xref: /llvm-project/mlir/lib/Dialect/Affine/Transforms/LoopTiling.cpp (revision 78e61496bc49c52d1452b8913c306cf96e577b8b)
1 //===- LoopTiling.cpp --- Loop tiling pass ------------------------------*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a pass to tile loop nests.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Analysis/AffineAnalysis.h"
14 #include "mlir/Analysis/AffineStructures.h"
15 #include "mlir/Analysis/LoopAnalysis.h"
16 #include "mlir/Analysis/Utils.h"
17 #include "mlir/Dialect/Affine/IR/AffineOps.h"
18 #include "mlir/Dialect/Affine/Passes.h"
19 #include "mlir/IR/Builders.h"
20 #include "mlir/Pass/Pass.h"
21 #include "mlir/Transforms/LoopUtils.h"
22 #include "mlir/Transforms/Utils.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 using namespace mlir;
26 
27 #define DEBUG_TYPE "affine-loop-tile"
28 
29 static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options");
30 
31 static llvm::cl::opt<unsigned long long>
32     clCacheSizeKiB("affine-tile-cache-size",
33                    llvm::cl::desc("Set size of cache to tile for in KiB"),
34                    llvm::cl::cat(clOptionsCategory));
35 
36 // Tile size to use for all loops (overrides -tile-sizes if provided).
37 static llvm::cl::opt<unsigned>
38     clTileSize("affine-tile-size",
39                llvm::cl::desc("Use this tile size for all loops"),
40                llvm::cl::cat(clOptionsCategory));
41 
42 // List of tile sizes. If any of them aren't provided, they are filled with
43 // clTileSize / kDefaultTileSize.
44 static llvm::cl::list<unsigned> clTileSizes(
45     "affine-tile-sizes",
46     llvm::cl::desc(
47         "List of tile sizes for each perfect nest (overridden by -tile-size)"),
48     llvm::cl::ZeroOrMore, llvm::cl::cat(clOptionsCategory));
49 
50 namespace {
51 
52 /// A pass to perform loop tiling on all suitable loop nests of a Function.
53 struct LoopTiling : public FunctionPass<LoopTiling> {
54   explicit LoopTiling(uint64_t cacheSizeBytes = kDefaultCacheMemCapacity,
55                       bool avoidMaxMinBounds = true)
56       : cacheSizeBytes(cacheSizeBytes), avoidMaxMinBounds(avoidMaxMinBounds) {}
57 
58   void runOnFunction() override;
59   void getTileSizes(ArrayRef<AffineForOp> band,
60                     SmallVectorImpl<unsigned> *tileSizes);
61 
62   // Default tile size if nothing is provided.
63   constexpr static unsigned kDefaultTileSize = 4;
64   constexpr static uint64_t kDefaultCacheMemCapacity = 512 * 1024UL;
65 
66   // Capacity of the cache to tile for.
67   uint64_t cacheSizeBytes;
68   // If true, tile sizes are set to avoid max/min in bounds if possible.
69   bool avoidMaxMinBounds;
70 };
71 
72 } // end anonymous namespace
73 
74 /// Creates a pass to perform loop tiling on all suitable loop nests of a
75 /// Function.
76 std::unique_ptr<OpPassBase<FuncOp>>
77 mlir::createLoopTilingPass(uint64_t cacheSizeBytes) {
78   return std::make_unique<LoopTiling>(cacheSizeBytes);
79 }
80 
81 // Move the loop body of AffineForOp 'src' from 'src' into the specified
82 // location in destination's body, ignoring the terminator.
83 static inline void moveLoopBody(AffineForOp src, AffineForOp dest,
84                                 Block::iterator loc) {
85   auto &insts = src.getBody()->getOperations();
86   dest.getBody()->getOperations().splice(loc, insts, insts.begin(),
87                                          std::prev(insts.end()));
88 }
89 
90 // Move the loop body of AffineForOp 'src' from 'src' to the start of dest's
91 // body.
92 static inline void moveLoopBody(AffineForOp src, AffineForOp dest) {
93   moveLoopBody(src, dest, dest.getBody()->begin());
94 }
95 
96 /// Constructs and sets new loop bounds after tiling for the case of
97 /// hyper-rectangular index sets, where the bounds of one dimension do not
98 /// depend on other dimensions. Bounds of each dimension can thus be treated
99 /// independently, and deriving the new bounds is much simpler and faster
100 /// than for the case of tiling arbitrary polyhedral shapes.
101 static void
102 constructTiledIndexSetHyperRect(MutableArrayRef<AffineForOp> origLoops,
103                                 MutableArrayRef<AffineForOp> newLoops,
104                                 ArrayRef<unsigned> tileSizes) {
105   assert(!origLoops.empty());
106   assert(origLoops.size() == tileSizes.size());
107 
108   OpBuilder b(origLoops[0].getOperation());
109   unsigned width = origLoops.size();
110 
111   // Bounds for tile space loops.
112   for (unsigned i = 0; i < width; i++) {
113     auto lbOperands = origLoops[i].getLowerBoundOperands();
114     auto ubOperands = origLoops[i].getUpperBoundOperands();
115     SmallVector<Value, 4> newLbOperands(lbOperands);
116     SmallVector<Value, 4> newUbOperands(ubOperands);
117     newLoops[i].setLowerBound(newLbOperands, origLoops[i].getLowerBoundMap());
118     newLoops[i].setUpperBound(newUbOperands, origLoops[i].getUpperBoundMap());
119     newLoops[i].setStep(tileSizes[i]);
120   }
121   // Bounds for intra-tile loops.
122   for (unsigned i = 0; i < width; i++) {
123     int64_t largestDiv = getLargestDivisorOfTripCount(origLoops[i]);
124     auto mayBeConstantCount = getConstantTripCount(origLoops[i]);
125     // The lower bound is just the tile-space loop.
126     AffineMap lbMap = b.getDimIdentityMap();
127     newLoops[width + i].setLowerBound(
128         /*operands=*/newLoops[i].getInductionVar(), lbMap);
129 
130     // Set the upper bound.
131     if (mayBeConstantCount.hasValue() &&
132         mayBeConstantCount.getValue() < tileSizes[i]) {
133       // Trip count is less than tile size; upper bound is the trip count.
134       auto ubMap = b.getConstantAffineMap(mayBeConstantCount.getValue());
135       newLoops[width + i].setUpperBoundMap(ubMap);
136     } else if (largestDiv % tileSizes[i] != 0) {
137       // Intra-tile loop ii goes from i to min(i + tileSize, ub_i).
138       // Construct the upper bound map; the operands are the original operands
139       // with 'i' (tile-space loop) appended to it. The new upper bound map is
140       // the original one with an additional expression i + tileSize appended.
141       auto ub = origLoops[i].getUpperBound();
142       SmallVector<Value, 4> ubOperands;
143       ubOperands.reserve(ub.getNumOperands() + 1);
144       auto origUbMap = ub.getMap();
145       // Add dim operands from original upper bound.
146       for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j) {
147         ubOperands.push_back(ub.getOperand(j));
148       }
149       // Add dim operand for new loop upper bound.
150       ubOperands.push_back(newLoops[i].getInductionVar());
151       // Add symbol operands from original upper bound.
152       for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j) {
153         ubOperands.push_back(ub.getOperand(origUbMap.getNumDims() + j));
154       }
155       SmallVector<AffineExpr, 4> boundExprs;
156       boundExprs.reserve(1 + origUbMap.getNumResults());
157       auto dim = b.getAffineDimExpr(origUbMap.getNumDims());
158       // The new upper bound map is the original one with an additional
159       // expression i + tileSize appended.
160       boundExprs.push_back(dim + tileSizes[i]);
161       boundExprs.append(origUbMap.getResults().begin(),
162                         origUbMap.getResults().end());
163       auto ubMap = AffineMap::get(origUbMap.getNumDims() + 1,
164                                   origUbMap.getNumSymbols(), boundExprs);
165       newLoops[width + i].setUpperBound(/*operands=*/ubOperands, ubMap);
166     } else {
167       // No need of the min expression.
168       auto dim = b.getAffineDimExpr(0);
169       auto ubMap = AffineMap::get(1, 0, dim + tileSizes[i]);
170       newLoops[width + i].setUpperBound(newLoops[i].getInductionVar(), ubMap);
171     }
172   }
173 }
174 
175 /// Tiles the specified band of perfectly nested loops creating tile-space loops
176 /// and intra-tile loops. A band is a contiguous set of loops.
177 //  TODO(bondhugula): handle non hyper-rectangular spaces.
178 LogicalResult mlir::tileCodeGen(MutableArrayRef<AffineForOp> band,
179                                 ArrayRef<unsigned> tileSizes) {
180   assert(!band.empty() && "no loops in band");
181   assert(band.size() == tileSizes.size() && "Too few/many tile sizes");
182 
183   // Check if the supplied for op's are all successively nested.
184   for (unsigned i = 1, e = band.size(); i < e; i++)
185     assert(band[i].getParentOp() == band[i - 1] && "not a perfect nest / band");
186 
187   auto origLoops = band;
188 
189   AffineForOp rootAffineForOp = origLoops[0];
190   auto loc = rootAffineForOp.getLoc();
191   // Note that width is at least one since band isn't empty.
192   unsigned width = band.size();
193 
194   SmallVector<AffineForOp, 6> tiledLoops(2 * width);
195 
196   // The outermost among the loops as we add more..
197   auto *topLoop = rootAffineForOp.getOperation();
198   AffineForOp innermostPointLoop;
199 
200   // Add intra-tile (or point) loops.
201   for (unsigned i = 0; i < width; i++) {
202     OpBuilder b(topLoop);
203     // Loop bounds will be set later.
204     auto pointLoop = b.create<AffineForOp>(loc, 0, 0);
205     pointLoop.getBody()->getOperations().splice(
206         pointLoop.getBody()->begin(), topLoop->getBlock()->getOperations(),
207         topLoop);
208     tiledLoops[2 * width - 1 - i] = pointLoop;
209     topLoop = pointLoop.getOperation();
210     if (i == 0)
211       innermostPointLoop = pointLoop;
212   }
213 
214   // Add tile space loops;
215   for (unsigned i = width; i < 2 * width; i++) {
216     OpBuilder b(topLoop);
217     // Loop bounds will be set later.
218     auto tileSpaceLoop = b.create<AffineForOp>(loc, 0, 0);
219     tileSpaceLoop.getBody()->getOperations().splice(
220         tileSpaceLoop.getBody()->begin(), topLoop->getBlock()->getOperations(),
221         topLoop);
222     tiledLoops[2 * width - i - 1] = tileSpaceLoop;
223     topLoop = tileSpaceLoop.getOperation();
224   }
225 
226   // Move the loop body of the original nest to the new one.
227   moveLoopBody(origLoops[origLoops.size() - 1], innermostPointLoop);
228 
229   SmallVector<Value, 8> origLoopIVs;
230   extractForInductionVars(band, &origLoopIVs);
231   SmallVector<Optional<Value>, 6> ids(origLoopIVs.begin(), origLoopIVs.end());
232   FlatAffineConstraints cst;
233   getIndexSet(band, &cst);
234 
235   if (!cst.isHyperRectangular(0, width)) {
236     llvm::dbgs() << "tiled code generation unimplemented for the "
237                     "non-hyperrectangular case, op:"
238                  << *rootAffineForOp << "\n";
239     return failure();
240   }
241 
242   constructTiledIndexSetHyperRect(origLoops, tiledLoops, tileSizes);
243 
244   // Replace original IVs with intra-tile loop IVs.
245   for (unsigned i = 0; i < width; i++)
246     origLoopIVs[i].replaceAllUsesWith(tiledLoops[i + width].getInductionVar());
247 
248   // Erase the old loop nest.
249   rootAffineForOp.erase();
250 
251   return success();
252 }
253 
254 // Identify valid and profitable bands of loops to tile. This is currently just
255 // a temporary placeholder to test the mechanics of tiled code generation.
256 // Returns all maximal outermost perfect loop nests to tile.
257 static void getTileableBands(FuncOp f,
258                              std::vector<SmallVector<AffineForOp, 6>> *bands) {
259   // Get maximal perfect nest of 'affine.for' insts starting from root
260   // (inclusive).
261   auto getMaximalPerfectLoopNest = [&](AffineForOp root) {
262     SmallVector<AffineForOp, 6> band;
263     getPerfectlyNestedLoops(band, root);
264     bands->push_back(band);
265   };
266 
267   for (auto &block : f)
268     for (auto &op : block)
269       if (auto forOp = dyn_cast<AffineForOp>(op))
270         getMaximalPerfectLoopNest(forOp);
271 }
272 
273 // Reduce each tile size to the largest divisor of the corresponding trip count
274 // (if the trip count is known).
275 static void adjustToDivisorsOfTripCounts(ArrayRef<AffineForOp> band,
276                                          SmallVectorImpl<unsigned> *tileSizes) {
277   assert(band.size() == tileSizes->size() && "invalid tile size count");
278   for (unsigned i = 0, e = band.size(); i < e; i++) {
279     unsigned &tSizeAdjusted = (*tileSizes)[i];
280     auto mayConst = getConstantTripCount(band[i]);
281     if (!mayConst.hasValue())
282       continue;
283     // Adjust the tile size to largest factor of the trip count less than
284     // tSize.
285     uint64_t constTripCount = mayConst.getValue();
286     if (constTripCount > 1 && tSizeAdjusted > constTripCount / 2)
287       tSizeAdjusted = constTripCount / 2;
288     while (constTripCount % tSizeAdjusted != 0)
289       tSizeAdjusted--;
290   }
291 }
292 
293 // Returns tile sizes to use. Checks CL options; if none are specified, sets it
294 // based on a simple model that looks at the memory footprint and determines
295 // tile sizes assuming identity accesses / 1:1 tile size proportional footprint
296 // along each of the dimensions being tiled.
297 // TODO(mlir-team): evolve this model. Tile size determination is a large area
298 // to play with in general.
299 void LoopTiling::getTileSizes(ArrayRef<AffineForOp> band,
300                               SmallVectorImpl<unsigned> *tileSizes) {
301   if (band.empty())
302     return;
303 
304   tileSizes->resize(band.size());
305 
306   // Use clTileSize for all loops if specified.
307   if (clTileSize.getNumOccurrences() > 0) {
308     std::fill(tileSizes->begin(), tileSizes->end(), clTileSize);
309     return;
310   }
311 
312   // Use clTileSizes and fill them with default tile size if it's short.
313   if (!clTileSizes.empty()) {
314     std::fill(tileSizes->begin(), tileSizes->end(),
315               LoopTiling::kDefaultTileSize);
316     std::copy(clTileSizes.begin(),
317               clTileSizes.begin() + std::min(clTileSizes.size(), band.size()),
318               tileSizes->begin());
319     return;
320   }
321 
322   // The first loop in the band.
323   auto rootForOp = band[0];
324   (void)rootForOp;
325 
326   // Obtain memory footprint and set tile sizes so that a tile fits in
327   // the cache size. This is an approximation with the assumption that the
328   // footprint increases with the tile size linearly in that dimension (i.e.,
329   // assumes one-to-one access function).
330   auto fp = getMemoryFootprintBytes(band[0], 0);
331   if (!fp.hasValue()) {
332     // Fill with default tile sizes if footprint is unknown.
333     std::fill(tileSizes->begin(), tileSizes->end(),
334               LoopTiling::kDefaultTileSize);
335     if (avoidMaxMinBounds)
336       adjustToDivisorsOfTripCounts(band, tileSizes);
337     LLVM_DEBUG(
338         rootForOp.emitWarning("memory footprint unknown: using default tile "
339                               "sizes adjusted to trip count divisors"));
340     return;
341   }
342 
343   // Check how many times larger the cache size is when compared to footprint.
344   uint64_t excessFactor = llvm::divideCeil(fp.getValue(), cacheSizeBytes);
345   if (excessFactor <= 1) {
346     // No need of any tiling - set tile size to 1.
347     std::fill(tileSizes->begin(), tileSizes->end(), 1);
348     return;
349   }
350 
351   // Divide all loops equally in an attempt to reduce footprint.
352   // TODO(bondhugula): this is approximate. Ideally, obtain reuse factor /
353   // profitability along each dimension and weight tile sizes based on that as
354   // one possible approach. Or compute a polynomial in tile sizes and solve for
355   // it.
356 
357   // For an n-d tileable band, compute n^th root of the excess.
358   unsigned tSize =
359       static_cast<unsigned>(floorl(std::pow(excessFactor, 1.0 / band.size())));
360   // We'll keep a running product to determine the last tile size better.
361   unsigned cumulProductOfTileSizes = 1;
362   for (unsigned i = 0, e = band.size(); i < e; i++) {
363     if (i < e - 1)
364       (*tileSizes)[i] = tSize;
365     else
366       // Set last tile size to cover the balance.
367       (*tileSizes)[i] = std::max(
368           1U, static_cast<unsigned>(excessFactor / cumulProductOfTileSizes));
369     cumulProductOfTileSizes *= (*tileSizes)[i];
370   }
371   if (avoidMaxMinBounds)
372     adjustToDivisorsOfTripCounts(band, tileSizes);
373 }
374 
375 void LoopTiling::runOnFunction() {
376   // Override cache size if provided on command line.
377   if (clCacheSizeKiB.getNumOccurrences() > 0)
378     cacheSizeBytes = clCacheSizeKiB * 1024;
379 
380   // Bands of loops to tile.
381   std::vector<SmallVector<AffineForOp, 6>> bands;
382   getTileableBands(getFunction(), &bands);
383 
384   // Tile each band.
385   for (auto &band : bands) {
386     // Set up tile sizes; fill missing tile sizes at the end with default tile
387     // size or clTileSize if one was provided.
388     SmallVector<unsigned, 6> tileSizes;
389     getTileSizes(band, &tileSizes);
390     if (llvm::DebugFlag) {
391       auto diag = band[0].emitRemark("using tile sizes [");
392       for (auto tSize : tileSizes)
393         diag << tSize << ' ';
394       diag << "]\n";
395     }
396     if (failed(tileCodeGen(band, tileSizes)))
397       return signalPassFailure();
398   }
399 }
400 
401 constexpr unsigned LoopTiling::kDefaultTileSize;
402 constexpr uint64_t LoopTiling::kDefaultCacheMemCapacity;
403 
404 static PassRegistration<LoopTiling> pass("affine-loop-tile", "Tile loop nests");
405