xref: /llvm-project/mlir/lib/Dialect/Affine/Transforms/LoopFusion.cpp (revision 5550c821897ab77e664977121a0e90ad5be1ff59)
1 //===- LoopFusion.cpp - Code to perform loop fusion -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements affine fusion.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "mlir/Dialect/Affine/Passes.h"
14 
15 #include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
16 #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
17 #include "mlir/Dialect/Affine/Analysis/Utils.h"
18 #include "mlir/Dialect/Affine/IR/AffineOps.h"
19 #include "mlir/Dialect/Affine/LoopFusionUtils.h"
20 #include "mlir/Dialect/Affine/LoopUtils.h"
21 #include "mlir/Dialect/Affine/Utils.h"
22 #include "mlir/Dialect/MemRef/IR/MemRef.h"
23 #include "mlir/IR/AffineExpr.h"
24 #include "mlir/IR/AffineMap.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/Transforms/Passes.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SetVector.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <iomanip>
35 #include <optional>
36 #include <sstream>
37 
38 namespace mlir {
39 namespace affine {
40 #define GEN_PASS_DEF_AFFINELOOPFUSION
41 #include "mlir/Dialect/Affine/Passes.h.inc"
42 } // namespace affine
43 } // namespace mlir
44 
45 #define DEBUG_TYPE "affine-loop-fusion"
46 
47 using namespace mlir;
48 using namespace mlir::affine;
49 
50 namespace {
51 /// Loop fusion pass. This pass currently supports a greedy fusion policy,
52 /// which fuses loop nests with single-writer/single-reader memref dependences
53 /// with the goal of improving locality.
54 
55 // TODO: Support fusion of source loop nests which write to multiple
56 // memrefs, where each memref can have multiple users (if profitable).
57 // TODO: Extend this pass to check for fusion preventing dependences,
58 // and add support for more general loop fusion algorithms.
59 
60 struct LoopFusion : public affine::impl::AffineLoopFusionBase<LoopFusion> {
61   LoopFusion() = default;
62   LoopFusion(unsigned fastMemorySpace, uint64_t localBufSizeThresholdBytes,
63              bool maximalFusion, enum FusionMode affineFusionMode) {
64     this->fastMemorySpace = fastMemorySpace;
65     this->localBufSizeThreshold = localBufSizeThresholdBytes / 1024;
66     this->maximalFusion = maximalFusion;
67     this->affineFusionMode = affineFusionMode;
68   }
69 
70   void runOnBlock(Block *block);
71   void runOnOperation() override;
72 };
73 
74 } // namespace
75 
76 /// Returns true if node 'srcId' can be removed after fusing it with node
77 /// 'dstId'. The node can be removed if any of the following conditions are met:
78 ///   1. 'srcId' has no output dependences after fusion and no escaping memrefs.
79 ///   2. 'srcId' has no output dependences after fusion, has escaping memrefs
80 ///       and the fusion slice is maximal.
81 ///   3. 'srcId' has output dependences after fusion, the fusion slice is
82 ///      maximal and the fusion insertion point dominates all the dependences.
83 static bool canRemoveSrcNodeAfterFusion(
84     unsigned srcId, unsigned dstId, const ComputationSliceState &fusionSlice,
85     Operation *fusedLoopInsPoint, const DenseSet<Value> &escapingMemRefs,
86     MemRefDependenceGraph *mdg) {
87 
88   Operation *dstNodeOp = mdg->getNode(dstId)->op;
89   bool hasOutDepsAfterFusion = false;
90 
91   for (auto &outEdge : mdg->outEdges[srcId]) {
92     Operation *depNodeOp = mdg->getNode(outEdge.id)->op;
93     // Skip dependence with dstOp since it will be removed after fusion.
94     if (depNodeOp == dstNodeOp)
95       continue;
96 
97     // Only fusion within the same block is supported. Use domination analysis
98     // when needed.
99     if (depNodeOp->getBlock() != dstNodeOp->getBlock())
100       return false;
101 
102     // Check if the insertion point of the fused loop dominates the dependence.
103     // Otherwise, the src loop can't be removed.
104     if (fusedLoopInsPoint != depNodeOp &&
105         !fusedLoopInsPoint->isBeforeInBlock(depNodeOp)) {
106       LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: dst loop doesn't "
107                                  "dominate dependence\n");
108       return false;
109     }
110 
111     hasOutDepsAfterFusion = true;
112   }
113 
114   // If src loop has dependences after fusion or it writes to an live-out or
115   // escaping memref, we can only remove it if the fusion slice is maximal so
116   // that all the dependences are preserved.
117   if (hasOutDepsAfterFusion || !escapingMemRefs.empty()) {
118     std::optional<bool> isMaximal = fusionSlice.isMaximal();
119     if (!isMaximal) {
120       LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: can't determine "
121                                  "if fusion is maximal\n");
122       return false;
123     }
124 
125     if (!*isMaximal) {
126       LLVM_DEBUG(llvm::dbgs()
127                  << "Src loop can't be removed: fusion is not maximal\n");
128       return false;
129     }
130   }
131 
132   return true;
133 }
134 
135 /// Returns in 'srcIdCandidates' the producer fusion candidates for consumer
136 /// 'dstId'. Candidates are sorted by node id order. This order corresponds to
137 /// the program order when the 'mdg' is created. However, program order is not
138 /// guaranteed and must not be required by the client. Program order won't be
139 /// held if the 'mdg' is reused from a previous fusion step or if the node
140 /// creation order changes in the future to support more advance cases.
141 // TODO: Move this to a loop fusion utility once 'mdg' is also moved.
142 static void getProducerCandidates(unsigned dstId, MemRefDependenceGraph *mdg,
143                                   SmallVectorImpl<unsigned> &srcIdCandidates) {
144   // Skip if no input edges along which to fuse.
145   if (mdg->inEdges.count(dstId) == 0)
146     return;
147 
148   // Gather memrefs from loads in 'dstId'.
149   auto *dstNode = mdg->getNode(dstId);
150   DenseSet<Value> consumedMemrefs;
151   for (Operation *load : dstNode->loads)
152     consumedMemrefs.insert(cast<AffineReadOpInterface>(load).getMemRef());
153 
154   // Traverse 'dstId' incoming edges and gather the nodes that contain a store
155   // to one of the consumed memrefs.
156   for (auto &srcEdge : mdg->inEdges[dstId]) {
157     auto *srcNode = mdg->getNode(srcEdge.id);
158     // Skip if 'srcNode' is not a loop nest.
159     if (!isa<AffineForOp>(srcNode->op))
160       continue;
161 
162     if (any_of(srcNode->stores, [&](Operation *op) {
163           auto storeOp = cast<AffineWriteOpInterface>(op);
164           return consumedMemrefs.count(storeOp.getMemRef()) > 0;
165         }))
166       srcIdCandidates.push_back(srcNode->id);
167   }
168 
169   llvm::sort(srcIdCandidates);
170   srcIdCandidates.erase(
171       std::unique(srcIdCandidates.begin(), srcIdCandidates.end()),
172       srcIdCandidates.end());
173 }
174 
175 /// Returns in 'producerConsumerMemrefs' the memrefs involved in a
176 /// producer-consumer dependence between 'srcId' and 'dstId'.
177 static void
178 gatherProducerConsumerMemrefs(unsigned srcId, unsigned dstId,
179                               MemRefDependenceGraph *mdg,
180                               DenseSet<Value> &producerConsumerMemrefs) {
181   auto *dstNode = mdg->getNode(dstId);
182   auto *srcNode = mdg->getNode(srcId);
183   gatherProducerConsumerMemrefs(srcNode->stores, dstNode->loads,
184                                 producerConsumerMemrefs);
185 }
186 
187 /// A memref escapes in the context of the fusion pass if either:
188 ///   1. it (or its alias) is a block argument, or
189 ///   2. created by an op not known to guarantee alias freedom,
190 ///   3. it (or its alias) are used by ops other than affine dereferencing ops
191 ///   (e.g., by call op, memref load/store ops, alias creating ops, unknown ops,
192 ///   terminator ops, etc.); such ops do not deference the memref in an affine
193 ///   way.
194 static bool isEscapingMemref(Value memref, Block *block) {
195   Operation *defOp = memref.getDefiningOp();
196   // Check if 'memref' is a block argument.
197   if (!defOp)
198     return true;
199 
200   // Check if this is defined to be an alias of another memref.
201   if (auto viewOp = dyn_cast<mlir::ViewLikeOpInterface>(defOp))
202     if (isEscapingMemref(viewOp.getViewSource(), block))
203       return true;
204 
205   // Any op besides allocating ops wouldn't guarantee alias freedom
206   if (!hasSingleEffect<mlir::MemoryEffects::Allocate>(defOp, memref))
207     return true;
208 
209   // Check if 'memref' is used by a non-deferencing op (including unknown ones)
210   // (e.g., call ops, alias creating ops, etc.).
211   return llvm::any_of(memref.getUsers(), [&](Operation *user) {
212     // Ignore users outside of `block`.
213     if (block->getParent()->findAncestorOpInRegion(*user)->getBlock() != block)
214       return false;
215     return !isa<AffineMapAccessInterface>(*user);
216   });
217 }
218 
219 /// Returns in 'escapingMemRefs' the memrefs from affine store ops in node 'id'
220 /// that escape the block or are accessed in a non-affine way.
221 static void gatherEscapingMemrefs(unsigned id, MemRefDependenceGraph *mdg,
222                                   DenseSet<Value> &escapingMemRefs) {
223   auto *node = mdg->getNode(id);
224   for (Operation *storeOp : node->stores) {
225     auto memref = cast<AffineWriteOpInterface>(storeOp).getMemRef();
226     if (escapingMemRefs.count(memref))
227       continue;
228     if (isEscapingMemref(memref, &mdg->block))
229       escapingMemRefs.insert(memref);
230   }
231 }
232 
233 // Initializes the data dependence graph by walking operations in `block`.
234 // Assigns each node in the graph a node id based on program order in 'f'.
235 bool MemRefDependenceGraph::init() {
236   LLVM_DEBUG(llvm::dbgs() << "--- Initializing MDG ---\n");
237   // Map from a memref to the set of ids of the nodes that have ops accessing
238   // the memref.
239   DenseMap<Value, SetVector<unsigned>> memrefAccesses;
240 
241   DenseMap<Operation *, unsigned> forToNodeMap;
242   for (Operation &op : block) {
243     if (auto forOp = dyn_cast<AffineForOp>(op)) {
244       // Create graph node 'id' to represent top-level 'forOp' and record
245       // all loads and store accesses it contains.
246       LoopNestStateCollector collector;
247       collector.collect(&op);
248       // Return false if a region holding op other than 'affine.for' and
249       // 'affine.if' was found (not currently supported).
250       if (collector.hasNonAffineRegionOp)
251         return false;
252       Node node(nextNodeId++, &op);
253       for (auto *opInst : collector.loadOpInsts) {
254         node.loads.push_back(opInst);
255         auto memref = cast<AffineReadOpInterface>(opInst).getMemRef();
256         memrefAccesses[memref].insert(node.id);
257       }
258       for (auto *opInst : collector.storeOpInsts) {
259         node.stores.push_back(opInst);
260         auto memref = cast<AffineWriteOpInterface>(opInst).getMemRef();
261         memrefAccesses[memref].insert(node.id);
262       }
263       forToNodeMap[&op] = node.id;
264       nodes.insert({node.id, node});
265     } else if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) {
266       // Create graph node for top-level load op.
267       Node node(nextNodeId++, &op);
268       node.loads.push_back(&op);
269       auto memref = cast<AffineReadOpInterface>(op).getMemRef();
270       memrefAccesses[memref].insert(node.id);
271       nodes.insert({node.id, node});
272     } else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
273       // Create graph node for top-level store op.
274       Node node(nextNodeId++, &op);
275       node.stores.push_back(&op);
276       auto memref = cast<AffineWriteOpInterface>(op).getMemRef();
277       memrefAccesses[memref].insert(node.id);
278       nodes.insert({node.id, node});
279     } else if (op.getNumRegions() != 0) {
280       // Return false if another region is found (not currently supported).
281       return false;
282     } else if (op.getNumResults() > 0 && !op.use_empty()) {
283       // Create graph node for top-level producer of SSA values, which
284       // could be used by loop nest nodes.
285       Node node(nextNodeId++, &op);
286       nodes.insert({node.id, node});
287     } else if (isa<CallOpInterface>(op)) {
288       // Create graph node for top-level Call Op that takes any argument of
289       // memref type. Call Op that returns one or more memref type results
290       // is already taken care of, by the previous conditions.
291       if (llvm::any_of(op.getOperandTypes(),
292                        [&](Type t) { return isa<MemRefType>(t); })) {
293         Node node(nextNodeId++, &op);
294         nodes.insert({node.id, node});
295       }
296     } else if (hasEffect<MemoryEffects::Write, MemoryEffects::Free>(&op)) {
297       // Create graph node for top-level op, which could have a memory write
298       // side effect.
299       Node node(nextNodeId++, &op);
300       nodes.insert({node.id, node});
301     }
302   }
303 
304   for (auto &idAndNode : nodes) {
305     LLVM_DEBUG(llvm::dbgs() << "Create node " << idAndNode.first << " for:\n"
306                             << *(idAndNode.second.op) << "\n");
307     (void)idAndNode;
308   }
309 
310   // Add dependence edges between nodes which produce SSA values and their
311   // users. Load ops can be considered as the ones producing SSA values.
312   for (auto &idAndNode : nodes) {
313     const Node &node = idAndNode.second;
314     // Stores don't define SSA values, skip them.
315     if (!node.stores.empty())
316       continue;
317     Operation *opInst = node.op;
318     for (Value value : opInst->getResults()) {
319       for (Operation *user : value.getUsers()) {
320         // Ignore users outside of the block.
321         if (block.getParent()->findAncestorOpInRegion(*user)->getBlock() !=
322             &block)
323           continue;
324         SmallVector<AffineForOp, 4> loops;
325         getAffineForIVs(*user, &loops);
326         if (loops.empty())
327           continue;
328         assert(forToNodeMap.count(loops[0]) > 0 && "missing mapping");
329         unsigned userLoopNestId = forToNodeMap[loops[0]];
330         addEdge(node.id, userLoopNestId, value);
331       }
332     }
333   }
334 
335   // Walk memref access lists and add graph edges between dependent nodes.
336   for (auto &memrefAndList : memrefAccesses) {
337     unsigned n = memrefAndList.second.size();
338     for (unsigned i = 0; i < n; ++i) {
339       unsigned srcId = memrefAndList.second[i];
340       bool srcHasStore =
341           getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0;
342       for (unsigned j = i + 1; j < n; ++j) {
343         unsigned dstId = memrefAndList.second[j];
344         bool dstHasStore =
345             getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0;
346         if (srcHasStore || dstHasStore)
347           addEdge(srcId, dstId, memrefAndList.first);
348       }
349     }
350   }
351   return true;
352 }
353 
354 // Sinks all sequential loops to the innermost levels (while preserving
355 // relative order among them) and moves all parallel loops to the
356 // outermost (while again preserving relative order among them).
357 // This can increase the loop depth at which we can fuse a slice, since we are
358 // pushing loop carried dependence to a greater depth in the loop nest.
359 static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) {
360   assert(isa<AffineForOp>(node->op));
361   AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op));
362   node->op = newRootForOp;
363 }
364 
365 // Creates and returns a private (single-user) memref for fused loop rooted
366 // at 'forOp', with (potentially reduced) memref size based on the
367 // MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'.
368 // TODO: consider refactoring the common code from generateDma and
369 // this one.
370 static Value createPrivateMemRef(AffineForOp forOp, Operation *srcStoreOpInst,
371                                  unsigned dstLoopDepth,
372                                  std::optional<unsigned> fastMemorySpace,
373                                  uint64_t localBufSizeThreshold) {
374   Operation *forInst = forOp.getOperation();
375 
376   // Create builder to insert alloc op just before 'forOp'.
377   OpBuilder b(forInst);
378   // Builder to create constants at the top level.
379   OpBuilder top(forInst->getParentRegion());
380   // Create new memref type based on slice bounds.
381   auto oldMemRef = cast<AffineWriteOpInterface>(srcStoreOpInst).getMemRef();
382   auto oldMemRefType = cast<MemRefType>(oldMemRef.getType());
383   unsigned rank = oldMemRefType.getRank();
384 
385   // Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'.
386   MemRefRegion region(srcStoreOpInst->getLoc());
387   bool validRegion = succeeded(region.compute(srcStoreOpInst, dstLoopDepth));
388   (void)validRegion;
389   assert(validRegion && "unexpected memref region failure");
390   SmallVector<int64_t, 4> newShape;
391   std::vector<SmallVector<int64_t, 4>> lbs;
392   SmallVector<int64_t, 8> lbDivisors;
393   lbs.reserve(rank);
394   // Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed
395   // by 'srcStoreOpInst' at depth 'dstLoopDepth'.
396   std::optional<int64_t> numElements =
397       region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors);
398   assert(numElements && "non-constant number of elts in local buffer");
399 
400   const FlatAffineValueConstraints *cst = region.getConstraints();
401   // 'outerIVs' holds the values that this memory region is symbolic/parametric
402   // on; this would correspond to loop IVs surrounding the level at which the
403   // slice is being materialized.
404   SmallVector<Value, 8> outerIVs;
405   cst->getValues(rank, cst->getNumVars(), &outerIVs);
406 
407   // Build 'rank' AffineExprs from MemRefRegion 'lbs'
408   SmallVector<AffineExpr, 4> offsets;
409   offsets.reserve(rank);
410   for (unsigned d = 0; d < rank; ++d) {
411     assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
412 
413     AffineExpr offset = top.getAffineConstantExpr(0);
414     for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
415       offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
416     }
417     assert(lbDivisors[d] > 0);
418     offset =
419         (offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
420     offsets.push_back(offset);
421   }
422 
423   // Create 'newMemRefType' using 'newShape' from MemRefRegion accessed
424   // by 'srcStoreOpInst'.
425   auto eltSize = getMemRefIntOrFloatEltSizeInBytes(oldMemRefType);
426   assert(eltSize && "memrefs with size elt types expected");
427   uint64_t bufSize = *eltSize * *numElements;
428   unsigned newMemSpace;
429   if (bufSize <= localBufSizeThreshold && fastMemorySpace.has_value()) {
430     newMemSpace = *fastMemorySpace;
431   } else {
432     newMemSpace = oldMemRefType.getMemorySpaceAsInt();
433   }
434   auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(),
435                                        {}, newMemSpace);
436 
437   // Create new private memref for fused loop 'forOp'. 'newShape' is always
438   // a constant shape.
439   // TODO: Create/move alloc ops for private memrefs closer to their
440   // consumer loop nests to reduce their live range. Currently they are added
441   // at the beginning of the block, because loop nests can be reordered
442   // during the fusion pass.
443   Value newMemRef = top.create<memref::AllocOp>(forOp.getLoc(), newMemRefType);
444 
445   // Build an AffineMap to remap access functions based on lower bound offsets.
446   SmallVector<AffineExpr, 4> remapExprs;
447   remapExprs.reserve(rank);
448   for (unsigned i = 0; i < rank; i++) {
449     auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i);
450 
451     auto remapExpr =
452         simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0);
453     remapExprs.push_back(remapExpr);
454   }
455 
456   auto indexRemap =
457       AffineMap::get(outerIVs.size() + rank, 0, remapExprs, forOp.getContext());
458 
459   // Replace all users of 'oldMemRef' with 'newMemRef'.
460   LogicalResult res =
461       replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap,
462                                /*extraOperands=*/outerIVs,
463                                /*symbolOperands=*/{},
464                                /*domOpFilter=*/&*forOp.getBody()->begin());
465   assert(succeeded(res) &&
466          "replaceAllMemrefUsesWith should always succeed here");
467   (void)res;
468   return newMemRef;
469 }
470 
471 /// Walking from node 'srcId' to node 'dstId' (exclusive of 'srcId' and
472 /// 'dstId'), if there is any non-affine operation accessing 'memref', return
473 /// true. Otherwise, return false.
474 static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
475                                        Value memref,
476                                        MemRefDependenceGraph *mdg) {
477   auto *srcNode = mdg->getNode(srcId);
478   auto *dstNode = mdg->getNode(dstId);
479   Value::user_range users = memref.getUsers();
480   // For each MemRefDependenceGraph's node that is between 'srcNode' and
481   // 'dstNode' (exclusive of 'srcNodes' and 'dstNode'), check whether any
482   // non-affine operation in the node accesses the 'memref'.
483   for (auto &idAndNode : mdg->nodes) {
484     Operation *op = idAndNode.second.op;
485     // Take care of operations between 'srcNode' and 'dstNode'.
486     if (srcNode->op->isBeforeInBlock(op) && op->isBeforeInBlock(dstNode->op)) {
487       // Walk inside the operation to find any use of the memref.
488       // Interrupt the walk if found.
489       auto walkResult = op->walk([&](Operation *user) {
490         // Skip affine ops.
491         if (isa<AffineMapAccessInterface>(*user))
492           return WalkResult::advance();
493         // Find a non-affine op that uses the memref.
494         if (llvm::is_contained(users, user))
495           return WalkResult::interrupt();
496         return WalkResult::advance();
497       });
498       if (walkResult.wasInterrupted())
499         return true;
500     }
501   }
502   return false;
503 }
504 
505 /// Check whether a memref value in node 'srcId' has a non-affine that
506 /// is between node 'srcId' and node 'dstId' (exclusive of 'srcNode' and
507 /// 'dstNode').
508 static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
509                                        MemRefDependenceGraph *mdg) {
510   // Collect memref values in node 'srcId'.
511   auto *srcNode = mdg->getNode(srcId);
512   llvm::SmallDenseSet<Value, 2> memRefValues;
513   srcNode->op->walk([&](Operation *op) {
514     // Skip affine ops.
515     if (isa<AffineForOp>(op))
516       return WalkResult::advance();
517     for (Value v : op->getOperands())
518       // Collect memref values only.
519       if (isa<MemRefType>(v.getType()))
520         memRefValues.insert(v);
521     return WalkResult::advance();
522   });
523   // Looking for users between node 'srcId' and node 'dstId'.
524   return llvm::any_of(memRefValues, [&](Value memref) {
525     return hasNonAffineUsersOnThePath(srcId, dstId, memref, mdg);
526   });
527 }
528 
529 // Checks the profitability of fusing a backwards slice of the loop nest
530 // surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'.
531 // The argument 'srcStoreOpInst' is used to calculate the storage reduction on
532 // the memref being produced and consumed, which is an input to the cost model.
533 // For producer-consumer fusion, 'srcStoreOpInst' will be the same as
534 // 'srcOpInst', as we are slicing w.r.t to that producer. For input-reuse
535 // fusion, 'srcOpInst' will be the src loop nest LoadOp which reads from the
536 // same memref as dst loop nest load ops, and 'srcStoreOpInst' will be the
537 // unique store op in the src node, which will be used to check that the write
538 // region is the same after input-reuse fusion. Computation slices are provided
539 // in 'depthSliceUnions' for each legal fusion depth. The maximal depth at which
540 // fusion is legal is provided in 'maxLegalFusionDepth'. Returns true if it is
541 // profitable to fuse the candidate loop nests. Returns false otherwise.
542 // `dstLoopDepth` is set to the most profitable depth at which to materialize
543 // the source loop nest slice.
544 // The profitability model executes the following steps:
545 // *) Computes the backward computation slice at 'srcOpInst'. This
546 //    computation slice of the loop nest surrounding 'srcOpInst' is
547 //    represented by modified src loop bounds in 'sliceState', which are
548 //    functions of loop IVs in the loop nest surrounding 'srcOpInst'.
549 // *) Computes the cost of unfused src/dst loop nests (currently the cost of a
550 //    loop nest is the total number of dynamic operation instances in the loop
551 //    nest).
552 // *) Computes the cost of fusing a slice of the src loop nest into the dst
553 //    loop nest at various values of dst loop depth, attempting to fuse
554 //    the largest computation slice at the maximal dst loop depth (closest to
555 //    the load) to minimize reuse distance and potentially enable subsequent
556 //    load/store forwarding.
557 //    NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop
558 //    nest, at which the src computation slice is inserted/fused.
559 //    NOTE: We attempt to maximize the dst loop depth, but there are cases
560 //    where a particular setting for 'dstLoopNest' might fuse an unsliced
561 //    loop (within the src computation slice) at a depth which results in
562 //    excessive recomputation (see unit tests for examples).
563 // *) Compares the total cost of the unfused loop nests to the min cost fused
564 //    loop nest computed in the previous step, and returns true if the latter
565 //    is lower.
566 // TODO: Extend profitability analysis to support scenarios with multiple
567 // stores.
568 static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst,
569                                AffineForOp dstForOp,
570                                ArrayRef<ComputationSliceState> depthSliceUnions,
571                                unsigned maxLegalFusionDepth,
572                                unsigned *dstLoopDepth,
573                                double computeToleranceThreshold) {
574   LLVM_DEBUG({
575     llvm::dbgs() << "Checking whether fusion is profitable between src op:\n";
576     llvm::dbgs() << ' ' << *srcOpInst << " and destination loop:\n";
577     llvm::dbgs() << dstForOp << "\n";
578   });
579 
580   if (maxLegalFusionDepth == 0) {
581     LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxLegalFusionDepth is 0\n");
582     return false;
583   }
584 
585   // Compute cost of sliced and unsliced src loop nest.
586   SmallVector<AffineForOp, 4> srcLoopIVs;
587   getAffineForIVs(*srcOpInst, &srcLoopIVs);
588 
589   // Walk src loop nest and collect stats.
590   LoopNestStats srcLoopNestStats;
591   if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats))
592     return false;
593 
594   // Compute cost of dst loop nest.
595   LoopNestStats dstLoopNestStats;
596   if (!getLoopNestStats(dstForOp, &dstLoopNestStats))
597     return false;
598 
599   // Search for min cost value for 'dstLoopDepth'. At each value of
600   // 'dstLoopDepth' from 'maxLegalLoopDepth' to '1', compute computation slice
601   // bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union
602   // of these bounds). Next the union slice bounds are used to calculate
603   // the cost of the slice and the cost of the slice inserted into the dst
604   // loop nest at 'dstLoopDepth'.
605   uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max();
606   double maxStorageReduction = 0.0;
607   std::optional<uint64_t> sliceMemEstimate;
608 
609   // The best loop depth at which to materialize the slice.
610   std::optional<unsigned> bestDstLoopDepth;
611 
612   // Compute op instance count for the src loop nest without iteration slicing.
613   uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats);
614 
615   // Compute src loop nest write region size.
616   MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc());
617   if (failed(srcWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0))) {
618     LLVM_DEBUG(llvm::dbgs()
619                << "Unable to compute MemRefRegion for source operation\n");
620     return false;
621   }
622 
623   std::optional<int64_t> maybeSrcWriteRegionSizeBytes =
624       srcWriteRegion.getRegionSize();
625   if (!maybeSrcWriteRegionSizeBytes.has_value())
626     return false;
627   int64_t srcWriteRegionSizeBytes = *maybeSrcWriteRegionSizeBytes;
628 
629   // Compute op instance count for the src loop nest.
630   uint64_t dstLoopNestCost = getComputeCost(dstForOp, dstLoopNestStats);
631 
632   // Evaluate all depth choices for materializing the slice in the destination
633   // loop nest.
634   for (unsigned i = maxLegalFusionDepth; i >= 1; --i) {
635     const ComputationSliceState &slice = depthSliceUnions[i - 1];
636     // Skip slice union if it wasn't computed for this depth.
637     if (slice.isEmpty())
638       continue;
639 
640     int64_t fusedLoopNestComputeCost;
641     if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstForOp,
642                               dstLoopNestStats, slice,
643                               &fusedLoopNestComputeCost)) {
644       LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost\n");
645       continue;
646     }
647 
648     double additionalComputeFraction =
649         fusedLoopNestComputeCost /
650             (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
651         1;
652 
653     // Determine what the slice write MemRefRegion would be, if the src loop
654     // nest slice 'slice' were to be inserted into the dst loop nest at loop
655     // depth 'i'.
656     MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc());
657     if (failed(sliceWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0,
658                                         &slice))) {
659       LLVM_DEBUG(llvm::dbgs()
660                  << "Failed to compute slice write region at loopDepth: " << i
661                  << "\n");
662       continue;
663     }
664 
665     std::optional<int64_t> maybeSliceWriteRegionSizeBytes =
666         sliceWriteRegion.getRegionSize();
667     if (!maybeSliceWriteRegionSizeBytes.has_value() ||
668         *maybeSliceWriteRegionSizeBytes == 0) {
669       LLVM_DEBUG(llvm::dbgs()
670                  << "Failed to get slice write region size at loopDepth: " << i
671                  << "\n");
672       continue;
673     }
674     int64_t sliceWriteRegionSizeBytes = *maybeSliceWriteRegionSizeBytes;
675 
676     // If we are fusing for reuse, check that write regions remain the same.
677     // TODO: Write region check should check sizes and offsets in
678     // each dimension, so that we are sure they are covering the same memref
679     // region. Also, move this out to a isMemRefRegionSuperSet helper function.
680     if (srcOpInst != srcStoreOpInst &&
681         sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes)
682       continue;
683 
684     double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) /
685                               static_cast<double>(sliceWriteRegionSizeBytes);
686 
687     LLVM_DEBUG({
688       std::stringstream msg;
689       msg << "  evaluating fusion profitability at depth : " << i << "\n"
690           << std::fixed << std::setprecision(2)
691           << "   additional compute fraction: "
692           << 100.0 * additionalComputeFraction << "%\n"
693           << "   storage reduction factor: " << storageReduction << "x\n"
694           << "   fused nest cost: " << fusedLoopNestComputeCost << "\n"
695           << "   src write region size: " << srcWriteRegionSizeBytes << "\n"
696           << "   slice write region size: " << sliceWriteRegionSizeBytes
697           << "\n";
698       llvm::dbgs() << msg.str();
699     });
700 
701     // TODO: This is a placeholder cost model.
702     // Among all choices that add an acceptable amount of redundant computation
703     // (as per computeToleranceThreshold), we will simply pick the one that
704     // reduces the intermediary size the most.
705     if ((storageReduction > maxStorageReduction) &&
706         (additionalComputeFraction < computeToleranceThreshold)) {
707       maxStorageReduction = storageReduction;
708       bestDstLoopDepth = i;
709       minFusedLoopNestComputeCost = fusedLoopNestComputeCost;
710       sliceMemEstimate = sliceWriteRegionSizeBytes;
711     }
712   }
713 
714   // A simple cost model: fuse if it reduces the memory footprint.
715 
716   if (!bestDstLoopDepth) {
717     LLVM_DEBUG(
718         llvm::dbgs()
719         << "All fusion choices involve more than the threshold amount of "
720            "redundant computation; NOT fusing.\n");
721     return false;
722   }
723 
724   if (!bestDstLoopDepth) {
725     LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n");
726     return false;
727   }
728 
729   // Set dstLoopDepth based on best values from search.
730   *dstLoopDepth = *bestDstLoopDepth;
731 
732   LLVM_DEBUG(
733       llvm::dbgs() << " LoopFusion fusion stats:"
734                    << "\n  best loop depth: " << bestDstLoopDepth
735                    << "\n  src loop nest compute cost: " << srcLoopNestCost
736                    << "\n  dst loop nest compute cost: " << dstLoopNestCost
737                    << "\n  fused loop nest compute cost: "
738                    << minFusedLoopNestComputeCost << "\n");
739 
740   auto dstMemSize = getMemoryFootprintBytes(dstForOp);
741   auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]);
742 
743   std::optional<double> storageReduction;
744 
745   if (!dstMemSize || !srcMemSize) {
746     LLVM_DEBUG(llvm::dbgs()
747                << "  fusion memory benefit cannot be evaluated; NOT fusing.\n");
748     return false;
749   }
750 
751   auto srcMemSizeVal = *srcMemSize;
752   auto dstMemSizeVal = *dstMemSize;
753 
754   assert(sliceMemEstimate && "expected value");
755   auto fusedMem = dstMemSizeVal + *sliceMemEstimate;
756 
757   LLVM_DEBUG(llvm::dbgs() << "   src mem: " << srcMemSizeVal << "\n"
758                           << "   dst mem: " << dstMemSizeVal << "\n"
759                           << "   fused mem: " << fusedMem << "\n"
760                           << "   slice mem: " << sliceMemEstimate << "\n");
761 
762   if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) {
763     LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n");
764     return false;
765   }
766   storageReduction =
767       100.0 *
768       (1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal));
769 
770   double additionalComputeFraction =
771       100.0 * (minFusedLoopNestComputeCost /
772                    (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
773                1);
774   (void)additionalComputeFraction;
775   LLVM_DEBUG({
776     std::stringstream msg;
777     msg << " fusion is most profitable at depth " << *dstLoopDepth << " with "
778         << std::setprecision(2) << additionalComputeFraction
779         << "% redundant computation and a ";
780     msg << (storageReduction ? std::to_string(*storageReduction) : "<unknown>");
781     msg << "% storage reduction.\n";
782     llvm::dbgs() << msg.str();
783   });
784 
785   return true;
786 }
787 
788 namespace {
789 
790 // GreedyFusion greedily fuses loop nests which have a producer/consumer or
791 // input-reuse relationship on a memref, with the goal of improving locality.
792 //
793 // The steps of the producer-consumer fusion algorithm are as follows:
794 //
795 // *) A worklist is initialized with node ids from the dependence graph.
796 // *) For each node id in the worklist:
797 //   *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a
798 //      candidate destination AffineForOp into which fusion will be attempted.
799 //   *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'.
800 //   *) For each LoadOp in 'dstLoadOps' do:
801 //      *) Look up dependent loop nests which have a single store op to the same
802 //         memref.
803 //      *) Check if dependences would be violated by the fusion.
804 //      *) Get a computation slice of 'srcLoopNest', which adjusts its loop
805 //         bounds to be functions of 'dstLoopNest' IVs and symbols.
806 //      *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest',
807 //         at a loop depth determined by the cost model in 'isFusionProfitable'.
808 //      *) Add the newly fused load/store operations to the state,
809 //         and also add newly fused load ops to 'dstLoopOps' to be considered
810 //         as fusion dst load ops in another iteration.
811 //      *) Remove old src loop nest and its associated state.
812 //
813 // The steps of the input-reuse fusion algorithm are as follows:
814 //
815 // *) Initialize 'worklist' with node ids from the dependence graph.
816 // *) For each 'dstNode' in the worklist:
817 //   *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which
818 //      loads from the same memref, but which has no dependence paths to/from.
819 //   *) Get a computation slice of 'sibLoopNest', which adjusts its loop
820 //      bounds to be functions of 'dstLoopNest' IVs and symbols.
821 //   *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest',
822 //      at a loop depth determined by the cost model in 'isFusionProfitable'.
823 //      This function also checks that the memref write region of 'sibLoopNest',
824 //      is preserved in the fused loop nest.
825 //   *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'.
826 //
827 // Given a graph where top-level operations are vertices in the set 'V' and
828 // edges in the set 'E' are dependences between vertices, this algorithm
829 // takes O(V) time for initialization, and has runtime O(V + E).
830 //
831 // This greedy algorithm is not 'maximal' due to the current restriction of
832 // fusing along single producer consumer edges, but there is a TODO: to fix
833 // this.
834 //
835 // TODO: Experiment with other fusion policies.
836 struct GreedyFusion {
837 public:
838   // The data dependence graph to traverse during fusion.
839   MemRefDependenceGraph *mdg;
840   // Worklist of graph nodes visited during the fusion pass.
841   SmallVector<unsigned, 8> worklist;
842   // Parameter for local buffer size threshold.
843   unsigned localBufSizeThreshold;
844   // Parameter for fast memory space.
845   std::optional<unsigned> fastMemorySpace;
846   // If true, ignore any additional (redundant) computation tolerance threshold
847   // that would have prevented fusion.
848   bool maximalFusion;
849   // The amount of additional computation that is tolerated while fusing
850   // pair-wise as a fraction of the total computation.
851   double computeToleranceThreshold;
852 
853   using Node = MemRefDependenceGraph::Node;
854 
855   GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold,
856                std::optional<unsigned> fastMemorySpace, bool maximalFusion,
857                double computeToleranceThreshold)
858       : mdg(mdg), localBufSizeThreshold(localBufSizeThreshold),
859         fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion),
860         computeToleranceThreshold(computeToleranceThreshold) {}
861 
862   /// Initializes 'worklist' with nodes from 'mdg'.
863   void init() {
864     // TODO: Add a priority queue for prioritizing nodes by different
865     // metrics (e.g. arithmetic intensity/flops-to-bytes ratio).
866     worklist.clear();
867     for (auto &idAndNode : mdg->nodes) {
868       const Node &node = idAndNode.second;
869       worklist.push_back(node.id);
870     }
871   }
872   /// Run only sibling fusion on the `mdg`.
873   void runSiblingFusionOnly() {
874     fuseSiblingNodes();
875     eraseUnusedMemRefAllocations();
876   }
877 
878   /// Run only producer/consumer fusion on the `mdg`.
879   void runProducerConsumerFusionOnly() {
880     fuseProducerConsumerNodes(
881         /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max());
882     eraseUnusedMemRefAllocations();
883   }
884 
885   // Run the GreedyFusion pass.
886   // *) First pass through the nodes fuses single-use producer nodes into their
887   //    unique consumer.
888   // *) Second pass fuses sibling nodes which share no dependence edges.
889   // *) Third pass fuses any remaining producer nodes into their users.
890   void runGreedyFusion() {
891     // TODO: Run this repeatedly until a fixed-point is reached.
892     fuseProducerConsumerNodes(/*maxSrcUserCount=*/1);
893     fuseSiblingNodes();
894     fuseProducerConsumerNodes(
895         /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max());
896     eraseUnusedMemRefAllocations();
897   }
898 
899   /// Returns true if a private memref can be created for `memref` given
900   /// the fusion scenario reflected by the other arguments.
901   bool canCreatePrivateMemRef(Value memref,
902                               const DenseSet<Value> &srcEscapingMemRefs,
903                               unsigned producerId, unsigned consumerId,
904                               bool removeSrcNode) {
905     const Node *consumerNode = mdg->getNode(consumerId);
906     // If `memref` is an escaping one, do not create a private memref
907     // for the below scenarios, since doing so will leave the escaping
908     // memref unmodified as all the writes originally meant for the
909     // escaping memref would be performed on the private memref:
910     // 1. The source is to be removed after fusion,
911     // OR
912     // 2. The destination writes to `memref`.
913     if (srcEscapingMemRefs.count(memref) > 0 &&
914         (removeSrcNode || consumerNode->getStoreOpCount(memref) > 0))
915       return false;
916 
917     // Don't create a private memref if 'srcNode' has in edges on
918     // 'memref' or 'dstNode' has out edges on 'memref'.
919     if (mdg->getIncomingMemRefAccesses(producerId, memref) > 0 ||
920         mdg->getOutEdgeCount(consumerId, memref) > 0)
921       return false;
922 
923     // If 'srcNode' will be removed but it has out edges on 'memref' to
924     // nodes other than 'dstNode', we have to preserve dependences and
925     // cannot create a private memref.
926     if (removeSrcNode &&
927         any_of(mdg->outEdges[producerId], [&](const auto &edge) {
928           return edge.value == memref && edge.id != consumerId;
929         }))
930       return false;
931 
932     return true;
933   }
934 
935   /// Perform fusions with node `dstId` as the destination of fusion, with
936   /// No fusion is performed when producers with a user count greater than
937   /// `maxSrcUserCount` for any of the memrefs involved.
938   void performFusionsIntoDest(unsigned dstId, unsigned maxSrcUserCount) {
939     LLVM_DEBUG(llvm::dbgs() << "Evaluating dst loop " << dstId << "\n");
940     // Skip if this node was removed (fused into another node).
941     if (mdg->nodes.count(dstId) == 0)
942       return;
943     // Get 'dstNode' into which to attempt fusion.
944     auto *dstNode = mdg->getNode(dstId);
945     // Skip if 'dstNode' is not a loop nest.
946     if (!isa<AffineForOp>(dstNode->op))
947       return;
948     // Skip if 'dstNode' is a loop nest returning values.
949     // TODO: support loop nests that return values.
950     if (dstNode->op->getNumResults() > 0)
951       return;
952 
953     LLVM_DEBUG(llvm::dbgs() << "Evaluating dst loop " << dstId << "\n");
954 
955     // Sink sequential loops in 'dstNode' (and thus raise parallel loops)
956     // while preserving relative order. This can increase the maximum loop
957     // depth at which we can fuse a slice of a producer loop nest into a
958     // consumer loop nest.
959     sinkSequentialLoops(dstNode);
960     auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
961 
962     // Try to fuse 'dstNode' with candidate producer loops until a fixed point
963     // is reached. Fusing two loops may expose new fusion opportunities.
964     bool dstNodeChanged;
965     do {
966       // Gather src loop candidates for 'dstNode' and visit them in "quasi"
967       // reverse program order to minimize the number of iterations needed to
968       // reach the fixed point. Note that this is a best effort approach since
969       // 'getProducerCandidates' does not always guarantee that program order
970       // in 'srcIdCandidates'.
971       dstNodeChanged = false;
972       SmallVector<unsigned, 16> srcIdCandidates;
973       getProducerCandidates(dstId, mdg, srcIdCandidates);
974 
975       for (unsigned srcId : llvm::reverse(srcIdCandidates)) {
976         // Get 'srcNode' from which to attempt fusion into 'dstNode'.
977         auto *srcNode = mdg->getNode(srcId);
978         auto srcAffineForOp = cast<AffineForOp>(srcNode->op);
979         LLVM_DEBUG(llvm::dbgs() << "Evaluating src loop " << srcId
980                                 << " for dst loop " << dstId << "\n");
981 
982         // Skip if 'srcNode' is a loop nest returning values.
983         // TODO: support loop nests that return values.
984         if (isa<AffineForOp>(srcNode->op) && srcNode->op->getNumResults() > 0)
985           continue;
986 
987         DenseSet<Value> producerConsumerMemrefs;
988         gatherProducerConsumerMemrefs(srcId, dstId, mdg,
989                                       producerConsumerMemrefs);
990 
991         // Skip if 'srcNode' out edge count on any memref is greater than
992         // 'maxSrcUserCount'.
993         if (any_of(producerConsumerMemrefs, [&](Value memref) {
994               return mdg->getOutEdgeCount(srcNode->id, memref) >
995                      maxSrcUserCount;
996             }))
997           continue;
998 
999         // Gather memrefs in 'srcNode' that are written and escape out of the
1000         // block (e.g., memref block arguments, returned memrefs,
1001         // memrefs passed to function calls, etc.).
1002         DenseSet<Value> srcEscapingMemRefs;
1003         gatherEscapingMemrefs(srcNode->id, mdg, srcEscapingMemRefs);
1004 
1005         // Skip if there are non-affine operations in between the 'srcNode'
1006         // and 'dstNode' using their memrefs. If so, we wouldn't be able to
1007         // compute a legal insertion point for now. 'srcNode' and 'dstNode'
1008         // memrefs with non-affine operation users would be considered
1009         // escaping memrefs so we can limit this check to only scenarios with
1010         // escaping memrefs.
1011         if (!srcEscapingMemRefs.empty() &&
1012             hasNonAffineUsersOnThePath(srcId, dstId, mdg)) {
1013           LLVM_DEBUG(llvm::dbgs()
1014                      << "Can't fuse: non-affine users in between the loops\n");
1015           continue;
1016         }
1017 
1018         // Compute an operation list insertion point for the fused loop
1019         // nest which preserves dependences.
1020         Operation *fusedLoopInsPoint =
1021             mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id);
1022         if (fusedLoopInsPoint == nullptr)
1023           continue;
1024 
1025         // Compute the innermost common loop depth for dstNode
1026         // producer-consumer loads/stores.
1027         SmallVector<Operation *, 2> dstMemrefOps;
1028         for (Operation *op : dstNode->loads)
1029           if (producerConsumerMemrefs.count(
1030                   cast<AffineReadOpInterface>(op).getMemRef()) > 0)
1031             dstMemrefOps.push_back(op);
1032         for (Operation *op : dstNode->stores)
1033           if (producerConsumerMemrefs.count(
1034                   cast<AffineWriteOpInterface>(op).getMemRef()))
1035             dstMemrefOps.push_back(op);
1036         unsigned dstLoopDepthTest = getInnermostCommonLoopDepth(dstMemrefOps);
1037 
1038         // Check the feasibility of fusing src loop nest into dst loop nest
1039         // at loop depths in range [1, dstLoopDepthTest].
1040         unsigned maxLegalFusionDepth = 0;
1041         SmallVector<ComputationSliceState, 8> depthSliceUnions;
1042         depthSliceUnions.resize(dstLoopDepthTest);
1043         FusionStrategy strategy(FusionStrategy::ProducerConsumer);
1044         for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
1045           FusionResult result = affine::canFuseLoops(
1046               srcAffineForOp, dstAffineForOp,
1047               /*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy);
1048 
1049           if (result.value == FusionResult::Success)
1050             maxLegalFusionDepth = i;
1051         }
1052 
1053         if (maxLegalFusionDepth == 0) {
1054           LLVM_DEBUG(llvm::dbgs()
1055                      << "Can't fuse: fusion is not legal at any depth\n");
1056           continue;
1057         }
1058 
1059         // Check if fusion would be profitable. We skip profitability analysis
1060         // for maximal fusion since we already know the maximal legal depth to
1061         // fuse.
1062         unsigned bestDstLoopDepth = maxLegalFusionDepth;
1063         if (!maximalFusion) {
1064           // Retrieve producer stores from the src loop.
1065           SmallVector<Operation *, 2> producerStores;
1066           for (Operation *op : srcNode->stores)
1067             if (producerConsumerMemrefs.count(
1068                     cast<AffineWriteOpInterface>(op).getMemRef()))
1069               producerStores.push_back(op);
1070 
1071           // TODO: Suppport multiple producer stores in profitability
1072           // analysis. We limit profitability analysis to only scenarios with
1073           // a single producer store for now. Note that some multi-store
1074           // producer scenarios will still go through profitability analysis
1075           // if only one of the stores is involved the producer-consumer
1076           // relationship of the candidate loops.
1077           assert(!producerStores.empty() && "Expected producer store");
1078           if (producerStores.size() > 1)
1079             LLVM_DEBUG(llvm::dbgs() << "Skipping profitability analysis. Not "
1080                                        "supported for this case\n");
1081           else if (!isFusionProfitable(producerStores[0], producerStores[0],
1082                                        dstAffineForOp, depthSliceUnions,
1083                                        maxLegalFusionDepth, &bestDstLoopDepth,
1084                                        computeToleranceThreshold))
1085             continue;
1086         }
1087 
1088         assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth");
1089         ComputationSliceState &bestSlice =
1090             depthSliceUnions[bestDstLoopDepth - 1];
1091         assert(!bestSlice.isEmpty() && "Missing slice union for depth");
1092 
1093         // Determine if 'srcId' can be removed after fusion, taking into
1094         // account remaining dependences, escaping memrefs and the fusion
1095         // insertion point.
1096         bool removeSrcNode = canRemoveSrcNodeAfterFusion(
1097             srcId, dstId, bestSlice, fusedLoopInsPoint, srcEscapingMemRefs,
1098             mdg);
1099 
1100         DenseSet<Value> privateMemrefs;
1101         for (Value memref : producerConsumerMemrefs) {
1102           if (canCreatePrivateMemRef(memref, srcEscapingMemRefs, srcId, dstId,
1103                                      removeSrcNode)) {
1104             // Create a private version of this memref.
1105             LLVM_DEBUG(llvm::dbgs()
1106                        << "Creating private memref for " << memref << '\n');
1107             // Create a private version of this memref.
1108             privateMemrefs.insert(memref);
1109           }
1110         }
1111 
1112         // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'.
1113         fuseLoops(srcAffineForOp, dstAffineForOp, bestSlice);
1114         dstNodeChanged = true;
1115 
1116         LLVM_DEBUG(llvm::dbgs()
1117                    << "Fused src loop " << srcId << " into dst loop " << dstId
1118                    << " at depth " << bestDstLoopDepth << ":\n"
1119                    << dstAffineForOp << "\n");
1120 
1121         // Move 'dstAffineForOp' before 'insertPointInst' if needed.
1122         if (fusedLoopInsPoint != dstAffineForOp)
1123           dstAffineForOp->moveBefore(fusedLoopInsPoint);
1124 
1125         // Update edges between 'srcNode' and 'dstNode'.
1126         mdg->updateEdges(srcNode->id, dstNode->id, privateMemrefs,
1127                          removeSrcNode);
1128 
1129         // Create private memrefs.
1130         if (!privateMemrefs.empty()) {
1131           // Gather stores for all the private-to-be memrefs.
1132           DenseMap<Value, SmallVector<Operation *, 4>> privateMemRefToStores;
1133           dstAffineForOp.walk([&](AffineWriteOpInterface storeOp) {
1134             Value storeMemRef = storeOp.getMemRef();
1135             if (privateMemrefs.count(storeMemRef) > 0)
1136               privateMemRefToStores[storeMemRef].push_back(storeOp);
1137           });
1138 
1139           // Replace original memrefs with private memrefs. Note that all the
1140           // loads and stores on these memrefs will be replaced with a new
1141           // loads and stores. Any reference to the original ones becomes
1142           // invalid after this point.
1143           for (auto &memrefToStoresPair : privateMemRefToStores) {
1144             // TODO: Use union of memref write regions to compute
1145             // private memref footprint.
1146             SmallVector<Operation *, 4> &storesForMemref =
1147                 memrefToStoresPair.second;
1148             Value newMemRef = createPrivateMemRef(
1149                 dstAffineForOp, storesForMemref[0], bestDstLoopDepth,
1150                 fastMemorySpace, localBufSizeThreshold);
1151             // Create new node in dependence graph for 'newMemRef' alloc op.
1152             unsigned newMemRefNodeId = mdg->addNode(newMemRef.getDefiningOp());
1153             // Add edge from 'newMemRef' node to dstNode.
1154             mdg->addEdge(newMemRefNodeId, dstId, newMemRef);
1155           }
1156           // One or more entries for 'newMemRef' alloc op are inserted into
1157           // the DenseMap mdg->nodes. Since an insertion may cause DenseMap to
1158           // reallocate, update dstNode.
1159           dstNode = mdg->getNode(dstId);
1160         }
1161 
1162         // Collect dst loop stats after memref privatization transformation.
1163         LoopNestStateCollector dstLoopCollector;
1164         dstLoopCollector.collect(dstAffineForOp);
1165 
1166         // Clear and add back loads and stores.
1167         mdg->clearNodeLoadAndStores(dstNode->id);
1168         mdg->addToNode(dstId, dstLoopCollector.loadOpInsts,
1169                        dstLoopCollector.storeOpInsts);
1170 
1171         if (removeSrcNode) {
1172           LLVM_DEBUG(llvm::dbgs()
1173                      << "Removing src loop " << srcId << " after fusion\n");
1174           // srcNode is no longer valid after it is removed from mdg.
1175           srcAffineForOp.erase();
1176           mdg->removeNode(srcId);
1177           srcNode = nullptr;
1178         }
1179       }
1180     } while (dstNodeChanged);
1181   }
1182 
1183   /// Visit each node in the graph, and for each node, attempt to fuse it with
1184   /// producer-consumer candidates. No fusion is performed when producers with a
1185   /// user count greater than `maxSrcUserCount` for any of the memrefs involved
1186   /// are encountered.
1187   void fuseProducerConsumerNodes(unsigned maxSrcUserCount) {
1188     LLVM_DEBUG(llvm::dbgs() << "--- Producer/Consumer Fusion ---\n");
1189     init();
1190     while (!worklist.empty()) {
1191       unsigned dstId = worklist.back();
1192       worklist.pop_back();
1193       performFusionsIntoDest(dstId, maxSrcUserCount);
1194     }
1195   }
1196 
1197   // Visits each node in the graph, and for each node, attempts to fuse it with
1198   // its sibling nodes (nodes which share a parent, but no dependence edges).
1199   void fuseSiblingNodes() {
1200     LLVM_DEBUG(llvm::dbgs() << "--- Sibling Fusion ---\n");
1201     init();
1202     while (!worklist.empty()) {
1203       unsigned dstId = worklist.back();
1204       worklist.pop_back();
1205 
1206       // Skip if this node was removed (fused into another node).
1207       if (mdg->nodes.count(dstId) == 0)
1208         continue;
1209       // Get 'dstNode' into which to attempt fusion.
1210       auto *dstNode = mdg->getNode(dstId);
1211       // Skip if 'dstNode' is not a loop nest.
1212       if (!isa<AffineForOp>(dstNode->op))
1213         continue;
1214       // Attempt to fuse 'dstNode' with its sibling nodes in the graph.
1215       fuseWithSiblingNodes(dstNode);
1216     }
1217   }
1218 
1219   // Attempt to fuse 'dstNode' with sibling nodes in the graph.
1220   void fuseWithSiblingNodes(Node *dstNode) {
1221     DenseSet<unsigned> visitedSibNodeIds;
1222     std::pair<unsigned, Value> idAndMemref;
1223     auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
1224 
1225     while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) {
1226       unsigned sibId = idAndMemref.first;
1227       Value memref = idAndMemref.second;
1228       // TODO: Check that 'sibStoreOpInst' post-dominates all other
1229       // stores to the same memref in 'sibNode' loop nest.
1230       auto *sibNode = mdg->getNode(sibId);
1231       // Compute an operation list insertion point for the fused loop
1232       // nest which preserves dependences.
1233       assert(sibNode->op->getBlock() == dstNode->op->getBlock());
1234       Operation *insertPointInst =
1235           sibNode->op->isBeforeInBlock(dstNode->op)
1236               ? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id)
1237               : mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id);
1238       if (insertPointInst == nullptr)
1239         continue;
1240 
1241       // Check if fusion would be profitable and at what depth.
1242 
1243       // Get unique 'sibNode' load op to 'memref'.
1244       SmallVector<Operation *, 2> sibLoadOpInsts;
1245       sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts);
1246       // Currently findSiblingNodeToFuse searches for siblings with one load.
1247       assert(sibLoadOpInsts.size() == 1);
1248       Operation *sibLoadOpInst = sibLoadOpInsts[0];
1249 
1250       // Gather 'dstNode' load ops to 'memref'.
1251       SmallVector<Operation *, 2> dstLoadOpInsts;
1252       dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts);
1253 
1254       SmallVector<AffineForOp, 4> dstLoopIVs;
1255       getAffineForIVs(*dstLoadOpInsts[0], &dstLoopIVs);
1256       unsigned dstLoopDepthTest = dstLoopIVs.size();
1257       auto sibAffineForOp = cast<AffineForOp>(sibNode->op);
1258 
1259       // Compute loop depth and slice union for fusion.
1260       SmallVector<ComputationSliceState, 8> depthSliceUnions;
1261       depthSliceUnions.resize(dstLoopDepthTest);
1262       unsigned maxLegalFusionDepth = 0;
1263       FusionStrategy strategy(memref);
1264       for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
1265         FusionResult result = affine::canFuseLoops(
1266             sibAffineForOp, dstAffineForOp,
1267             /*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy);
1268 
1269         if (result.value == FusionResult::Success)
1270           maxLegalFusionDepth = i;
1271       }
1272 
1273       // Skip if fusion is not feasible at any loop depths.
1274       if (maxLegalFusionDepth == 0)
1275         continue;
1276 
1277       unsigned bestDstLoopDepth = maxLegalFusionDepth;
1278       if (!maximalFusion) {
1279         // Check if fusion would be profitable. For sibling fusion, the sibling
1280         // load op is treated as the src "store" op for fusion profitability
1281         // purposes. The footprint of the load in the slice relative to the
1282         // unfused source's determines reuse.
1283         if (!isFusionProfitable(sibLoadOpInst, sibLoadOpInst, dstAffineForOp,
1284                                 depthSliceUnions, maxLegalFusionDepth,
1285                                 &bestDstLoopDepth, computeToleranceThreshold))
1286           continue;
1287       }
1288 
1289       assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth");
1290       assert(!depthSliceUnions[bestDstLoopDepth - 1].isEmpty() &&
1291              "Fusion depth has no computed slice union");
1292       // Check if source loop is being inserted in the innermost
1293       // destination loop. Based on this, the fused loop may be optimized
1294       // further inside `fuseLoops`.
1295       bool isInnermostInsertion = (bestDstLoopDepth == dstLoopDepthTest);
1296       // Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'.
1297       affine::fuseLoops(sibAffineForOp, dstAffineForOp,
1298                         depthSliceUnions[bestDstLoopDepth - 1],
1299                         isInnermostInsertion);
1300 
1301       auto dstForInst = cast<AffineForOp>(dstNode->op);
1302       // Update operation position of fused loop nest (if needed).
1303       if (insertPointInst != dstForInst) {
1304         dstForInst->moveBefore(insertPointInst);
1305       }
1306       // Update data dependence graph state post fusion.
1307       updateStateAfterSiblingFusion(sibNode, dstNode);
1308     }
1309   }
1310 
1311   // Searches block argument uses and the graph from 'dstNode' looking for a
1312   // fusion candidate sibling node which shares no dependences with 'dstNode'
1313   // but which loads from the same memref. Returns true and sets
1314   // 'idAndMemrefToFuse' on success. Returns false otherwise.
1315   bool findSiblingNodeToFuse(Node *dstNode,
1316                              DenseSet<unsigned> *visitedSibNodeIds,
1317                              std::pair<unsigned, Value> *idAndMemrefToFuse) {
1318     // Returns true if 'sibNode' can be fused with 'dstNode' for input reuse
1319     // on 'memref'.
1320     auto canFuseWithSibNode = [&](Node *sibNode, Value memref) {
1321       // Skip if 'outEdge' is not a read-after-write dependence.
1322       // TODO: Remove restrict to single load op restriction.
1323       if (sibNode->getLoadOpCount(memref) != 1)
1324         return false;
1325       // Skip if there exists a path of dependent edges between
1326       // 'sibNode' and 'dstNode'.
1327       if (mdg->hasDependencePath(sibNode->id, dstNode->id) ||
1328           mdg->hasDependencePath(dstNode->id, sibNode->id))
1329         return false;
1330       // Skip sib node if it loads to (and stores from) the same memref on
1331       // which it also has an input dependence edge.
1332       DenseSet<Value> loadAndStoreMemrefSet;
1333       sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet);
1334       if (llvm::any_of(loadAndStoreMemrefSet, [=](Value memref) {
1335             return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0;
1336           }))
1337         return false;
1338 
1339       // Check that all stores are to the same memref if any.
1340       DenseSet<Value> storeMemrefs;
1341       for (auto *storeOpInst : sibNode->stores) {
1342         storeMemrefs.insert(
1343             cast<AffineWriteOpInterface>(storeOpInst).getMemRef());
1344       }
1345       if (storeMemrefs.size() > 1)
1346         return false;
1347 
1348       // Skip if a memref value in one node is used by a non-affine memref
1349       // access that lies between 'dstNode' and 'sibNode'.
1350       if (hasNonAffineUsersOnThePath(dstNode->id, sibNode->id, mdg) ||
1351           hasNonAffineUsersOnThePath(sibNode->id, dstNode->id, mdg))
1352         return false;
1353       return true;
1354     };
1355 
1356     // Search for siblings which load the same memref block argument.
1357     Block *block = dstNode->op->getBlock();
1358     for (unsigned i = 0, e = block->getNumArguments(); i != e; ++i) {
1359       for (Operation *user : block->getArgument(i).getUsers()) {
1360         auto loadOp = dyn_cast<AffineReadOpInterface>(user);
1361         if (!loadOp)
1362           continue;
1363         // Gather loops surrounding 'use'.
1364         SmallVector<AffineForOp, 4> loops;
1365         getAffineForIVs(*user, &loops);
1366         // Skip 'use' if it is not within a loop nest.
1367         if (loops.empty())
1368           continue;
1369         Node *sibNode = mdg->getForOpNode(loops[0]);
1370         assert(sibNode != nullptr);
1371         // Skip 'use' if it not a sibling to 'dstNode'.
1372         if (sibNode->id == dstNode->id)
1373           continue;
1374         // Skip 'use' if it has been visited.
1375         if (visitedSibNodeIds->count(sibNode->id) > 0)
1376           continue;
1377         // Skip 'use' if it does not load from the same memref as 'dstNode'.
1378         auto memref = loadOp.getMemRef();
1379         if (dstNode->getLoadOpCount(memref) == 0)
1380           continue;
1381         // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
1382         if (canFuseWithSibNode(sibNode, memref)) {
1383           visitedSibNodeIds->insert(sibNode->id);
1384           idAndMemrefToFuse->first = sibNode->id;
1385           idAndMemrefToFuse->second = memref;
1386           return true;
1387         }
1388       }
1389     }
1390 
1391     // Search for siblings by following edges through an intermediate src node.
1392     // Collect candidate 'dstNode' input edges in 'inEdges'.
1393     SmallVector<MemRefDependenceGraph::Edge, 2> inEdges;
1394     mdg->forEachMemRefInputEdge(
1395         dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) {
1396           // Add 'inEdge' if it is a read-after-write dependence.
1397           if (dstNode->getLoadOpCount(inEdge.value) > 0 &&
1398               mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0)
1399             inEdges.push_back(inEdge);
1400         });
1401 
1402     // Search for sibling nodes to fuse by visiting output edges from each input
1403     // edge in 'inEdges'.
1404     for (auto &inEdge : inEdges) {
1405       // Collect candidate output edges from each node 'inEdge.id' in 'inEdges'.
1406       SmallVector<MemRefDependenceGraph::Edge, 2> outEdges;
1407       mdg->forEachMemRefOutputEdge(
1408           inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) {
1409             unsigned sibNodeId = outEdge.id;
1410             if (visitedSibNodeIds->count(sibNodeId) > 0)
1411               return;
1412             // Skip output edge if not a sibling using the same memref.
1413             if (outEdge.id == dstNode->id || outEdge.value != inEdge.value)
1414               return;
1415             auto *sibNode = mdg->getNode(sibNodeId);
1416             if (!isa<AffineForOp>(sibNode->op))
1417               return;
1418             // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
1419             if (canFuseWithSibNode(sibNode, outEdge.value)) {
1420               // Add candidate 'outEdge' to sibling node.
1421               outEdges.push_back(outEdge);
1422             }
1423           });
1424 
1425       // Add first candidate if any were returned.
1426       if (!outEdges.empty()) {
1427         visitedSibNodeIds->insert(outEdges[0].id);
1428         idAndMemrefToFuse->first = outEdges[0].id;
1429         idAndMemrefToFuse->second = outEdges[0].value;
1430         return true;
1431       }
1432     }
1433     return false;
1434   }
1435 
1436   /// Update data dependence graph state to reflect sibling fusion of 'sibNode'
1437   /// into 'dstNode'.
1438   void updateStateAfterSiblingFusion(Node *sibNode, Node *dstNode) {
1439     // Update 'sibNode' and 'dstNode' input/output edges to reflect fusion.
1440     mdg->updateEdges(sibNode->id, dstNode->id);
1441 
1442     // Collect dst loop stats after memref privatization transformation.
1443     auto dstForInst = cast<AffineForOp>(dstNode->op);
1444     LoopNestStateCollector dstLoopCollector;
1445     dstLoopCollector.collect(dstForInst);
1446     // Clear and add back loads and stores
1447     mdg->clearNodeLoadAndStores(dstNode->id);
1448     mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts,
1449                    dstLoopCollector.storeOpInsts);
1450     // Remove old sibling loop nest if it no longer has outgoing dependence
1451     // edges, and it does not write to a memref which escapes the block.
1452     if (mdg->getOutEdgeCount(sibNode->id) == 0) {
1453       Operation *op = sibNode->op;
1454       mdg->removeNode(sibNode->id);
1455       op->erase();
1456     }
1457   }
1458 
1459   // Clean up any allocs with no users.
1460   void eraseUnusedMemRefAllocations() {
1461     for (auto &pair : mdg->memrefEdgeCount) {
1462       if (pair.second > 0)
1463         continue;
1464       auto memref = pair.first;
1465       // Skip if there exist other uses (return operation or function calls).
1466       if (!memref.use_empty())
1467         continue;
1468       // Use list expected to match the dep graph info.
1469       auto *op = memref.getDefiningOp();
1470       if (isa_and_nonnull<memref::AllocOp>(op))
1471         op->erase();
1472     }
1473   }
1474 };
1475 
1476 } // namespace
1477 
1478 /// Run fusion on `block`.
1479 void LoopFusion::runOnBlock(Block *block) {
1480   MemRefDependenceGraph g(*block);
1481   if (!g.init()) {
1482     LLVM_DEBUG(llvm::dbgs() << "MDG init failed\n");
1483     return;
1484   }
1485 
1486   std::optional<unsigned> fastMemorySpaceOpt;
1487   if (fastMemorySpace.hasValue())
1488     fastMemorySpaceOpt = fastMemorySpace;
1489   unsigned localBufSizeThresholdBytes = localBufSizeThreshold * 1024;
1490   GreedyFusion fusion(&g, localBufSizeThresholdBytes, fastMemorySpaceOpt,
1491                       maximalFusion, computeToleranceThreshold);
1492 
1493   if (affineFusionMode == FusionMode::ProducerConsumer)
1494     fusion.runProducerConsumerFusionOnly();
1495   else if (affineFusionMode == FusionMode::Sibling)
1496     fusion.runSiblingFusionOnly();
1497   else
1498     fusion.runGreedyFusion();
1499 }
1500 
1501 void LoopFusion::runOnOperation() {
1502   for (Region &region : getOperation()->getRegions())
1503     for (Block &block : region.getBlocks())
1504       runOnBlock(&block);
1505 }
1506 
1507 std::unique_ptr<Pass> mlir::affine::createLoopFusionPass(
1508     unsigned fastMemorySpace, uint64_t localBufSizeThreshold,
1509     bool maximalFusion, enum FusionMode affineFusionMode) {
1510   return std::make_unique<LoopFusion>(fastMemorySpace, localBufSizeThreshold,
1511                                       maximalFusion, affineFusionMode);
1512 }
1513