SEugene Zhulenev struct ParallelComputeFunctionType { 13486ad0af8SEugene Zhulenev FunctionType type; 1359f151b78SEugene Zhulenev SmallVector<Value> captures; 1369f151b78SEugene Zhulenev }; 1379f151b78SEugene Zhulenev 1389f151b78SEugene Zhulenev // Helper struct to parse parallel compute function argument list. 1399f151b78SEugene Zhulenev struct ParallelComputeFunctionArgs { 1409f151b78SEugene Zhulenev BlockArgument blockIndex(); 1419f151b78SEugene Zhulenev BlockArgument blockSize(); 1429f151b78SEugene Zhulenev ArrayRef<BlockArgument> tripCounts(); 1439f151b78SEugene Zhulenev ArrayRef<BlockArgument> lowerBounds(); 1449f151b78SEugene Zhulenev ArrayRef<BlockArgument> steps(); 1459f151b78SEugene Zhulenev ArrayRef<BlockArgument> captures(); 1469f151b78SEugene Zhulenev 1479f151b78SEugene Zhulenev unsigned numLoops; 1489f151b78SEugene Zhulenev ArrayRef<BlockArgument> args; 1499f151b78SEugene Zhulenev }; 1509f151b78SEugene Zhulenev 1519f151b78SEugene Zhulenev struct ParallelComputeFunctionBounds { 1529f151b78SEugene Zhulenev SmallVector<IntegerAttr> tripCounts; 1539f151b78SEugene Zhulenev SmallVector<IntegerAttr> lowerBounds; 1549f151b78SEugene Zhulenev SmallVector<IntegerAttr> upperBounds; 1559f151b78SEugene Zhulenev SmallVector<IntegerAttr> steps; 15686ad0af8SEugene Zhulenev }; 15786ad0af8SEugene Zhulenev 15886ad0af8SEugene Zhulenev struct ParallelComputeFunction { 1599f151b78SEugene Zhulenev unsigned numLoops; 16058ceae95SRiver Riddle func::FuncOp func; 16186ad0af8SEugene Zhulenev llvm::SmallVector<Value> captures; 162c30ab6c2SEugene Zhulenev }; 163c30ab6c2SEugene Zhulenev 164c30ab6c2SEugene Zhulenev } // namespace 165c30ab6c2SEugene Zhulenev 1669f151b78SEugene Zhulenev BlockArgument ParallelComputeFunctionArgs::blockIndex() { return args[0]; } 1679f151b78SEugene Zhulenev BlockArgument ParallelComputeFunctionArgs::blockSize() { return args[1]; } 1689f151b78SEugene Zhulenev 1699f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::tripCounts() { 1709f151b78SEugene Zhulenev return args.drop_front(2).take_front(numLoops); 1719f151b78SEugene Zhulenev } 1729f151b78SEugene Zhulenev 1739f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::lowerBounds() { 1749f151b78SEugene Zhulenev return args.drop_front(2 + 1 * numLoops).take_front(numLoops); 1759f151b78SEugene Zhulenev } 1769f151b78SEugene Zhulenev 1779f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::steps() { 1789f151b78SEugene Zhulenev return args.drop_front(2 + 3 * numLoops).take_front(numLoops); 1799f151b78SEugene Zhulenev } 1809f151b78SEugene Zhulenev 1819f151b78SEugene Zhulenev ArrayRef<BlockArgument> ParallelComputeFunctionArgs::captures() { 1829f151b78SEugene Zhulenev return args.drop_front(2 + 4 * numLoops); 1839f151b78SEugene Zhulenev } 1849f151b78SEugene Zhulenev 1859f151b78SEugene Zhulenev template <typename ValueRange> 1869f151b78SEugene Zhulenev static SmallVector<IntegerAttr> integerConstants(ValueRange values) { 1879f151b78SEugene Zhulenev SmallVector<IntegerAttr> attrs(values.size()); 1889f151b78SEugene Zhulenev for (unsigned i = 0; i < values.size(); ++i) 1899f151b78SEugene Zhulenev matchPattern(values[i], m_Constant(&attrs[i])); 1909f151b78SEugene Zhulenev return attrs; 1919f151b78SEugene Zhulenev } 1929f151b78SEugene Zhulenev 19386ad0af8SEugene Zhulenev // Converts one-dimensional iteration index in the [0, tripCount) interval 19486ad0af8SEugene Zhulenev // into multidimensional iteration coordinate. 19586ad0af8SEugene Zhulenev static SmallVector<Value> delinearize(ImplicitLocOpBuilder &b, Value index, 19634a164c9SEugene Zhulenev ArrayRef<Value> tripCounts) { 19786ad0af8SEugene Zhulenev SmallVector<Value> coords(tripCounts.size()); 19886ad0af8SEugene Zhulenev assert(!tripCounts.empty() && "tripCounts must be not empty"); 19986ad0af8SEugene Zhulenev 20086ad0af8SEugene Zhulenev for (ssize_t i = tripCounts.size() - 1; i >= 0; --i) { 201a54f4eaeSMogball coords[i] = b.create<arith::RemSIOp>(index, tripCounts[i]); 202a54f4eaeSMogball index = b.create<arith::DivSIOp>(index, tripCounts[i]); 20386ad0af8SEugene Zhulenev } 20486ad0af8SEugene Zhulenev 20586ad0af8SEugene Zhulenev return coords; 20686ad0af8SEugene Zhulenev } 20786ad0af8SEugene Zhulenev 20886ad0af8SEugene Zhulenev // Returns a function type and implicit captures for a parallel compute 20986ad0af8SEugene Zhulenev // function. We'll need a list of implicit captures to setup block and value 21086ad0af8SEugene Zhulenev // mapping when we'll clone the body of the parallel operation. 21186ad0af8SEugene Zhulenev static ParallelComputeFunctionType 21286ad0af8SEugene Zhulenev getParallelComputeFunctionType(scf::ParallelOp op, PatternRewriter &rewriter) { 21386ad0af8SEugene Zhulenev // Values implicitly captured by the parallel operation. 21486ad0af8SEugene Zhulenev llvm::SetVector<Value> captures; 215c0342a2dSJacques Pienaar getUsedValuesDefinedAbove(op.getRegion(), op.getRegion(), captures); 21686ad0af8SEugene Zhulenev 2179f151b78SEugene Zhulenev SmallVector<Type> inputs; 21886ad0af8SEugene Zhulenev inputs.reserve(2 + 4 * op.getNumLoops() + captures.size()); 21986ad0af8SEugene Zhulenev 22086ad0af8SEugene Zhulenev Type indexTy = rewriter.getIndexType(); 22186ad0af8SEugene Zhulenev 22286ad0af8SEugene Zhulenev // One-dimensional iteration space defined by the block index and size. 22386ad0af8SEugene Zhulenev inputs.push_back(indexTy); // blockIndex 22486ad0af8SEugene Zhulenev inputs.push_back(indexTy); // blockSize 22586ad0af8SEugene Zhulenev 22686ad0af8SEugene Zhulenev // Multi-dimensional parallel iteration space defined by the loop trip counts. 22786ad0af8SEugene Zhulenev for (unsigned i = 0; i < op.getNumLoops(); ++i) 22886ad0af8SEugene Zhulenev inputs.push_back(indexTy); // loop tripCount 22986ad0af8SEugene Zhulenev 2309f151b78SEugene Zhulenev // Parallel operation lower bound, upper bound and step. Lower bound, upper 2319f151b78SEugene Zhulenev // bound and step passed as contiguous arguments: 2329f151b78SEugene Zhulenev // call @compute(%lb0, %lb1, ..., %ub0, %ub1, ..., %step0, %step1, ...) 23386ad0af8SEugene Zhulenev for (unsigned i = 0; i < op.getNumLoops(); ++i) { 23486ad0af8SEugene Zhulenev inputs.push_back(indexTy); // lower bound 23586ad0af8SEugene Zhulenev inputs.push_back(indexTy); // upper bound 23686ad0af8SEugene Zhulenev inputs.push_back(indexTy); // step 23786ad0af8SEugene Zhulenev } 23886ad0af8SEugene Zhulenev 23986ad0af8SEugene Zhulenev // Types of the implicit captures. 24086ad0af8SEugene Zhulenev for (Value capture : captures) 24186ad0af8SEugene Zhulenev inputs.push_back(capture.getType()); 24286ad0af8SEugene Zhulenev 24386ad0af8SEugene Zhulenev // Convert captures to vector for later convenience. 24486ad0af8SEugene Zhulenev SmallVector<Value> capturesVector(captures.begin(), captures.end()); 24586ad0af8SEugene Zhulenev return {rewriter.getFunctionType(inputs, TypeRange()), capturesVector}; 24686ad0af8SEugene Zhulenev } 24786ad0af8SEugene Zhulenev 24886ad0af8SEugene Zhulenev // Create a parallel compute fuction from the parallel operation. 24949ce40e9SEugene Zhulenev static ParallelComputeFunction createParallelComputeFunction( 2501fc096afSMehdi Amini scf::ParallelOp op, const ParallelComputeFunctionBounds &bounds, 25149ce40e9SEugene Zhulenev unsigned numBlockAlignedInnerLoops, PatternRewriter &rewriter) { 25286ad0af8SEugene Zhulenev OpBuilder::InsertionGuard guard(rewriter); 25386ad0af8SEugene Zhulenev ImplicitLocOpBuilder b(op.getLoc(), rewriter); 25486ad0af8SEugene Zhulenev 25586ad0af8SEugene Zhulenev ModuleOp module = op->getParentOfType<ModuleOp>(); 25686ad0af8SEugene Zhulenev 25786ad0af8SEugene Zhulenev ParallelComputeFunctionType computeFuncType = 25886ad0af8SEugene Zhulenev getParallelComputeFunctionType(op, rewriter); 25986ad0af8SEugene Zhulenev 26086ad0af8SEugene Zhulenev FunctionType type = computeFuncType.type; 26158ceae95SRiver Riddle func::FuncOp func = func::FuncOp::create( 26258ceae95SRiver Riddle op.getLoc(), 26358ceae95SRiver Riddle numBlockAlignedInnerLoops > 0 ? "parallel_compute_fn_with_aligned_loops" 264ec0e4545Sbakhtiyar : "parallel_compute_fn", 265ec0e4545Sbakhtiyar type); 26686ad0af8SEugene Zhulenev func.setPrivate(); 26786ad0af8SEugene Zhulenev 26886ad0af8SEugene Zhulenev // Insert function into the module symbol table and assign it unique name. 26986ad0af8SEugene Zhulenev SymbolTable symbolTable(module); 27086ad0af8SEugene Zhulenev symbolTable.insert(func); 2715cc0f76dSMatthias Springer rewriter.getListener()->notifyOperationInserted(func, /*previous=*/{}); 27286ad0af8SEugene Zhulenev 27386ad0af8SEugene Zhulenev // Create function entry block. 274e084679fSRiver Riddle Block *block = 275e084679fSRiver Riddle b.createBlock(&func.getBody(), func.begin(), type.getInputs(), 276e084679fSRiver Riddle SmallVector<Location>(type.getNumInputs(), op.getLoc())); 27786ad0af8SEugene Zhulenev b.setInsertionPointToEnd(block); 27886ad0af8SEugene Zhulenev 2799f151b78SEugene Zhulenev ParallelComputeFunctionArgs args = {op.getNumLoops(), func.getArguments()}; 28086ad0af8SEugene Zhulenev 28186ad0af8SEugene Zhulenev // Block iteration position defined by the block index and size. 2829f151b78SEugene Zhulenev BlockArgument blockIndex = args.blockIndex(); 2839f151b78SEugene Zhulenev BlockArgument blockSize = args.blockSize(); 28486ad0af8SEugene Zhulenev 28586ad0af8SEugene Zhulenev // Constants used below. 286a54f4eaeSMogball Value c0 = b.create<arith::ConstantIndexOp>(0); 287a54f4eaeSMogball Value c1 = b.create<arith::ConstantIndexOp>(1); 28886ad0af8SEugene Zhulenev 2899f151b78SEugene Zhulenev // Materialize known constants as constant operation in the function body. 2909f151b78SEugene Zhulenev auto values = [&](ArrayRef<BlockArgument> args, ArrayRef<IntegerAttr> attrs) { 2919f151b78SEugene Zhulenev return llvm::to_vector( 2929f151b78SEugene Zhulenev llvm::map_range(llvm::zip(args, attrs), [&](auto tuple) -> Value { 2939f151b78SEugene Zhulenev if (IntegerAttr attr = std::get<1>(tuple)) 2948e123ca6SRiver Riddle return b.create<arith::ConstantOp>(attr); 2959f151b78SEugene Zhulenev return std::get<0>(tuple); 2969f151b78SEugene Zhulenev })); 2979f151b78SEugene Zhulenev }; 2989f151b78SEugene Zhulenev 29986ad0af8SEugene Zhulenev // Multi-dimensional parallel iteration space defined by the loop trip counts. 3009f151b78SEugene Zhulenev auto tripCounts = values(args.tripCounts(), bounds.tripCounts); 3019f151b78SEugene Zhulenev 3029f151b78SEugene Zhulenev // Parallel operation lower bound and step. 3039f151b78SEugene Zhulenev auto lowerBounds = values(args.lowerBounds(), bounds.lowerBounds); 3049f151b78SEugene Zhulenev auto steps = values(args.steps(), bounds.steps); 3059f151b78SEugene Zhulenev 3069f151b78SEugene Zhulenev // Remaining arguments are implicit captures of the parallel operation. 3079f151b78SEugene Zhulenev ArrayRef<BlockArgument> captures = args.captures(); 30886ad0af8SEugene Zhulenev 30986ad0af8SEugene Zhulenev // Compute a product of trip counts to get the size of the flattened 31086ad0af8SEugene Zhulenev // one-dimensional iteration space. 31186ad0af8SEugene Zhulenev Value tripCount = tripCounts[0]; 31286ad0af8SEugene Zhulenev for (unsigned i = 1; i < tripCounts.size(); ++i) 313a54f4eaeSMogball tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 31486ad0af8SEugene Zhulenev 31586ad0af8SEugene Zhulenev // Find one-dimensional iteration bounds: [blockFirstIndex, blockLastIndex]: 31686ad0af8SEugene Zhulenev // blockFirstIndex = blockIndex * blockSize 317a54f4eaeSMogball Value blockFirstIndex = b.create<arith::MulIOp>(blockIndex, blockSize); 31886ad0af8SEugene Zhulenev 31986ad0af8SEugene Zhulenev // The last one-dimensional index in the block defined by the `blockIndex`: 32068a7c001SEugene Zhulenev // blockLastIndex = min(blockFirstIndex + blockSize, tripCount) - 1 321a54f4eaeSMogball Value blockEnd0 = b.create<arith::AddIOp>(blockFirstIndex, blockSize); 3227bd87a03Sbakhtiyar Value blockEnd1 = b.create<arith::MinSIOp>(blockEnd0, tripCount); 3237bd87a03Sbakhtiyar Value blockLastIndex = b.create<arith::SubIOp>(blockEnd1, c1); 32486ad0af8SEugene Zhulenev 32586ad0af8SEugene Zhulenev // Convert one-dimensional indices to multi-dimensional coordinates. 32686ad0af8SEugene Zhulenev auto blockFirstCoord = delinearize(b, blockFirstIndex, tripCounts); 32786ad0af8SEugene Zhulenev auto blockLastCoord = delinearize(b, blockLastIndex, tripCounts); 32886ad0af8SEugene Zhulenev 32934a164c9SEugene Zhulenev // Compute loops upper bounds derived from the block last coordinates: 33086ad0af8SEugene Zhulenev // blockEndCoord[i] = blockLastCoord[i] + 1 33186ad0af8SEugene Zhulenev // 33286ad0af8SEugene Zhulenev // Block first and last coordinates can be the same along the outer compute 33334a164c9SEugene Zhulenev // dimension when inner compute dimension contains multiple blocks. 33486ad0af8SEugene Zhulenev SmallVector<Value> blockEndCoord(op.getNumLoops()); 33586ad0af8SEugene Zhulenev for (size_t i = 0; i < blockLastCoord.size(); ++i) 336a54f4eaeSMogball blockEndCoord[i] = b.create<arith::AddIOp>(blockLastCoord[i], c1); 33786ad0af8SEugene Zhulenev 33886ad0af8SEugene Zhulenev // Construct a loop nest out of scf.for operations that will iterate over 33986ad0af8SEugene Zhulenev // all coordinates in [blockFirstCoord, blockLastCoord] range. 34086ad0af8SEugene Zhulenev using LoopBodyBuilder = 34186ad0af8SEugene Zhulenev std::function<void(OpBuilder &, Location, Value, ValueRange)>; 34286ad0af8SEugene Zhulenev using LoopNestBuilder = std::function<LoopBodyBuilder(size_t loopIdx)>; 34386ad0af8SEugene Zhulenev 34486ad0af8SEugene Zhulenev // Parallel region induction variables computed from the multi-dimensional 34586ad0af8SEugene Zhulenev // iteration coordinate using parallel operation bounds and step: 34686ad0af8SEugene Zhulenev // 34786ad0af8SEugene Zhulenev // computeBlockInductionVars[loopIdx] = 34868a7c001SEugene Zhulenev // lowerBound[loopIdx] + blockCoord[loopIdx] * step[loopIdx] 34986ad0af8SEugene Zhulenev SmallVector<Value> computeBlockInductionVars(op.getNumLoops()); 35086ad0af8SEugene Zhulenev 35186ad0af8SEugene Zhulenev // We need to know if we are in the first or last iteration of the 35286ad0af8SEugene Zhulenev // multi-dimensional loop for each loop in the nest, so we can decide what 35386ad0af8SEugene Zhulenev // loop bounds should we use for the nested loops: bounds defined by compute 35486ad0af8SEugene Zhulenev // block interval, or bounds defined by the parallel operation. 35586ad0af8SEugene Zhulenev // 35686ad0af8SEugene Zhulenev // Example: 2d parallel operation 35786ad0af8SEugene Zhulenev // i j 35886ad0af8SEugene Zhulenev // loop sizes: [50, 50] 35986ad0af8SEugene Zhulenev // first coord: [25, 25] 36086ad0af8SEugene Zhulenev // last coord: [30, 30] 36186ad0af8SEugene Zhulenev // 36286ad0af8SEugene Zhulenev // If `i` is equal to 25 then iteration over `j` should start at 25, when `i` 36386ad0af8SEugene Zhulenev // is between 25 and 30 it should start at 0. The upper bound for `j` should 36486ad0af8SEugene Zhulenev // be 50, except when `i` is equal to 30, then it should also be 30. 36586ad0af8SEugene Zhulenev // 36686ad0af8SEugene Zhulenev // Value at ith position specifies if all loops in [0, i) range of the loop 36786ad0af8SEugene Zhulenev // nest are in the first/last iteration. 36886ad0af8SEugene Zhulenev SmallVector<Value> isBlockFirstCoord(op.getNumLoops()); 36986ad0af8SEugene Zhulenev SmallVector<Value> isBlockLastCoord(op.getNumLoops()); 37086ad0af8SEugene Zhulenev 37186ad0af8SEugene Zhulenev // Builds inner loop nest inside async.execute operation that does all the 37286ad0af8SEugene Zhulenev // work concurrently. 37386ad0af8SEugene Zhulenev LoopNestBuilder workLoopBuilder = [&](size_t loopIdx) -> LoopBodyBuilder { 37486ad0af8SEugene Zhulenev return [&, loopIdx](OpBuilder &nestedBuilder, Location loc, Value iv, 37586ad0af8SEugene Zhulenev ValueRange args) { 376abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, nestedBuilder); 37786ad0af8SEugene Zhulenev 37886ad0af8SEugene Zhulenev // Compute induction variable for `loopIdx`. 379abe2dee5SEugene Zhulenev computeBlockInductionVars[loopIdx] = b.create<arith::AddIOp>( 380abe2dee5SEugene Zhulenev lowerBounds[loopIdx], b.create<arith::MulIOp>(iv, steps[loopIdx])); 38186ad0af8SEugene Zhulenev 38286ad0af8SEugene Zhulenev // Check if we are inside first or last iteration of the loop. 383abe2dee5SEugene Zhulenev isBlockFirstCoord[loopIdx] = b.create<arith::CmpIOp>( 384a54f4eaeSMogball arith::CmpIPredicate::eq, iv, blockFirstCoord[loopIdx]); 385abe2dee5SEugene Zhulenev isBlockLastCoord[loopIdx] = b.create<arith::CmpIOp>( 386a54f4eaeSMogball arith::CmpIPredicate::eq, iv, blockLastCoord[loopIdx]); 38786ad0af8SEugene Zhulenev 38834a164c9SEugene Zhulenev // Check if the previous loop is in its first or last iteration. 38986ad0af8SEugene Zhulenev if (loopIdx > 0) { 390abe2dee5SEugene Zhulenev isBlockFirstCoord[loopIdx] = b.create<arith::AndIOp>( 39186ad0af8SEugene Zhulenev isBlockFirstCoord[loopIdx], isBlockFirstCoord[loopIdx - 1]); 392abe2dee5SEugene Zhulenev isBlockLastCoord[loopIdx] = b.create<arith::AndIOp>( 39386ad0af8SEugene Zhulenev isBlockLastCoord[loopIdx], isBlockLastCoord[loopIdx - 1]); 39486ad0af8SEugene Zhulenev } 39586ad0af8SEugene Zhulenev 39686ad0af8SEugene Zhulenev // Keep building loop nest. 39786ad0af8SEugene Zhulenev if (loopIdx < op.getNumLoops() - 1) { 39849ce40e9SEugene Zhulenev if (loopIdx + 1 >= op.getNumLoops() - numBlockAlignedInnerLoops) { 39949ce40e9SEugene Zhulenev // For block aligned loops we always iterate starting from 0 up to 40049ce40e9SEugene Zhulenev // the loop trip counts. 401abe2dee5SEugene Zhulenev b.create<scf::ForOp>(c0, tripCounts[loopIdx + 1], c1, ValueRange(), 40249ce40e9SEugene Zhulenev workLoopBuilder(loopIdx + 1)); 40349ce40e9SEugene Zhulenev 40449ce40e9SEugene Zhulenev } else { 40568a7c001SEugene Zhulenev // Select nested loop lower/upper bounds depending on our position in 40686ad0af8SEugene Zhulenev // the multi-dimensional iteration space. 407abe2dee5SEugene Zhulenev auto lb = b.create<arith::SelectOp>(isBlockFirstCoord[loopIdx], 408abe2dee5SEugene Zhulenev blockFirstCoord[loopIdx + 1], c0); 40986ad0af8SEugene Zhulenev 410abe2dee5SEugene Zhulenev auto ub = b.create<arith::SelectOp>(isBlockLastCoord[loopIdx], 41186ad0af8SEugene Zhulenev blockEndCoord[loopIdx + 1], 41286ad0af8SEugene Zhulenev tripCounts[loopIdx + 1]); 41386ad0af8SEugene Zhulenev 414abe2dee5SEugene Zhulenev b.create<scf::ForOp>(lb, ub, c1, ValueRange(), 41586ad0af8SEugene Zhulenev workLoopBuilder(loopIdx + 1)); 41649ce40e9SEugene Zhulenev } 41749ce40e9SEugene Zhulenev 418abe2dee5SEugene Zhulenev b.create<scf::YieldOp>(loc); 41986ad0af8SEugene Zhulenev return; 42086ad0af8SEugene Zhulenev } 42186ad0af8SEugene Zhulenev 42286ad0af8SEugene Zhulenev // Copy the body of the parallel op into the inner-most loop. 4234d67b278SJeff Niu IRMapping mapping; 42486ad0af8SEugene Zhulenev mapping.map(op.getInductionVars(), computeBlockInductionVars); 42586ad0af8SEugene Zhulenev mapping.map(computeFuncType.captures, captures); 42686ad0af8SEugene Zhulenev 42710056c82SMatthias Springer for (auto &bodyOp : op.getRegion().front().without_terminator()) 428abe2dee5SEugene Zhulenev b.clone(bodyOp, mapping); 42910056c82SMatthias Springer b.create<scf::YieldOp>(loc); 43086ad0af8SEugene Zhulenev }; 43186ad0af8SEugene Zhulenev }; 43286ad0af8SEugene Zhulenev 43386ad0af8SEugene Zhulenev b.create<scf::ForOp>(blockFirstCoord[0], blockEndCoord[0], c1, ValueRange(), 43486ad0af8SEugene Zhulenev workLoopBuilder(0)); 43523aa5a74SRiver Riddle b.create<func::ReturnOp>(ValueRange()); 43686ad0af8SEugene Zhulenev 4379f151b78SEugene Zhulenev return {op.getNumLoops(), func, std::move(computeFuncType.captures)}; 43886ad0af8SEugene Zhulenev } 43986ad0af8SEugene Zhulenev 44086ad0af8SEugene Zhulenev // Creates recursive async dispatch function for the given parallel compute 44186ad0af8SEugene Zhulenev // function. Dispatch function keeps splitting block range into halves until it 44286ad0af8SEugene Zhulenev // reaches a single block, and then excecutes it inline. 44386ad0af8SEugene Zhulenev // 44486ad0af8SEugene Zhulenev // Function pseudocode (mix of C++ and MLIR): 44586ad0af8SEugene Zhulenev // 44686ad0af8SEugene Zhulenev // func @async_dispatch(%block_start : index, %block_end : index, ...) { 44786ad0af8SEugene Zhulenev // 44886ad0af8SEugene Zhulenev // // Keep splitting block range until we reached a range of size 1. 44986ad0af8SEugene Zhulenev // while (%block_end - %block_start > 1) { 45086ad0af8SEugene Zhulenev // %mid_index = block_start + (block_end - block_start) / 2; 45186ad0af8SEugene Zhulenev // async.execute { call @async_dispatch(%mid_index, %block_end); } 45286ad0af8SEugene Zhulenev // %block_end = %mid_index 45386ad0af8SEugene Zhulenev // } 45486ad0af8SEugene Zhulenev // 45586ad0af8SEugene Zhulenev // // Call parallel compute function for a single block. 45686ad0af8SEugene Zhulenev // call @parallel_compute_fn(%block_start, %block_size, ...); 45786ad0af8SEugene Zhulenev // } 45886ad0af8SEugene Zhulenev // 45958ceae95SRiver Riddle static func::FuncOp 46058ceae95SRiver Riddle createAsyncDispatchFunction(ParallelComputeFunction &computeFunc, 46186ad0af8SEugene Zhulenev PatternRewriter &rewriter) { 46286ad0af8SEugene Zhulenev OpBuilder::InsertionGuard guard(rewriter); 46386ad0af8SEugene Zhulenev Location loc = computeFunc.func.getLoc(); 46486ad0af8SEugene Zhulenev ImplicitLocOpBuilder b(loc, rewriter); 46586ad0af8SEugene Zhulenev 46686ad0af8SEugene Zhulenev ModuleOp module = computeFunc.func->getParentOfType<ModuleOp>(); 46786ad0af8SEugene Zhulenev 4684a3460a7SRiver Riddle ArrayRef<Type> computeFuncInputTypes = 4694a3460a7SRiver Riddle computeFunc.func.getFunctionType().getInputs(); 47086ad0af8SEugene Zhulenev 47186ad0af8SEugene Zhulenev // Compared to the parallel compute function async dispatch function takes 47286ad0af8SEugene Zhulenev // additional !async.group argument. Also instead of a single `blockIndex` it 47386ad0af8SEugene Zhulenev // takes `blockStart` and `blockEnd` arguments to define the range of 47486ad0af8SEugene Zhulenev // dispatched blocks. 47586ad0af8SEugene Zhulenev SmallVector<Type> inputTypes; 47686ad0af8SEugene Zhulenev inputTypes.push_back(async::GroupType::get(rewriter.getContext())); 47786ad0af8SEugene Zhulenev inputTypes.push_back(rewriter.getIndexType()); // add blockStart argument 47886ad0af8SEugene Zhulenev inputTypes.append(computeFuncInputTypes.begin(), computeFuncInputTypes.end()); 47986ad0af8SEugene Zhulenev 48086ad0af8SEugene Zhulenev FunctionType type = rewriter.getFunctionType(inputTypes, TypeRange()); 48158ceae95SRiver Riddle func::FuncOp func = func::FuncOp::create(loc, "async_dispatch_fn", type); 48286ad0af8SEugene Zhulenev func.setPrivate(); 48386ad0af8SEugene Zhulenev 48486ad0af8SEugene Zhulenev // Insert function into the module symbol table and assign it unique name. 48586ad0af8SEugene Zhulenev SymbolTable symbolTable(module); 48686ad0af8SEugene Zhulenev symbolTable.insert(func); 4875cc0f76dSMatthias Springer rewriter.getListener()->notifyOperationInserted(func, /*previous=*/{}); 48886ad0af8SEugene Zhulenev 48986ad0af8SEugene Zhulenev // Create function entry block. 490e084679fSRiver Riddle Block *block = b.createBlock(&func.getBody(), func.begin(), type.getInputs(), 491e084679fSRiver Riddle SmallVector<Location>(type.getNumInputs(), loc)); 49286ad0af8SEugene Zhulenev b.setInsertionPointToEnd(block); 49386ad0af8SEugene Zhulenev 49486ad0af8SEugene Zhulenev Type indexTy = b.getIndexType(); 495a54f4eaeSMogball Value c1 = b.create<arith::ConstantIndexOp>(1); 496a54f4eaeSMogball Value c2 = b.create<arith::ConstantIndexOp>(2); 49786ad0af8SEugene Zhulenev 49886ad0af8SEugene Zhulenev // Get the async group that will track async dispatch completion. 49986ad0af8SEugene Zhulenev Value group = block->getArgument(0); 50086ad0af8SEugene Zhulenev 50186ad0af8SEugene Zhulenev // Get the block iteration range: [blockStart, blockEnd) 50286ad0af8SEugene Zhulenev Value blockStart = block->getArgument(1); 50386ad0af8SEugene Zhulenev Value blockEnd = block->getArgument(2); 50486ad0af8SEugene Zhulenev 50586ad0af8SEugene Zhulenev // Create a work splitting while loop for the [blockStart, blockEnd) range. 50686ad0af8SEugene Zhulenev SmallVector<Type> types = {indexTy, indexTy}; 50786ad0af8SEugene Zhulenev SmallVector<Value> operands = {blockStart, blockEnd}; 508e084679fSRiver Riddle SmallVector<Location> locations = {loc, loc}; 50986ad0af8SEugene Zhulenev 51086ad0af8SEugene Zhulenev // Create a recursive dispatch loop. 51186ad0af8SEugene Zhulenev scf::WhileOp whileOp = b.create<scf::WhileOp>(types, operands); 512e084679fSRiver Riddle Block *before = b.createBlock(&whileOp.getBefore(), {}, types, locations); 513e084679fSRiver Riddle Block *after = b.createBlock(&whileOp.getAfter(), {}, types, locations); 51486ad0af8SEugene Zhulenev 51586ad0af8SEugene Zhulenev // Setup dispatch loop condition block: decide if we need to go into the 51686ad0af8SEugene Zhulenev // `after` block and launch one more async dispatch. 51786ad0af8SEugene Zhulenev { 51886ad0af8SEugene Zhulenev b.setInsertionPointToEnd(before); 51986ad0af8SEugene Zhulenev Value start = before->getArgument(0); 52086ad0af8SEugene Zhulenev Value end = before->getArgument(1); 521a54f4eaeSMogball Value distance = b.create<arith::SubIOp>(end, start); 522a54f4eaeSMogball Value dispatch = 523a54f4eaeSMogball b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, distance, c1); 52486ad0af8SEugene Zhulenev b.create<scf::ConditionOp>(dispatch, before->getArguments()); 52586ad0af8SEugene Zhulenev } 52686ad0af8SEugene Zhulenev 52786ad0af8SEugene Zhulenev // Setup the async dispatch loop body: recursively call dispatch function 52834a164c9SEugene Zhulenev // for the seconds half of the original range and go to the next iteration. 52986ad0af8SEugene Zhulenev { 53086ad0af8SEugene Zhulenev b.setInsertionPointToEnd(after); 53186ad0af8SEugene Zhulenev Value start = after->getArgument(0); 53286ad0af8SEugene Zhulenev Value end = after->getArgument(1); 533a54f4eaeSMogball Value distance = b.create<arith::SubIOp>(end, start); 534a54f4eaeSMogball Value halfDistance = b.create<arith::DivSIOp>(distance, c2); 535a54f4eaeSMogball Value midIndex = b.create<arith::AddIOp>(start, halfDistance); 53686ad0af8SEugene Zhulenev 53786ad0af8SEugene Zhulenev // Call parallel compute function inside the async.execute region. 53886ad0af8SEugene Zhulenev auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 53986ad0af8SEugene Zhulenev Location executeLoc, ValueRange executeArgs) { 54086ad0af8SEugene Zhulenev // Update the original `blockStart` and `blockEnd` with new range. 54186ad0af8SEugene Zhulenev SmallVector<Value> operands{block->getArguments().begin(), 54286ad0af8SEugene Zhulenev block->getArguments().end()}; 54386ad0af8SEugene Zhulenev operands[1] = midIndex; 54486ad0af8SEugene Zhulenev operands[2] = end; 54586ad0af8SEugene Zhulenev 546f8d5c73cSRiver Riddle executeBuilder.create<func::CallOp>(executeLoc, func.getSymName(), 54734a35a8bSMartin Erhart func.getResultTypes(), operands); 54886ad0af8SEugene Zhulenev executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 54986ad0af8SEugene Zhulenev }; 55086ad0af8SEugene Zhulenev 55186ad0af8SEugene Zhulenev // Create async.execute operation to dispatch half of the block range. 55286ad0af8SEugene Zhulenev auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 55386ad0af8SEugene Zhulenev executeBodyBuilder); 554a5aa7836SRiver Riddle b.create<AddToGroupOp>(indexTy, execute.getToken(), group); 55534a164c9SEugene Zhulenev b.create<scf::YieldOp>(ValueRange({start, midIndex})); 55686ad0af8SEugene Zhulenev } 55786ad0af8SEugene Zhulenev 55886ad0af8SEugene Zhulenev // After dispatching async operations to process the tail of the block range 55986ad0af8SEugene Zhulenev // call the parallel compute function for the first block of the range. 56086ad0af8SEugene Zhulenev b.setInsertionPointAfter(whileOp); 56186ad0af8SEugene Zhulenev 56286ad0af8SEugene Zhulenev // Drop async dispatch specific arguments: async group, block start and end. 56386ad0af8SEugene Zhulenev auto forwardedInputs = block->getArguments().drop_front(3); 56486ad0af8SEugene Zhulenev SmallVector<Value> computeFuncOperands = {blockStart}; 56586ad0af8SEugene Zhulenev computeFuncOperands.append(forwardedInputs.begin(), forwardedInputs.end()); 56686ad0af8SEugene Zhulenev 567f8d5c73cSRiver Riddle b.create<func::CallOp>(computeFunc.func.getSymName(), 56834a35a8bSMartin Erhart computeFunc.func.getResultTypes(), 56923aa5a74SRiver Riddle computeFuncOperands); 57023aa5a74SRiver Riddle b.create<func::ReturnOp>(ValueRange()); 57186ad0af8SEugene Zhulenev 57286ad0af8SEugene Zhulenev return func; 57386ad0af8SEugene Zhulenev } 57486ad0af8SEugene Zhulenev 57586ad0af8SEugene Zhulenev // Launch async dispatch of the parallel compute function. 57686ad0af8SEugene Zhulenev static void doAsyncDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 57786ad0af8SEugene Zhulenev ParallelComputeFunction ¶llelComputeFunction, 57886ad0af8SEugene Zhulenev scf::ParallelOp op, Value blockSize, 57986ad0af8SEugene Zhulenev Value blockCount, 58086ad0af8SEugene Zhulenev const SmallVector<Value> &tripCounts) { 58186ad0af8SEugene Zhulenev MLIRContext *ctx = op->getContext(); 58286ad0af8SEugene Zhulenev 58386ad0af8SEugene Zhulenev // Add one more level of indirection to dispatch parallel compute functions 58486ad0af8SEugene Zhulenev // using async operations and recursive work splitting. 58558ceae95SRiver Riddle func::FuncOp asyncDispatchFunction = 58686ad0af8SEugene Zhulenev createAsyncDispatchFunction(parallelComputeFunction, rewriter); 58786ad0af8SEugene Zhulenev 588a54f4eaeSMogball Value c0 = b.create<arith::ConstantIndexOp>(0); 589a54f4eaeSMogball Value c1 = b.create<arith::ConstantIndexOp>(1); 59086ad0af8SEugene Zhulenev 591a8f819c6SEugene Zhulenev // Appends operands shared by async dispatch and parallel compute functions to 592a8f819c6SEugene Zhulenev // the given operands vector. 593a8f819c6SEugene Zhulenev auto appendBlockComputeOperands = [&](SmallVector<Value> &operands) { 594a8f819c6SEugene Zhulenev operands.append(tripCounts); 595c0342a2dSJacques Pienaar operands.append(op.getLowerBound().begin(), op.getLowerBound().end()); 596c0342a2dSJacques Pienaar operands.append(op.getUpperBound().begin(), op.getUpperBound().end()); 597c0342a2dSJacques Pienaar operands.append(op.getStep().begin(), op.getStep().end()); 598a8f819c6SEugene Zhulenev operands.append(parallelComputeFunction.captures); 599a8f819c6SEugene Zhulenev }; 600a8f819c6SEugene Zhulenev 601a8f819c6SEugene Zhulenev // Check if the block size is one, in this case we can skip the async dispatch 602a8f819c6SEugene Zhulenev // completely. If this will be known statically, then canonicalization will 603a8f819c6SEugene Zhulenev // erase async group operations. 604a54f4eaeSMogball Value isSingleBlock = 605a54f4eaeSMogball b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, blockCount, c1); 606a8f819c6SEugene Zhulenev 607a8f819c6SEugene Zhulenev auto syncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 608abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, nestedBuilder); 609a8f819c6SEugene Zhulenev 610a8f819c6SEugene Zhulenev // Call parallel compute function for the single block. 611a8f819c6SEugene Zhulenev SmallVector<Value> operands = {c0, blockSize}; 612a8f819c6SEugene Zhulenev appendBlockComputeOperands(operands); 613a8f819c6SEugene Zhulenev 614f8d5c73cSRiver Riddle b.create<func::CallOp>(parallelComputeFunction.func.getSymName(), 61534a35a8bSMartin Erhart parallelComputeFunction.func.getResultTypes(), 616a8f819c6SEugene Zhulenev operands); 617abe2dee5SEugene Zhulenev b.create<scf::YieldOp>(); 618a8f819c6SEugene Zhulenev }; 619a8f819c6SEugene Zhulenev 620a8f819c6SEugene Zhulenev auto asyncDispatch = [&](OpBuilder &nestedBuilder, Location loc) { 621abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, nestedBuilder); 622b171583aSEugene Zhulenev 623bdde9595Sbakhtiyar // Create an async.group to wait on all async tokens from the concurrent 624bdde9595Sbakhtiyar // execution of multiple parallel compute function. First block will be 625bdde9595Sbakhtiyar // executed synchronously in the caller thread. 626abe2dee5SEugene Zhulenev Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 627abe2dee5SEugene Zhulenev Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 62886ad0af8SEugene Zhulenev 62986ad0af8SEugene Zhulenev // Launch async dispatch function for [0, blockCount) range. 630a8f819c6SEugene Zhulenev SmallVector<Value> operands = {group, c0, blockCount, blockSize}; 631a8f819c6SEugene Zhulenev appendBlockComputeOperands(operands); 632a8f819c6SEugene Zhulenev 633f8d5c73cSRiver Riddle b.create<func::CallOp>(asyncDispatchFunction.getSymName(), 63434a35a8bSMartin Erhart asyncDispatchFunction.getResultTypes(), operands); 635bdde9595Sbakhtiyar 636bdde9595Sbakhtiyar // Wait for the completion of all parallel compute operations. 637abe2dee5SEugene Zhulenev b.create<AwaitAllOp>(group); 638bdde9595Sbakhtiyar 639abe2dee5SEugene Zhulenev b.create<scf::YieldOp>(); 640a8f819c6SEugene Zhulenev }; 641a8f819c6SEugene Zhulenev 642a8f819c6SEugene Zhulenev // Dispatch either single block compute function, or launch async dispatch. 6431125c5c0SFrederik Gossen b.create<scf::IfOp>(isSingleBlock, syncDispatch, asyncDispatch); 64486ad0af8SEugene Zhulenev } 64586ad0af8SEugene Zhulenev 64686ad0af8SEugene Zhulenev // Dispatch parallel compute functions by submitting all async compute tasks 64786ad0af8SEugene Zhulenev // from a simple for loop in the caller thread. 64886ad0af8SEugene Zhulenev static void 64955dfab39Sbakhtiyar doSequentialDispatch(ImplicitLocOpBuilder &b, PatternRewriter &rewriter, 65086ad0af8SEugene Zhulenev ParallelComputeFunction ¶llelComputeFunction, 65186ad0af8SEugene Zhulenev scf::ParallelOp op, Value blockSize, Value blockCount, 65286ad0af8SEugene Zhulenev const SmallVector<Value> &tripCounts) { 65386ad0af8SEugene Zhulenev MLIRContext *ctx = op->getContext(); 65486ad0af8SEugene Zhulenev 65558ceae95SRiver Riddle func::FuncOp compute = parallelComputeFunction.func; 65686ad0af8SEugene Zhulenev 657a54f4eaeSMogball Value c0 = b.create<arith::ConstantIndexOp>(0); 658a54f4eaeSMogball Value c1 = b.create<arith::ConstantIndexOp>(1); 65986ad0af8SEugene Zhulenev 66086ad0af8SEugene Zhulenev // Create an async.group to wait on all async tokens from the concurrent 66186ad0af8SEugene Zhulenev // execution of multiple parallel compute function. First block will be 66286ad0af8SEugene Zhulenev // executed synchronously in the caller thread. 663a54f4eaeSMogball Value groupSize = b.create<arith::SubIOp>(blockCount, c1); 66486ad0af8SEugene Zhulenev Value group = b.create<CreateGroupOp>(GroupType::get(ctx), groupSize); 66586ad0af8SEugene Zhulenev 66686ad0af8SEugene Zhulenev // Call parallel compute function for all blocks. 66786ad0af8SEugene Zhulenev using LoopBodyBuilder = 66886ad0af8SEugene Zhulenev std::function<void(OpBuilder &, Location, Value, ValueRange)>; 66986ad0af8SEugene Zhulenev 67086ad0af8SEugene Zhulenev // Returns parallel compute function operands to process the given block. 67186ad0af8SEugene Zhulenev auto computeFuncOperands = [&](Value blockIndex) -> SmallVector<Value> { 67286ad0af8SEugene Zhulenev SmallVector<Value> computeFuncOperands = {blockIndex, blockSize}; 67386ad0af8SEugene Zhulenev computeFuncOperands.append(tripCounts); 674c0342a2dSJacques Pienaar computeFuncOperands.append(op.getLowerBound().begin(), 675c0342a2dSJacques Pienaar op.getLowerBound().end()); 676c0342a2dSJacques Pienaar computeFuncOperands.append(op.getUpperBound().begin(), 677c0342a2dSJacques Pienaar op.getUpperBound().end()); 678c0342a2dSJacques Pienaar computeFuncOperands.append(op.getStep().begin(), op.getStep().end()); 67986ad0af8SEugene Zhulenev computeFuncOperands.append(parallelComputeFunction.captures); 68086ad0af8SEugene Zhulenev return computeFuncOperands; 68186ad0af8SEugene Zhulenev }; 68286ad0af8SEugene Zhulenev 68386ad0af8SEugene Zhulenev // Induction variable is the index of the block: [0, blockCount). 68486ad0af8SEugene Zhulenev LoopBodyBuilder loopBuilder = [&](OpBuilder &loopBuilder, Location loc, 68586ad0af8SEugene Zhulenev Value iv, ValueRange args) { 686abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, loopBuilder); 68786ad0af8SEugene Zhulenev 68886ad0af8SEugene Zhulenev // Call parallel compute function inside the async.execute region. 68986ad0af8SEugene Zhulenev auto executeBodyBuilder = [&](OpBuilder &executeBuilder, 69086ad0af8SEugene Zhulenev Location executeLoc, ValueRange executeArgs) { 691f8d5c73cSRiver Riddle executeBuilder.create<func::CallOp>(executeLoc, compute.getSymName(), 69234a35a8bSMartin Erhart compute.getResultTypes(), 69386ad0af8SEugene Zhulenev computeFuncOperands(iv)); 69486ad0af8SEugene Zhulenev executeBuilder.create<async::YieldOp>(executeLoc, ValueRange()); 69586ad0af8SEugene Zhulenev }; 69686ad0af8SEugene Zhulenev 69786ad0af8SEugene Zhulenev // Create async.execute operation to launch parallel computate function. 698abe2dee5SEugene Zhulenev auto execute = b.create<ExecuteOp>(TypeRange(), ValueRange(), ValueRange(), 69986ad0af8SEugene Zhulenev executeBodyBuilder); 700a5aa7836SRiver Riddle b.create<AddToGroupOp>(rewriter.getIndexType(), execute.getToken(), group); 701abe2dee5SEugene Zhulenev b.create<scf::YieldOp>(); 70286ad0af8SEugene Zhulenev }; 70386ad0af8SEugene Zhulenev 70486ad0af8SEugene Zhulenev // Iterate over all compute blocks and launch parallel compute operations. 70586ad0af8SEugene Zhulenev b.create<scf::ForOp>(c1, blockCount, c1, ValueRange(), loopBuilder); 70686ad0af8SEugene Zhulenev 70786ad0af8SEugene Zhulenev // Call parallel compute function for the first block in the caller thread. 70834a35a8bSMartin Erhart b.create<func::CallOp>(compute.getSymName(), compute.getResultTypes(), 70986ad0af8SEugene Zhulenev computeFuncOperands(c0)); 71086ad0af8SEugene Zhulenev 71186ad0af8SEugene Zhulenev // Wait for the completion of all async compute operations. 71286ad0af8SEugene Zhulenev b.create<AwaitAllOp>(group); 71386ad0af8SEugene Zhulenev } 71486ad0af8SEugene Zhulenev 715c30ab6c2SEugene Zhulenev LogicalResult 716c30ab6c2SEugene Zhulenev AsyncParallelForRewrite::matchAndRewrite(scf::ParallelOp op, 717c30ab6c2SEugene Zhulenev PatternRewriter &rewriter) const { 718c30ab6c2SEugene Zhulenev // We do not currently support rewrite for parallel op with reductions. 719c30ab6c2SEugene Zhulenev if (op.getNumReductions() != 0) 720c30ab6c2SEugene Zhulenev return failure(); 721c30ab6c2SEugene Zhulenev 72286ad0af8SEugene Zhulenev ImplicitLocOpBuilder b(op.getLoc(), rewriter); 723c30ab6c2SEugene Zhulenev 724ec0e4545Sbakhtiyar // Computing minTaskSize emits IR and can be implemented as executing a cost 725ec0e4545Sbakhtiyar // model on the body of the scf.parallel. Thus it needs to be computed before 726ec0e4545Sbakhtiyar // the body of the scf.parallel has been manipulated. 727ec0e4545Sbakhtiyar Value minTaskSize = computeMinTaskSize(b, op); 728ec0e4545Sbakhtiyar 7299f151b78SEugene Zhulenev // Make sure that all constants will be inside the parallel operation body to 7309f151b78SEugene Zhulenev // reduce the number of parallel compute function arguments. 7319b5ef2beSMatthias Springer cloneConstantsIntoTheRegion(op.getRegion(), rewriter); 7329f151b78SEugene Zhulenev 733c30ab6c2SEugene Zhulenev // Compute trip count for each loop induction variable: 73486ad0af8SEugene Zhulenev // tripCount = ceil_div(upperBound - lowerBound, step); 73586ad0af8SEugene Zhulenev SmallVector<Value> tripCounts(op.getNumLoops()); 736c30ab6c2SEugene Zhulenev for (size_t i = 0; i < op.getNumLoops(); ++i) { 737c0342a2dSJacques Pienaar auto lb = op.getLowerBound()[i]; 738c0342a2dSJacques Pienaar auto ub = op.getUpperBound()[i]; 739c0342a2dSJacques Pienaar auto step = op.getStep()[i]; 7409f151b78SEugene Zhulenev auto range = b.createOrFold<arith::SubIOp>(ub, lb); 7419f151b78SEugene Zhulenev tripCounts[i] = b.createOrFold<arith::CeilDivSIOp>(range, step); 742c30ab6c2SEugene Zhulenev } 743c30ab6c2SEugene Zhulenev 74486ad0af8SEugene Zhulenev // Compute a product of trip counts to get the 1-dimensional iteration space 74586ad0af8SEugene Zhulenev // for the scf.parallel operation. 74686ad0af8SEugene Zhulenev Value tripCount = tripCounts[0]; 74786ad0af8SEugene Zhulenev for (size_t i = 1; i < tripCounts.size(); ++i) 748a54f4eaeSMogball tripCount = b.create<arith::MulIOp>(tripCount, tripCounts[i]); 749c30ab6c2SEugene Zhulenev 7506c1f6558SEugene Zhulenev // Short circuit no-op parallel loops (zero iterations) that can arise from 7516c1f6558SEugene Zhulenev // the memrefs with dynamic dimension(s) equal to zero. 752a54f4eaeSMogball Value c0 = b.create<arith::ConstantIndexOp>(0); 753a54f4eaeSMogball Value isZeroIterations = 754a54f4eaeSMogball b.create<arith::CmpIOp>(arith::CmpIPredicate::eq, tripCount, c0); 7556c1f6558SEugene Zhulenev 7566c1f6558SEugene Zhulenev // Do absolutely nothing if the trip count is zero. 7576c1f6558SEugene Zhulenev auto noOp = [&](OpBuilder &nestedBuilder, Location loc) { 7586c1f6558SEugene Zhulenev nestedBuilder.create<scf::YieldOp>(loc); 7596c1f6558SEugene Zhulenev }; 7606c1f6558SEugene Zhulenev 7616c1f6558SEugene Zhulenev // Compute the parallel block size and dispatch concurrent tasks computing 7626c1f6558SEugene Zhulenev // results for each block. 7636c1f6558SEugene Zhulenev auto dispatch = [&](OpBuilder &nestedBuilder, Location loc) { 764abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, nestedBuilder); 7656c1f6558SEugene Zhulenev 76649ce40e9SEugene Zhulenev // Collect statically known constants defining the loop nest in the parallel 76749ce40e9SEugene Zhulenev // compute function. LLVM can't always push constants across the non-trivial 76849ce40e9SEugene Zhulenev // async dispatch call graph, by providing these values explicitly we can 76949ce40e9SEugene Zhulenev // choose to build more efficient loop nest, and rely on a better constant 77049ce40e9SEugene Zhulenev // folding, loop unrolling and vectorization. 77149ce40e9SEugene Zhulenev ParallelComputeFunctionBounds staticBounds = { 77249ce40e9SEugene Zhulenev integerConstants(tripCounts), 773c0342a2dSJacques Pienaar integerConstants(op.getLowerBound()), 774c0342a2dSJacques Pienaar integerConstants(op.getUpperBound()), 775c0342a2dSJacques Pienaar integerConstants(op.getStep()), 77649ce40e9SEugene Zhulenev }; 77749ce40e9SEugene Zhulenev 77849ce40e9SEugene Zhulenev // Find how many inner iteration dimensions are statically known, and their 779ec0e4545Sbakhtiyar // product is smaller than the `512`. We align the parallel compute block 78049ce40e9SEugene Zhulenev // size by the product of statically known dimensions, so that we can 78149ce40e9SEugene Zhulenev // guarantee that the inner loops executes from 0 to the loop trip counts 78249ce40e9SEugene Zhulenev // and we can elide dynamic loop boundaries, and give LLVM an opportunity to 78349ce40e9SEugene Zhulenev // unroll the loops. The constant `512` is arbitrary, it should depend on 78449ce40e9SEugene Zhulenev // how many iterations LLVM will typically decide to unroll. 785beff16f7SEugene Zhulenev static constexpr int64_t maxUnrollableIterations = 512; 78649ce40e9SEugene Zhulenev 78749ce40e9SEugene Zhulenev // The number of inner loops with statically known number of iterations less 788beff16f7SEugene Zhulenev // than the `maxUnrollableIterations` value. 78949ce40e9SEugene Zhulenev int numUnrollableLoops = 0; 79049ce40e9SEugene Zhulenev 79149ce40e9SEugene Zhulenev auto getInt = [](IntegerAttr attr) { return attr ? attr.getInt() : 0; }; 79249ce40e9SEugene Zhulenev 79349ce40e9SEugene Zhulenev SmallVector<int64_t> numIterations(op.getNumLoops()); 79449ce40e9SEugene Zhulenev numIterations.back() = getInt(staticBounds.tripCounts.back()); 79549ce40e9SEugene Zhulenev 79649ce40e9SEugene Zhulenev for (int i = op.getNumLoops() - 2; i >= 0; --i) { 79749ce40e9SEugene Zhulenev int64_t tripCount = getInt(staticBounds.tripCounts[i]); 79849ce40e9SEugene Zhulenev int64_t innerIterations = numIterations[i + 1]; 79949ce40e9SEugene Zhulenev numIterations[i] = tripCount * innerIterations; 80049ce40e9SEugene Zhulenev 80149ce40e9SEugene Zhulenev // Update the number of inner loops that we can potentially unroll. 802beff16f7SEugene Zhulenev if (innerIterations > 0 && innerIterations <= maxUnrollableIterations) 80349ce40e9SEugene Zhulenev numUnrollableLoops++; 80449ce40e9SEugene Zhulenev } 80549ce40e9SEugene Zhulenev 806149311b4Sbakhtiyar Value numWorkerThreadsVal; 807149311b4Sbakhtiyar if (numWorkerThreads >= 0) 808149311b4Sbakhtiyar numWorkerThreadsVal = b.create<arith::ConstantIndexOp>(numWorkerThreads); 809149311b4Sbakhtiyar else 810149311b4Sbakhtiyar numWorkerThreadsVal = b.create<async::RuntimeNumWorkerThreadsOp>(); 811c1194c2eSEugene Zhulenev 812149311b4Sbakhtiyar // With large number of threads the value of creating many compute blocks 813149311b4Sbakhtiyar // is reduced because the problem typically becomes memory bound. For this 814149311b4Sbakhtiyar // reason we scale the number of workers using an equivalent to the 815149311b4Sbakhtiyar // following logic: 816149311b4Sbakhtiyar // float overshardingFactor = numWorkerThreads <= 4 ? 8.0 817149311b4Sbakhtiyar // : numWorkerThreads <= 8 ? 4.0 818149311b4Sbakhtiyar // : numWorkerThreads <= 16 ? 2.0 819149311b4Sbakhtiyar // : numWorkerThreads <= 32 ? 1.0 820149311b4Sbakhtiyar // : numWorkerThreads <= 64 ? 0.8 821149311b4Sbakhtiyar // : 0.6; 822149311b4Sbakhtiyar 823149311b4Sbakhtiyar // Pairs of non-inclusive lower end of the bracket and factor that the 824149311b4Sbakhtiyar // number of workers needs to be scaled with if it falls in that bucket. 825149311b4Sbakhtiyar const SmallVector<std::pair<int, float>> overshardingBrackets = { 826149311b4Sbakhtiyar {4, 4.0f}, {8, 2.0f}, {16, 1.0f}, {32, 0.8f}, {64, 0.6f}}; 827149311b4Sbakhtiyar const float initialOvershardingFactor = 8.0f; 828149311b4Sbakhtiyar 829149311b4Sbakhtiyar Value scalingFactor = b.create<arith::ConstantFloatOp>( 830149311b4Sbakhtiyar llvm::APFloat(initialOvershardingFactor), b.getF32Type()); 831149311b4Sbakhtiyar for (const std::pair<int, float> &p : overshardingBrackets) { 832149311b4Sbakhtiyar Value bracketBegin = b.create<arith::ConstantIndexOp>(p.first); 833149311b4Sbakhtiyar Value inBracket = b.create<arith::CmpIOp>( 834149311b4Sbakhtiyar arith::CmpIPredicate::sgt, numWorkerThreadsVal, bracketBegin); 835149311b4Sbakhtiyar Value bracketScalingFactor = b.create<arith::ConstantFloatOp>( 836149311b4Sbakhtiyar llvm::APFloat(p.second), b.getF32Type()); 837dec8af70SRiver Riddle scalingFactor = b.create<arith::SelectOp>(inBracket, bracketScalingFactor, 838dec8af70SRiver Riddle scalingFactor); 839149311b4Sbakhtiyar } 840149311b4Sbakhtiyar Value numWorkersIndex = 8413c69bc4dSRiver Riddle b.create<arith::IndexCastOp>(b.getI32Type(), numWorkerThreadsVal); 842149311b4Sbakhtiyar Value numWorkersFloat = 8433c69bc4dSRiver Riddle b.create<arith::SIToFPOp>(b.getF32Type(), numWorkersIndex); 844149311b4Sbakhtiyar Value scaledNumWorkers = 845149311b4Sbakhtiyar b.create<arith::MulFOp>(scalingFactor, numWorkersFloat); 846149311b4Sbakhtiyar Value scaledNumInt = 8473c69bc4dSRiver Riddle b.create<arith::FPToSIOp>(b.getI32Type(), scaledNumWorkers); 848149311b4Sbakhtiyar Value scaledWorkers = 8493c69bc4dSRiver Riddle b.create<arith::IndexCastOp>(b.getIndexType(), scaledNumInt); 850149311b4Sbakhtiyar 851149311b4Sbakhtiyar Value maxComputeBlocks = b.create<arith::MaxSIOp>( 852149311b4Sbakhtiyar b.create<arith::ConstantIndexOp>(1), scaledWorkers); 853c30ab6c2SEugene Zhulenev 85486ad0af8SEugene Zhulenev // Compute parallel block size from the parallel problem size: 85586ad0af8SEugene Zhulenev // blockSize = min(tripCount, 85634a164c9SEugene Zhulenev // max(ceil_div(tripCount, maxComputeBlocks), 857ec0e4545Sbakhtiyar // minTaskSize)) 8587bd87a03Sbakhtiyar Value bs0 = b.create<arith::CeilDivSIOp>(tripCount, maxComputeBlocks); 859ec0e4545Sbakhtiyar Value bs1 = b.create<arith::MaxSIOp>(bs0, minTaskSize); 8607bd87a03Sbakhtiyar Value blockSize = b.create<arith::MinSIOp>(tripCount, bs1); 86149ce40e9SEugene Zhulenev 862ec0e4545Sbakhtiyar // Dispatch parallel compute function using async recursive work splitting, 863ec0e4545Sbakhtiyar // or by submitting compute task sequentially from a caller thread. 864ec0e4545Sbakhtiyar auto doDispatch = asyncDispatch ? doAsyncDispatch : doSequentialDispatch; 865ec0e4545Sbakhtiyar 866ec0e4545Sbakhtiyar // Create a parallel compute function that takes a block id and computes 867ec0e4545Sbakhtiyar // the parallel operation body for a subset of iteration space. 86849ce40e9SEugene Zhulenev 86949ce40e9SEugene Zhulenev // Compute the number of parallel compute blocks. 870a54f4eaeSMogball Value blockCount = b.create<arith::CeilDivSIOp>(tripCount, blockSize); 87186ad0af8SEugene Zhulenev 872beff16f7SEugene Zhulenev // Dispatch parallel compute function without hints to unroll inner loops. 873beff16f7SEugene Zhulenev auto dispatchDefault = [&](OpBuilder &nestedBuilder, Location loc) { 874beff16f7SEugene Zhulenev ParallelComputeFunction compute = 875beff16f7SEugene Zhulenev createParallelComputeFunction(op, staticBounds, 0, rewriter); 876beff16f7SEugene Zhulenev 877abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, nestedBuilder); 878beff16f7SEugene Zhulenev doDispatch(b, rewriter, compute, op, blockSize, blockCount, tripCounts); 879abe2dee5SEugene Zhulenev b.create<scf::YieldOp>(); 880ec0e4545Sbakhtiyar }; 881ec0e4545Sbakhtiyar 882beff16f7SEugene Zhulenev // Dispatch parallel compute function with hints for unrolling inner loops. 883beff16f7SEugene Zhulenev auto dispatchBlockAligned = [&](OpBuilder &nestedBuilder, Location loc) { 884beff16f7SEugene Zhulenev ParallelComputeFunction compute = createParallelComputeFunction( 885beff16f7SEugene Zhulenev op, staticBounds, numUnrollableLoops, rewriter); 886ec0e4545Sbakhtiyar 887abe2dee5SEugene Zhulenev ImplicitLocOpBuilder b(loc, nestedBuilder); 888ec0e4545Sbakhtiyar // Align the block size to be a multiple of the statically known 889ec0e4545Sbakhtiyar // number of iterations in the inner loops. 890abe2dee5SEugene Zhulenev Value numIters = b.create<arith::ConstantIndexOp>( 891ec0e4545Sbakhtiyar numIterations[op.getNumLoops() - numUnrollableLoops]); 892abe2dee5SEugene Zhulenev Value alignedBlockSize = b.create<arith::MulIOp>( 893abe2dee5SEugene Zhulenev b.create<arith::CeilDivSIOp>(blockSize, numIters), numIters); 894beff16f7SEugene Zhulenev doDispatch(b, rewriter, compute, op, alignedBlockSize, blockCount, 895beff16f7SEugene Zhulenev tripCounts); 896abe2dee5SEugene Zhulenev b.create<scf::YieldOp>(); 8976c1f6558SEugene Zhulenev }; 8986c1f6558SEugene Zhulenev 899beff16f7SEugene Zhulenev // Dispatch to block aligned compute function only if the computed block 900beff16f7SEugene Zhulenev // size is larger than the number of iterations in the unrollable inner 901beff16f7SEugene Zhulenev // loops, because otherwise it can reduce the available parallelism. 902beff16f7SEugene Zhulenev if (numUnrollableLoops > 0) { 903beff16f7SEugene Zhulenev Value numIters = b.create<arith::ConstantIndexOp>( 904beff16f7SEugene Zhulenev numIterations[op.getNumLoops() - numUnrollableLoops]); 905beff16f7SEugene Zhulenev Value useBlockAlignedComputeFn = b.create<arith::CmpIOp>( 906beff16f7SEugene Zhulenev arith::CmpIPredicate::sge, blockSize, numIters); 907beff16f7SEugene Zhulenev 9081125c5c0SFrederik Gossen b.create<scf::IfOp>(useBlockAlignedComputeFn, dispatchBlockAligned, 9091125c5c0SFrederik Gossen dispatchDefault); 910abe2dee5SEugene Zhulenev b.create<scf::YieldOp>(); 911ec0e4545Sbakhtiyar } else { 912beff16f7SEugene Zhulenev dispatchDefault(b, loc); 913ec0e4545Sbakhtiyar } 914ec0e4545Sbakhtiyar }; 915ec0e4545Sbakhtiyar 9166c1f6558SEugene Zhulenev // Replace the `scf.parallel` operation with the parallel compute function. 9171125c5c0SFrederik Gossen b.create<scf::IfOp>(isZeroIterations, noOp, dispatch); 9186c1f6558SEugene Zhulenev 91934a164c9SEugene Zhulenev // Parallel operation was replaced with a block iteration loop. 920c30ab6c2SEugene Zhulenev rewriter.eraseOp(op); 921c30ab6c2SEugene Zhulenev 922c30ab6c2SEugene Zhulenev return success(); 923c30ab6c2SEugene Zhulenev } 924c30ab6c2SEugene Zhulenev 9258a316b00SEugene Zhulenev void AsyncParallelForPass::runOnOperation() { 926c30ab6c2SEugene Zhulenev MLIRContext *ctx = &getContext(); 927c30ab6c2SEugene Zhulenev 928dc4e913bSChris Lattner RewritePatternSet patterns(ctx); 929ec0e4545Sbakhtiyar populateAsyncParallelForPatterns( 930ec0e4545Sbakhtiyar patterns, asyncDispatch, numWorkerThreads, 931ec0e4545Sbakhtiyar [&](ImplicitLocOpBuilder builder, scf::ParallelOp op) { 932ec0e4545Sbakhtiyar return builder.create<arith::ConstantIndexOp>(minTaskSize); 933ec0e4545Sbakhtiyar }); 934*09dfc571SJacques Pienaar if (failed(applyPatternsGreedily(getOperation(), std::move(patterns)))) 935c30ab6c2SEugene Zhulenev signalPassFailure(); 936c30ab6c2SEugene Zhulenev } 937c30ab6c2SEugene Zhulenev 9388a316b00SEugene Zhulenev std::unique_ptr<Pass> mlir::createAsyncParallelForPass() { 939c30ab6c2SEugene Zhulenev return std::make_unique<AsyncParallelForPass>(); 940c30ab6c2SEugene Zhulenev } 94134a164c9SEugene Zhulenev 94255dfab39Sbakhtiyar std::unique_ptr<Pass> mlir::createAsyncParallelForPass(bool asyncDispatch, 94355dfab39Sbakhtiyar int32_t numWorkerThreads, 94455dfab39Sbakhtiyar int32_t minTaskSize) { 94534a164c9SEugene Zhulenev return std::make_unique<AsyncParallelForPass>(asyncDispatch, numWorkerThreads, 94655dfab39Sbakhtiyar minTaskSize); 94734a164c9SEugene Zhulenev } 948ec0e4545Sbakhtiyar 949ec0e4545Sbakhtiyar void mlir::async::populateAsyncParallelForPatterns( 950ec0e4545Sbakhtiyar RewritePatternSet &patterns, bool asyncDispatch, int32_t numWorkerThreads, 9511fc096afSMehdi Amini const AsyncMinTaskSizeComputationFunction &computeMinTaskSize) { 952ec0e4545Sbakhtiyar MLIRContext *ctx = patterns.getContext(); 953ec0e4545Sbakhtiyar patterns.add<AsyncParallelForRewrite>(ctx, asyncDispatch, numWorkerThreads, 954ec0e4545Sbakhtiyar computeMinTaskSize); 955ec0e4545Sbakhtiyar } 956