xref: /llvm-project/mlir/lib/Dialect/Affine/Transforms/LoopTiling.cpp (revision e3d834a54afa65c615b8eb839f4fe5dbaf53e3e8)
1 //===- LoopTiling.cpp --- Loop tiling pass ------------------------------*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a pass to tile loop nests.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Analysis/AffineAnalysis.h"
14 #include "mlir/Analysis/AffineStructures.h"
15 #include "mlir/Analysis/LoopAnalysis.h"
16 #include "mlir/Analysis/Utils.h"
17 #include "mlir/Dialect/Affine/IR/AffineOps.h"
18 #include "mlir/Dialect/Affine/IR/AffineValueMap.h"
19 #include "mlir/Dialect/Affine/Passes.h"
20 #include "mlir/IR/BlockAndValueMapping.h"
21 #include "mlir/IR/Builders.h"
22 #include "mlir/Pass/Pass.h"
23 #include "mlir/Transforms/LoopUtils.h"
24 #include "mlir/Transforms/Utils.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 using namespace mlir;
28 
29 #define DEBUG_TYPE "affine-loop-tile"
30 
31 static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options");
32 
33 static llvm::cl::opt<unsigned long long>
34     clCacheSizeKiB("affine-tile-cache-size",
35                    llvm::cl::desc("Set size of cache to tile for in KiB"),
36                    llvm::cl::cat(clOptionsCategory));
37 
38 // Separate full and partial tiles.
39 static llvm::cl::opt<bool>
40     clSeparate("affine-tile-separate",
41                llvm::cl::desc("Separate full and partial tiles"),
42                llvm::cl::cat(clOptionsCategory));
43 
44 // Tile size to use for all loops (overrides -tile-sizes if provided).
45 static llvm::cl::opt<unsigned>
46     clTileSize("affine-tile-size",
47                llvm::cl::desc("Use this tile size for all loops"),
48                llvm::cl::cat(clOptionsCategory));
49 
50 // List of tile sizes. If any of them aren't provided, they are filled with
51 // clTileSize / kDefaultTileSize.
52 static llvm::cl::list<unsigned> clTileSizes(
53     "affine-tile-sizes",
54     llvm::cl::desc(
55         "List of tile sizes for each perfect nest (overridden by -tile-size)"),
56     llvm::cl::ZeroOrMore, llvm::cl::cat(clOptionsCategory));
57 
58 namespace {
59 
60 /// A pass to perform loop tiling on all suitable loop nests of a Function.
61 struct LoopTiling : public FunctionPass<LoopTiling> {
62   explicit LoopTiling(uint64_t cacheSizeBytes = kDefaultCacheMemCapacity,
63                       bool avoidMaxMinBounds = true)
64       : cacheSizeBytes(cacheSizeBytes), avoidMaxMinBounds(avoidMaxMinBounds) {}
65 
66   void runOnFunction() override;
67   void getTileSizes(ArrayRef<AffineForOp> band,
68                     SmallVectorImpl<unsigned> *tileSizes);
69 
70   // Default tile size if nothing is provided.
71   constexpr static unsigned kDefaultTileSize = 4;
72   constexpr static uint64_t kDefaultCacheMemCapacity = 512 * 1024UL;
73 
74   // Capacity of the cache to tile for.
75   uint64_t cacheSizeBytes;
76   // If true, tile sizes are set to avoid max/min in bounds if possible.
77   bool avoidMaxMinBounds;
78 };
79 
80 } // end anonymous namespace
81 
82 /// Creates a pass to perform loop tiling on all suitable loop nests of a
83 /// Function.
84 std::unique_ptr<OpPassBase<FuncOp>>
85 mlir::createLoopTilingPass(uint64_t cacheSizeBytes) {
86   return std::make_unique<LoopTiling>(cacheSizeBytes);
87 }
88 std::unique_ptr<OpPassBase<FuncOp>> mlir::createLoopTilingPass() {
89   return std::make_unique<LoopTiling>();
90 }
91 
92 // Move the loop body of AffineForOp 'src' from 'src' into the specified
93 // location in destination's body, ignoring the terminator.
94 static inline void moveLoopBody(AffineForOp src, AffineForOp dest,
95                                 Block::iterator loc) {
96   auto &insts = src.getBody()->getOperations();
97   dest.getBody()->getOperations().splice(loc, insts, insts.begin(),
98                                          std::prev(insts.end()));
99 }
100 
101 // Move the loop body of AffineForOp 'src' from 'src' to the start of dest's
102 // body.
103 static inline void moveLoopBody(AffineForOp src, AffineForOp dest) {
104   moveLoopBody(src, dest, dest.getBody()->begin());
105 }
106 
107 /// Constructs and sets new loop bounds after tiling for the case of
108 /// hyper-rectangular index sets, where the bounds of one dimension do not
109 /// depend on other dimensions. Bounds of each dimension can thus be treated
110 /// independently, and deriving the new bounds is much simpler and faster
111 /// than for the case of tiling arbitrary polyhedral shapes.
112 static void
113 constructTiledIndexSetHyperRect(MutableArrayRef<AffineForOp> origLoops,
114                                 MutableArrayRef<AffineForOp> newLoops,
115                                 ArrayRef<unsigned> tileSizes) {
116   assert(!origLoops.empty());
117   assert(origLoops.size() == tileSizes.size());
118 
119   OpBuilder b(origLoops[0].getOperation());
120   unsigned width = origLoops.size();
121 
122   // Bounds for tile space loops.
123   for (unsigned i = 0; i < width; i++) {
124     auto lbOperands = origLoops[i].getLowerBoundOperands();
125     auto ubOperands = origLoops[i].getUpperBoundOperands();
126     SmallVector<Value, 4> newLbOperands(lbOperands);
127     SmallVector<Value, 4> newUbOperands(ubOperands);
128     newLoops[i].setLowerBound(newLbOperands, origLoops[i].getLowerBoundMap());
129     newLoops[i].setUpperBound(newUbOperands, origLoops[i].getUpperBoundMap());
130     newLoops[i].setStep(tileSizes[i]);
131   }
132   // Bounds for intra-tile loops.
133   for (unsigned i = 0; i < width; i++) {
134     int64_t largestDiv = getLargestDivisorOfTripCount(origLoops[i]);
135     auto mayBeConstantCount = getConstantTripCount(origLoops[i]);
136     // The lower bound is just the tile-space loop.
137     AffineMap lbMap = b.getDimIdentityMap();
138     newLoops[width + i].setLowerBound(
139         /*operands=*/newLoops[i].getInductionVar(), lbMap);
140 
141     // Set the upper bound.
142     if (mayBeConstantCount.hasValue() &&
143         mayBeConstantCount.getValue() < tileSizes[i]) {
144       // Trip count is less than tile size; upper bound is the trip count.
145       auto ubMap = b.getConstantAffineMap(mayBeConstantCount.getValue());
146       newLoops[width + i].setUpperBoundMap(ubMap);
147     } else if (largestDiv % tileSizes[i] != 0) {
148       // Intra-tile loop ii goes from i to min(i + tileSize, ub_i).
149       // Construct the upper bound map; the operands are the original operands
150       // with 'i' (tile-space loop) appended to it. The new upper bound map is
151       // the original one with an additional expression i + tileSize appended.
152       auto ub = origLoops[i].getUpperBound();
153       SmallVector<Value, 4> ubOperands;
154       ubOperands.reserve(ub.getNumOperands() + 1);
155       auto origUbMap = ub.getMap();
156       // Add dim operands from original upper bound.
157       for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j) {
158         ubOperands.push_back(ub.getOperand(j));
159       }
160       // Add dim operand for new loop upper bound.
161       ubOperands.push_back(newLoops[i].getInductionVar());
162       // Add symbol operands from original upper bound.
163       for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j) {
164         ubOperands.push_back(ub.getOperand(origUbMap.getNumDims() + j));
165       }
166       SmallVector<AffineExpr, 4> boundExprs;
167       boundExprs.reserve(1 + origUbMap.getNumResults());
168       auto dim = b.getAffineDimExpr(origUbMap.getNumDims());
169       // The new upper bound map is the original one with an additional
170       // expression i + tileSize appended.
171       boundExprs.push_back(dim + tileSizes[i]);
172       boundExprs.append(origUbMap.getResults().begin(),
173                         origUbMap.getResults().end());
174       auto ubMap = AffineMap::get(origUbMap.getNumDims() + 1,
175                                   origUbMap.getNumSymbols(), boundExprs);
176       newLoops[width + i].setUpperBound(/*operands=*/ubOperands, ubMap);
177     } else {
178       // No need of the min expression.
179       auto dim = b.getAffineDimExpr(0);
180       auto ubMap = AffineMap::get(1, 0, dim + tileSizes[i]);
181       newLoops[width + i].setUpperBound(newLoops[i].getInductionVar(), ubMap);
182     }
183   }
184 }
185 
186 /// Tiles the specified band of perfectly nested loops creating tile-space loops
187 /// and intra-tile loops. A band is a contiguous set of loops.
188 //  TODO(bondhugula): handle non hyper-rectangular spaces.
189 LogicalResult mlir::tileCodeGen(MutableArrayRef<AffineForOp> band,
190                                 ArrayRef<unsigned> tileSizes,
191                                 SmallVectorImpl<AffineForOp> *tiledNest) {
192   // Check if the supplied for op's are all successively nested.
193   assert(!band.empty() && "no loops in band");
194   assert(band.size() == tileSizes.size() && "Too few/many tile sizes");
195 
196   for (unsigned i = 1, e = band.size(); i < e; i++)
197     assert(band[i].getParentOp() == band[i - 1] && "not a perfect nest / band");
198 
199   auto origLoops = band;
200 
201   AffineForOp rootAffineForOp = origLoops[0];
202   auto loc = rootAffineForOp.getLoc();
203   // Note that width is at least one since band isn't empty.
204   unsigned width = band.size();
205 
206   SmallVector<AffineForOp, 6> tiledLoops(2 * width);
207 
208   // The outermost among the loops as we add more..
209   auto *topLoop = rootAffineForOp.getOperation();
210   AffineForOp innermostPointLoop;
211 
212   // Add intra-tile (or point) loops.
213   for (unsigned i = 0; i < width; i++) {
214     OpBuilder b(topLoop);
215     // Loop bounds will be set later.
216     auto pointLoop = b.create<AffineForOp>(loc, 0, 0);
217     pointLoop.getBody()->getOperations().splice(
218         pointLoop.getBody()->begin(), topLoop->getBlock()->getOperations(),
219         topLoop);
220     tiledLoops[2 * width - 1 - i] = pointLoop;
221     topLoop = pointLoop.getOperation();
222     if (i == 0)
223       innermostPointLoop = pointLoop;
224   }
225 
226   // Add tile space loops;
227   for (unsigned i = width; i < 2 * width; i++) {
228     OpBuilder b(topLoop);
229     // Loop bounds will be set later.
230     auto tileSpaceLoop = b.create<AffineForOp>(loc, 0, 0);
231     tileSpaceLoop.getBody()->getOperations().splice(
232         tileSpaceLoop.getBody()->begin(), topLoop->getBlock()->getOperations(),
233         topLoop);
234     tiledLoops[2 * width - i - 1] = tileSpaceLoop;
235     topLoop = tileSpaceLoop.getOperation();
236   }
237 
238   // Move the loop body of the original nest to the new one.
239   moveLoopBody(origLoops[origLoops.size() - 1], innermostPointLoop);
240 
241   SmallVector<Value, 8> origLoopIVs;
242   extractForInductionVars(band, &origLoopIVs);
243   SmallVector<Optional<Value>, 6> ids(origLoopIVs.begin(), origLoopIVs.end());
244   FlatAffineConstraints cst;
245   getIndexSet(band, &cst);
246 
247   if (!cst.isHyperRectangular(0, width)) {
248     llvm::dbgs() << "tiled code generation unimplemented for the "
249                     "non-hyperrectangular case, op:"
250                  << *rootAffineForOp << "\n";
251     return failure();
252   }
253 
254   constructTiledIndexSetHyperRect(origLoops, tiledLoops, tileSizes);
255 
256   // Replace original IVs with intra-tile loop IVs.
257   for (unsigned i = 0; i < width; i++)
258     origLoopIVs[i].replaceAllUsesWith(tiledLoops[i + width].getInductionVar());
259 
260   // Erase the old loop nest.
261   rootAffineForOp.erase();
262 
263   if (tiledNest)
264     *tiledNest = std::move(tiledLoops);
265 
266   return success();
267 }
268 
269 // Identify valid and profitable bands of loops to tile. This is currently just
270 // a temporary placeholder to test the mechanics of tiled code generation.
271 // Returns all maximal outermost perfect loop nests to tile.
272 static void getTileableBands(FuncOp f,
273                              std::vector<SmallVector<AffineForOp, 6>> *bands) {
274   // Get maximal perfect nest of 'affine.for' insts starting from root
275   // (inclusive).
276   auto getMaximalPerfectLoopNest = [&](AffineForOp root) {
277     SmallVector<AffineForOp, 6> band;
278     getPerfectlyNestedLoops(band, root);
279     bands->push_back(band);
280   };
281 
282   for (auto &block : f)
283     for (auto &op : block)
284       if (auto forOp = dyn_cast<AffineForOp>(op))
285         getMaximalPerfectLoopNest(forOp);
286 }
287 
288 // Reduce each tile size to the largest divisor of the corresponding trip count
289 // (if the trip count is known).
290 static void adjustToDivisorsOfTripCounts(ArrayRef<AffineForOp> band,
291                                          SmallVectorImpl<unsigned> *tileSizes) {
292   assert(band.size() == tileSizes->size() && "invalid tile size count");
293   for (unsigned i = 0, e = band.size(); i < e; i++) {
294     unsigned &tSizeAdjusted = (*tileSizes)[i];
295     auto mayConst = getConstantTripCount(band[i]);
296     if (!mayConst.hasValue())
297       continue;
298     // Adjust the tile size to largest factor of the trip count less than
299     // tSize.
300     uint64_t constTripCount = mayConst.getValue();
301     if (constTripCount > 1 && tSizeAdjusted > constTripCount / 2)
302       tSizeAdjusted = constTripCount / 2;
303     while (constTripCount % tSizeAdjusted != 0)
304       tSizeAdjusted--;
305   }
306 }
307 
308 // Returns tile sizes to use. Checks CL options; if none are specified, sets it
309 // based on a simple model that looks at the memory footprint and determines
310 // tile sizes assuming identity accesses / 1:1 tile size proportional footprint
311 // along each of the dimensions being tiled.
312 // TODO(mlir-team): evolve this model. Tile size determination is a large area
313 // to play with in general.
314 void LoopTiling::getTileSizes(ArrayRef<AffineForOp> band,
315                               SmallVectorImpl<unsigned> *tileSizes) {
316   if (band.empty())
317     return;
318 
319   tileSizes->resize(band.size());
320 
321   // Use clTileSize for all loops if specified.
322   if (clTileSize.getNumOccurrences() > 0) {
323     std::fill(tileSizes->begin(), tileSizes->end(), clTileSize);
324     return;
325   }
326 
327   // Use clTileSizes and fill them with default tile size if it's short.
328   if (!clTileSizes.empty()) {
329     std::fill(tileSizes->begin(), tileSizes->end(),
330               LoopTiling::kDefaultTileSize);
331     std::copy(clTileSizes.begin(),
332               clTileSizes.begin() + std::min(clTileSizes.size(), band.size()),
333               tileSizes->begin());
334     return;
335   }
336 
337   // The first loop in the band.
338   auto rootForOp = band[0];
339   (void)rootForOp;
340 
341   // Obtain memory footprint and set tile sizes so that a tile fits in
342   // the cache size. This is an approximation with the assumption that the
343   // footprint increases with the tile size linearly in that dimension (i.e.,
344   // assumes one-to-one access function).
345   auto fp = getMemoryFootprintBytes(band[0], 0);
346   if (!fp.hasValue()) {
347     // Fill with default tile sizes if footprint is unknown.
348     std::fill(tileSizes->begin(), tileSizes->end(),
349               LoopTiling::kDefaultTileSize);
350     if (avoidMaxMinBounds)
351       adjustToDivisorsOfTripCounts(band, tileSizes);
352     LLVM_DEBUG(
353         rootForOp.emitWarning("memory footprint unknown: using default tile "
354                               "sizes adjusted to trip count divisors"));
355     return;
356   }
357 
358   // Check how many times larger the cache size is when compared to footprint.
359   uint64_t excessFactor = llvm::divideCeil(fp.getValue(), cacheSizeBytes);
360   if (excessFactor <= 1) {
361     // No need of any tiling - set tile size to 1.
362     std::fill(tileSizes->begin(), tileSizes->end(), 1);
363     return;
364   }
365 
366   // Divide all loops equally in an attempt to reduce footprint.
367   // TODO(bondhugula): this is approximate. Ideally, obtain reuse factor /
368   // profitability along each dimension and weight tile sizes based on that as
369   // one possible approach. Or compute a polynomial in tile sizes and solve for
370   // it.
371 
372   // For an n-d tileable band, compute n^th root of the excess.
373   unsigned tSize =
374       static_cast<unsigned>(floorl(std::pow(excessFactor, 1.0 / band.size())));
375   // We'll keep a running product to determine the last tile size better.
376   unsigned cumulProductOfTileSizes = 1;
377   for (unsigned i = 0, e = band.size(); i < e; i++) {
378     if (i < e - 1)
379       (*tileSizes)[i] = tSize;
380     else
381       // Set last tile size to cover the balance.
382       (*tileSizes)[i] = std::max(
383           1U, static_cast<unsigned>(excessFactor / cumulProductOfTileSizes));
384     cumulProductOfTileSizes *= (*tileSizes)[i];
385   }
386   if (avoidMaxMinBounds)
387     adjustToDivisorsOfTripCounts(band, tileSizes);
388 }
389 
390 void LoopTiling::runOnFunction() {
391   // Override cache size if provided on command line.
392   if (clCacheSizeKiB.getNumOccurrences() > 0)
393     cacheSizeBytes = clCacheSizeKiB * 1024;
394 
395   // Bands of loops to tile.
396   std::vector<SmallVector<AffineForOp, 6>> bands;
397   getTileableBands(getFunction(), &bands);
398 
399   // Tile each band.
400   for (auto &band : bands) {
401     // Set up tile sizes; fill missing tile sizes at the end with default tile
402     // size or clTileSize if one was provided.
403     SmallVector<unsigned, 6> tileSizes;
404     getTileSizes(band, &tileSizes);
405     if (llvm::DebugFlag) {
406       auto diag = band[0].emitRemark("using tile sizes [");
407       for (auto tSize : tileSizes)
408         diag << tSize << ' ';
409       diag << "]\n";
410     }
411     SmallVector<AffineForOp, 6> tiledNest;
412     if (failed(tileCodeGen(band, tileSizes, &tiledNest)))
413       return signalPassFailure();
414 
415     // Separate full and partial tiles.
416     if (clSeparate) {
417       auto intraTileLoops =
418           MutableArrayRef<AffineForOp>(tiledNest).drop_front(band.size());
419       separateFullTiles(intraTileLoops);
420     }
421   }
422 }
423 
424 constexpr unsigned LoopTiling::kDefaultTileSize;
425 constexpr uint64_t LoopTiling::kDefaultCacheMemCapacity;
426