1 //===- LoopTiling.cpp --- Loop tiling pass ------------------------------*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a pass to tile loop nests. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Analysis/AffineAnalysis.h" 14 #include "mlir/Analysis/AffineStructures.h" 15 #include "mlir/Analysis/LoopAnalysis.h" 16 #include "mlir/Analysis/Utils.h" 17 #include "mlir/Dialect/Affine/IR/AffineOps.h" 18 #include "mlir/Dialect/Affine/IR/AffineValueMap.h" 19 #include "mlir/Dialect/Affine/Passes.h" 20 #include "mlir/IR/BlockAndValueMapping.h" 21 #include "mlir/IR/Builders.h" 22 #include "mlir/Pass/Pass.h" 23 #include "mlir/Transforms/LoopUtils.h" 24 #include "mlir/Transforms/Utils.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 using namespace mlir; 28 29 #define DEBUG_TYPE "affine-loop-tile" 30 31 static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options"); 32 33 static llvm::cl::opt<unsigned long long> 34 clCacheSizeKiB("affine-tile-cache-size", 35 llvm::cl::desc("Set size of cache to tile for in KiB"), 36 llvm::cl::cat(clOptionsCategory)); 37 38 // Separate full and partial tiles. 39 static llvm::cl::opt<bool> 40 clSeparate("affine-tile-separate", 41 llvm::cl::desc("Separate full and partial tiles"), 42 llvm::cl::cat(clOptionsCategory)); 43 44 // Tile size to use for all loops (overrides -tile-sizes if provided). 45 static llvm::cl::opt<unsigned> 46 clTileSize("affine-tile-size", 47 llvm::cl::desc("Use this tile size for all loops"), 48 llvm::cl::cat(clOptionsCategory)); 49 50 // List of tile sizes. If any of them aren't provided, they are filled with 51 // clTileSize / kDefaultTileSize. 52 static llvm::cl::list<unsigned> clTileSizes( 53 "affine-tile-sizes", 54 llvm::cl::desc( 55 "List of tile sizes for each perfect nest (overridden by -tile-size)"), 56 llvm::cl::ZeroOrMore, llvm::cl::cat(clOptionsCategory)); 57 58 namespace { 59 60 /// A pass to perform loop tiling on all suitable loop nests of a Function. 61 struct LoopTiling : public FunctionPass<LoopTiling> { 62 explicit LoopTiling(uint64_t cacheSizeBytes = kDefaultCacheMemCapacity, 63 bool avoidMaxMinBounds = true) 64 : cacheSizeBytes(cacheSizeBytes), avoidMaxMinBounds(avoidMaxMinBounds) {} 65 66 void runOnFunction() override; 67 void getTileSizes(ArrayRef<AffineForOp> band, 68 SmallVectorImpl<unsigned> *tileSizes); 69 70 // Default tile size if nothing is provided. 71 constexpr static unsigned kDefaultTileSize = 4; 72 constexpr static uint64_t kDefaultCacheMemCapacity = 512 * 1024UL; 73 74 // Capacity of the cache to tile for. 75 uint64_t cacheSizeBytes; 76 // If true, tile sizes are set to avoid max/min in bounds if possible. 77 bool avoidMaxMinBounds; 78 }; 79 80 } // end anonymous namespace 81 82 /// Creates a pass to perform loop tiling on all suitable loop nests of a 83 /// Function. 84 std::unique_ptr<OpPassBase<FuncOp>> 85 mlir::createLoopTilingPass(uint64_t cacheSizeBytes) { 86 return std::make_unique<LoopTiling>(cacheSizeBytes); 87 } 88 89 // Move the loop body of AffineForOp 'src' from 'src' into the specified 90 // location in destination's body, ignoring the terminator. 91 static inline void moveLoopBody(AffineForOp src, AffineForOp dest, 92 Block::iterator loc) { 93 auto &insts = src.getBody()->getOperations(); 94 dest.getBody()->getOperations().splice(loc, insts, insts.begin(), 95 std::prev(insts.end())); 96 } 97 98 // Move the loop body of AffineForOp 'src' from 'src' to the start of dest's 99 // body. 100 static inline void moveLoopBody(AffineForOp src, AffineForOp dest) { 101 moveLoopBody(src, dest, dest.getBody()->begin()); 102 } 103 104 /// Constructs and sets new loop bounds after tiling for the case of 105 /// hyper-rectangular index sets, where the bounds of one dimension do not 106 /// depend on other dimensions. Bounds of each dimension can thus be treated 107 /// independently, and deriving the new bounds is much simpler and faster 108 /// than for the case of tiling arbitrary polyhedral shapes. 109 static void 110 constructTiledIndexSetHyperRect(MutableArrayRef<AffineForOp> origLoops, 111 MutableArrayRef<AffineForOp> newLoops, 112 ArrayRef<unsigned> tileSizes) { 113 assert(!origLoops.empty()); 114 assert(origLoops.size() == tileSizes.size()); 115 116 OpBuilder b(origLoops[0].getOperation()); 117 unsigned width = origLoops.size(); 118 119 // Bounds for tile space loops. 120 for (unsigned i = 0; i < width; i++) { 121 auto lbOperands = origLoops[i].getLowerBoundOperands(); 122 auto ubOperands = origLoops[i].getUpperBoundOperands(); 123 SmallVector<Value, 4> newLbOperands(lbOperands); 124 SmallVector<Value, 4> newUbOperands(ubOperands); 125 newLoops[i].setLowerBound(newLbOperands, origLoops[i].getLowerBoundMap()); 126 newLoops[i].setUpperBound(newUbOperands, origLoops[i].getUpperBoundMap()); 127 newLoops[i].setStep(tileSizes[i]); 128 } 129 // Bounds for intra-tile loops. 130 for (unsigned i = 0; i < width; i++) { 131 int64_t largestDiv = getLargestDivisorOfTripCount(origLoops[i]); 132 auto mayBeConstantCount = getConstantTripCount(origLoops[i]); 133 // The lower bound is just the tile-space loop. 134 AffineMap lbMap = b.getDimIdentityMap(); 135 newLoops[width + i].setLowerBound( 136 /*operands=*/newLoops[i].getInductionVar(), lbMap); 137 138 // Set the upper bound. 139 if (mayBeConstantCount.hasValue() && 140 mayBeConstantCount.getValue() < tileSizes[i]) { 141 // Trip count is less than tile size; upper bound is the trip count. 142 auto ubMap = b.getConstantAffineMap(mayBeConstantCount.getValue()); 143 newLoops[width + i].setUpperBoundMap(ubMap); 144 } else if (largestDiv % tileSizes[i] != 0) { 145 // Intra-tile loop ii goes from i to min(i + tileSize, ub_i). 146 // Construct the upper bound map; the operands are the original operands 147 // with 'i' (tile-space loop) appended to it. The new upper bound map is 148 // the original one with an additional expression i + tileSize appended. 149 auto ub = origLoops[i].getUpperBound(); 150 SmallVector<Value, 4> ubOperands; 151 ubOperands.reserve(ub.getNumOperands() + 1); 152 auto origUbMap = ub.getMap(); 153 // Add dim operands from original upper bound. 154 for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j) { 155 ubOperands.push_back(ub.getOperand(j)); 156 } 157 // Add dim operand for new loop upper bound. 158 ubOperands.push_back(newLoops[i].getInductionVar()); 159 // Add symbol operands from original upper bound. 160 for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j) { 161 ubOperands.push_back(ub.getOperand(origUbMap.getNumDims() + j)); 162 } 163 SmallVector<AffineExpr, 4> boundExprs; 164 boundExprs.reserve(1 + origUbMap.getNumResults()); 165 auto dim = b.getAffineDimExpr(origUbMap.getNumDims()); 166 // The new upper bound map is the original one with an additional 167 // expression i + tileSize appended. 168 boundExprs.push_back(dim + tileSizes[i]); 169 boundExprs.append(origUbMap.getResults().begin(), 170 origUbMap.getResults().end()); 171 auto ubMap = AffineMap::get(origUbMap.getNumDims() + 1, 172 origUbMap.getNumSymbols(), boundExprs); 173 newLoops[width + i].setUpperBound(/*operands=*/ubOperands, ubMap); 174 } else { 175 // No need of the min expression. 176 auto dim = b.getAffineDimExpr(0); 177 auto ubMap = AffineMap::get(1, 0, dim + tileSizes[i]); 178 newLoops[width + i].setUpperBound(newLoops[i].getInductionVar(), ubMap); 179 } 180 } 181 } 182 183 /// Tiles the specified band of perfectly nested loops creating tile-space loops 184 /// and intra-tile loops. A band is a contiguous set of loops. 185 // TODO(bondhugula): handle non hyper-rectangular spaces. 186 LogicalResult mlir::tileCodeGen(MutableArrayRef<AffineForOp> band, 187 ArrayRef<unsigned> tileSizes, 188 SmallVectorImpl<AffineForOp> *tiledNest) { 189 // Check if the supplied for op's are all successively nested. 190 assert(!band.empty() && "no loops in band"); 191 assert(band.size() == tileSizes.size() && "Too few/many tile sizes"); 192 193 for (unsigned i = 1, e = band.size(); i < e; i++) 194 assert(band[i].getParentOp() == band[i - 1] && "not a perfect nest / band"); 195 196 auto origLoops = band; 197 198 AffineForOp rootAffineForOp = origLoops[0]; 199 auto loc = rootAffineForOp.getLoc(); 200 // Note that width is at least one since band isn't empty. 201 unsigned width = band.size(); 202 203 SmallVector<AffineForOp, 6> tiledLoops(2 * width); 204 205 // The outermost among the loops as we add more.. 206 auto *topLoop = rootAffineForOp.getOperation(); 207 AffineForOp innermostPointLoop; 208 209 // Add intra-tile (or point) loops. 210 for (unsigned i = 0; i < width; i++) { 211 OpBuilder b(topLoop); 212 // Loop bounds will be set later. 213 auto pointLoop = b.create<AffineForOp>(loc, 0, 0); 214 pointLoop.getBody()->getOperations().splice( 215 pointLoop.getBody()->begin(), topLoop->getBlock()->getOperations(), 216 topLoop); 217 tiledLoops[2 * width - 1 - i] = pointLoop; 218 topLoop = pointLoop.getOperation(); 219 if (i == 0) 220 innermostPointLoop = pointLoop; 221 } 222 223 // Add tile space loops; 224 for (unsigned i = width; i < 2 * width; i++) { 225 OpBuilder b(topLoop); 226 // Loop bounds will be set later. 227 auto tileSpaceLoop = b.create<AffineForOp>(loc, 0, 0); 228 tileSpaceLoop.getBody()->getOperations().splice( 229 tileSpaceLoop.getBody()->begin(), topLoop->getBlock()->getOperations(), 230 topLoop); 231 tiledLoops[2 * width - i - 1] = tileSpaceLoop; 232 topLoop = tileSpaceLoop.getOperation(); 233 } 234 235 // Move the loop body of the original nest to the new one. 236 moveLoopBody(origLoops[origLoops.size() - 1], innermostPointLoop); 237 238 SmallVector<Value, 8> origLoopIVs; 239 extractForInductionVars(band, &origLoopIVs); 240 SmallVector<Optional<Value>, 6> ids(origLoopIVs.begin(), origLoopIVs.end()); 241 FlatAffineConstraints cst; 242 getIndexSet(band, &cst); 243 244 if (!cst.isHyperRectangular(0, width)) { 245 llvm::dbgs() << "tiled code generation unimplemented for the " 246 "non-hyperrectangular case, op:" 247 << *rootAffineForOp << "\n"; 248 return failure(); 249 } 250 251 constructTiledIndexSetHyperRect(origLoops, tiledLoops, tileSizes); 252 253 // Replace original IVs with intra-tile loop IVs. 254 for (unsigned i = 0; i < width; i++) 255 origLoopIVs[i].replaceAllUsesWith(tiledLoops[i + width].getInductionVar()); 256 257 // Erase the old loop nest. 258 rootAffineForOp.erase(); 259 260 if (tiledNest) 261 *tiledNest = std::move(tiledLoops); 262 263 return success(); 264 } 265 266 // Identify valid and profitable bands of loops to tile. This is currently just 267 // a temporary placeholder to test the mechanics of tiled code generation. 268 // Returns all maximal outermost perfect loop nests to tile. 269 static void getTileableBands(FuncOp f, 270 std::vector<SmallVector<AffineForOp, 6>> *bands) { 271 // Get maximal perfect nest of 'affine.for' insts starting from root 272 // (inclusive). 273 auto getMaximalPerfectLoopNest = [&](AffineForOp root) { 274 SmallVector<AffineForOp, 6> band; 275 getPerfectlyNestedLoops(band, root); 276 bands->push_back(band); 277 }; 278 279 for (auto &block : f) 280 for (auto &op : block) 281 if (auto forOp = dyn_cast<AffineForOp>(op)) 282 getMaximalPerfectLoopNest(forOp); 283 } 284 285 // Reduce each tile size to the largest divisor of the corresponding trip count 286 // (if the trip count is known). 287 static void adjustToDivisorsOfTripCounts(ArrayRef<AffineForOp> band, 288 SmallVectorImpl<unsigned> *tileSizes) { 289 assert(band.size() == tileSizes->size() && "invalid tile size count"); 290 for (unsigned i = 0, e = band.size(); i < e; i++) { 291 unsigned &tSizeAdjusted = (*tileSizes)[i]; 292 auto mayConst = getConstantTripCount(band[i]); 293 if (!mayConst.hasValue()) 294 continue; 295 // Adjust the tile size to largest factor of the trip count less than 296 // tSize. 297 uint64_t constTripCount = mayConst.getValue(); 298 if (constTripCount > 1 && tSizeAdjusted > constTripCount / 2) 299 tSizeAdjusted = constTripCount / 2; 300 while (constTripCount % tSizeAdjusted != 0) 301 tSizeAdjusted--; 302 } 303 } 304 305 // Returns tile sizes to use. Checks CL options; if none are specified, sets it 306 // based on a simple model that looks at the memory footprint and determines 307 // tile sizes assuming identity accesses / 1:1 tile size proportional footprint 308 // along each of the dimensions being tiled. 309 // TODO(mlir-team): evolve this model. Tile size determination is a large area 310 // to play with in general. 311 void LoopTiling::getTileSizes(ArrayRef<AffineForOp> band, 312 SmallVectorImpl<unsigned> *tileSizes) { 313 if (band.empty()) 314 return; 315 316 tileSizes->resize(band.size()); 317 318 // Use clTileSize for all loops if specified. 319 if (clTileSize.getNumOccurrences() > 0) { 320 std::fill(tileSizes->begin(), tileSizes->end(), clTileSize); 321 return; 322 } 323 324 // Use clTileSizes and fill them with default tile size if it's short. 325 if (!clTileSizes.empty()) { 326 std::fill(tileSizes->begin(), tileSizes->end(), 327 LoopTiling::kDefaultTileSize); 328 std::copy(clTileSizes.begin(), 329 clTileSizes.begin() + std::min(clTileSizes.size(), band.size()), 330 tileSizes->begin()); 331 return; 332 } 333 334 // The first loop in the band. 335 auto rootForOp = band[0]; 336 (void)rootForOp; 337 338 // Obtain memory footprint and set tile sizes so that a tile fits in 339 // the cache size. This is an approximation with the assumption that the 340 // footprint increases with the tile size linearly in that dimension (i.e., 341 // assumes one-to-one access function). 342 auto fp = getMemoryFootprintBytes(band[0], 0); 343 if (!fp.hasValue()) { 344 // Fill with default tile sizes if footprint is unknown. 345 std::fill(tileSizes->begin(), tileSizes->end(), 346 LoopTiling::kDefaultTileSize); 347 if (avoidMaxMinBounds) 348 adjustToDivisorsOfTripCounts(band, tileSizes); 349 LLVM_DEBUG( 350 rootForOp.emitWarning("memory footprint unknown: using default tile " 351 "sizes adjusted to trip count divisors")); 352 return; 353 } 354 355 // Check how many times larger the cache size is when compared to footprint. 356 uint64_t excessFactor = llvm::divideCeil(fp.getValue(), cacheSizeBytes); 357 if (excessFactor <= 1) { 358 // No need of any tiling - set tile size to 1. 359 std::fill(tileSizes->begin(), tileSizes->end(), 1); 360 return; 361 } 362 363 // Divide all loops equally in an attempt to reduce footprint. 364 // TODO(bondhugula): this is approximate. Ideally, obtain reuse factor / 365 // profitability along each dimension and weight tile sizes based on that as 366 // one possible approach. Or compute a polynomial in tile sizes and solve for 367 // it. 368 369 // For an n-d tileable band, compute n^th root of the excess. 370 unsigned tSize = 371 static_cast<unsigned>(floorl(std::pow(excessFactor, 1.0 / band.size()))); 372 // We'll keep a running product to determine the last tile size better. 373 unsigned cumulProductOfTileSizes = 1; 374 for (unsigned i = 0, e = band.size(); i < e; i++) { 375 if (i < e - 1) 376 (*tileSizes)[i] = tSize; 377 else 378 // Set last tile size to cover the balance. 379 (*tileSizes)[i] = std::max( 380 1U, static_cast<unsigned>(excessFactor / cumulProductOfTileSizes)); 381 cumulProductOfTileSizes *= (*tileSizes)[i]; 382 } 383 if (avoidMaxMinBounds) 384 adjustToDivisorsOfTripCounts(band, tileSizes); 385 } 386 387 void LoopTiling::runOnFunction() { 388 // Override cache size if provided on command line. 389 if (clCacheSizeKiB.getNumOccurrences() > 0) 390 cacheSizeBytes = clCacheSizeKiB * 1024; 391 392 // Bands of loops to tile. 393 std::vector<SmallVector<AffineForOp, 6>> bands; 394 getTileableBands(getFunction(), &bands); 395 396 // Tile each band. 397 for (auto &band : bands) { 398 // Set up tile sizes; fill missing tile sizes at the end with default tile 399 // size or clTileSize if one was provided. 400 SmallVector<unsigned, 6> tileSizes; 401 getTileSizes(band, &tileSizes); 402 if (llvm::DebugFlag) { 403 auto diag = band[0].emitRemark("using tile sizes ["); 404 for (auto tSize : tileSizes) 405 diag << tSize << ' '; 406 diag << "]\n"; 407 } 408 SmallVector<AffineForOp, 6> tiledNest; 409 if (failed(tileCodeGen(band, tileSizes, &tiledNest))) 410 return signalPassFailure(); 411 412 // Separate full and partial tiles. 413 if (clSeparate) { 414 auto intraTileLoops = 415 MutableArrayRef<AffineForOp>(tiledNest).drop_front(band.size()); 416 separateFullTiles(intraTileLoops); 417 } 418 } 419 } 420 421 constexpr unsigned LoopTiling::kDefaultTileSize; 422 constexpr uint64_t LoopTiling::kDefaultCacheMemCapacity; 423 424 static PassRegistration<LoopTiling> pass("affine-loop-tile", "Tile loop nests"); 425