1 //===- LoopFusion.cpp - Code to perform loop fusion -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements affine fusion. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Affine/Passes.h" 14 15 #include "mlir/Dialect/Affine/Analysis/AffineStructures.h" 16 #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h" 17 #include "mlir/Dialect/Affine/Analysis/Utils.h" 18 #include "mlir/Dialect/Affine/IR/AffineOps.h" 19 #include "mlir/Dialect/Affine/LoopFusionUtils.h" 20 #include "mlir/Dialect/Affine/LoopUtils.h" 21 #include "mlir/Dialect/Affine/Utils.h" 22 #include "mlir/Dialect/MemRef/IR/MemRef.h" 23 #include "mlir/IR/AffineExpr.h" 24 #include "mlir/IR/AffineMap.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/Transforms/Passes.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SetVector.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <iomanip> 35 #include <optional> 36 #include <sstream> 37 38 namespace mlir { 39 #define GEN_PASS_DEF_AFFINELOOPFUSION 40 #include "mlir/Dialect/Affine/Passes.h.inc" 41 } // namespace mlir 42 43 #define DEBUG_TYPE "affine-loop-fusion" 44 45 using namespace mlir; 46 47 namespace { 48 /// Loop fusion pass. This pass currently supports a greedy fusion policy, 49 /// which fuses loop nests with single-writer/single-reader memref dependences 50 /// with the goal of improving locality. 51 52 // TODO: Support fusion of source loop nests which write to multiple 53 // memrefs, where each memref can have multiple users (if profitable). 54 // TODO: Extend this pass to check for fusion preventing dependences, 55 // and add support for more general loop fusion algorithms. 56 57 struct LoopFusion : public impl::AffineLoopFusionBase<LoopFusion> { 58 LoopFusion() = default; 59 LoopFusion(unsigned fastMemorySpace, uint64_t localBufSizeThresholdBytes, 60 bool maximalFusion, enum FusionMode affineFusionMode) { 61 this->fastMemorySpace = fastMemorySpace; 62 this->localBufSizeThreshold = localBufSizeThresholdBytes / 1024; 63 this->maximalFusion = maximalFusion; 64 this->affineFusionMode = affineFusionMode; 65 } 66 67 void runOnBlock(Block *block); 68 void runOnOperation() override; 69 }; 70 71 } // namespace 72 73 std::unique_ptr<Pass> 74 mlir::createLoopFusionPass(unsigned fastMemorySpace, 75 uint64_t localBufSizeThreshold, bool maximalFusion, 76 enum FusionMode affineFusionMode) { 77 return std::make_unique<LoopFusion>(fastMemorySpace, localBufSizeThreshold, 78 maximalFusion, affineFusionMode); 79 } 80 81 namespace { 82 83 // LoopNestStateCollector walks loop nests and collects load and store 84 // operations, and whether or not a region holding op other than ForOp and IfOp 85 // was encountered in the loop nest. 86 struct LoopNestStateCollector { 87 SmallVector<AffineForOp, 4> forOps; 88 SmallVector<Operation *, 4> loadOpInsts; 89 SmallVector<Operation *, 4> storeOpInsts; 90 bool hasNonAffineRegionOp = false; 91 92 void collect(Operation *opToWalk) { 93 opToWalk->walk([&](Operation *op) { 94 if (isa<AffineForOp>(op)) 95 forOps.push_back(cast<AffineForOp>(op)); 96 else if (op->getNumRegions() != 0 && !isa<AffineIfOp>(op)) 97 hasNonAffineRegionOp = true; 98 else if (isa<AffineReadOpInterface>(op)) 99 loadOpInsts.push_back(op); 100 else if (isa<AffineWriteOpInterface>(op)) 101 storeOpInsts.push_back(op); 102 }); 103 } 104 }; 105 106 // MemRefDependenceGraph is a graph data structure where graph nodes are 107 // top-level operations in a `Block` which contain load/store ops, and edges 108 // are memref dependences between the nodes. 109 // TODO: Add a more flexible dependence graph representation. 110 // TODO: Add a depth parameter to dependence graph construction. 111 struct MemRefDependenceGraph { 112 public: 113 // Node represents a node in the graph. A Node is either an entire loop nest 114 // rooted at the top level which contains loads/stores, or a top level 115 // load/store. 116 struct Node { 117 // The unique identifier of this node in the graph. 118 unsigned id; 119 // The top-level statement which is (or contains) a load/store. 120 Operation *op; 121 // List of load operations. 122 SmallVector<Operation *, 4> loads; 123 // List of store op insts. 124 SmallVector<Operation *, 4> stores; 125 Node(unsigned id, Operation *op) : id(id), op(op) {} 126 127 // Returns the load op count for 'memref'. 128 unsigned getLoadOpCount(Value memref) { 129 unsigned loadOpCount = 0; 130 for (auto *loadOpInst : loads) { 131 if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef()) 132 ++loadOpCount; 133 } 134 return loadOpCount; 135 } 136 137 // Returns the store op count for 'memref'. 138 unsigned getStoreOpCount(Value memref) { 139 unsigned storeOpCount = 0; 140 for (auto *storeOpInst : stores) { 141 if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef()) 142 ++storeOpCount; 143 } 144 return storeOpCount; 145 } 146 147 // Returns all store ops in 'storeOps' which access 'memref'. 148 void getStoreOpsForMemref(Value memref, 149 SmallVectorImpl<Operation *> *storeOps) { 150 for (auto *storeOpInst : stores) { 151 if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef()) 152 storeOps->push_back(storeOpInst); 153 } 154 } 155 156 // Returns all load ops in 'loadOps' which access 'memref'. 157 void getLoadOpsForMemref(Value memref, 158 SmallVectorImpl<Operation *> *loadOps) { 159 for (auto *loadOpInst : loads) { 160 if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef()) 161 loadOps->push_back(loadOpInst); 162 } 163 } 164 165 // Returns all memrefs in 'loadAndStoreMemrefSet' for which this node 166 // has at least one load and store operation. 167 void getLoadAndStoreMemrefSet(DenseSet<Value> *loadAndStoreMemrefSet) { 168 llvm::SmallDenseSet<Value, 2> loadMemrefs; 169 for (auto *loadOpInst : loads) { 170 loadMemrefs.insert(cast<AffineReadOpInterface>(loadOpInst).getMemRef()); 171 } 172 for (auto *storeOpInst : stores) { 173 auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef(); 174 if (loadMemrefs.count(memref) > 0) 175 loadAndStoreMemrefSet->insert(memref); 176 } 177 } 178 }; 179 180 // Edge represents a data dependence between nodes in the graph. 181 struct Edge { 182 // The id of the node at the other end of the edge. 183 // If this edge is stored in Edge = Node.inEdges[i], then 184 // 'Node.inEdges[i].id' is the identifier of the source node of the edge. 185 // If this edge is stored in Edge = Node.outEdges[i], then 186 // 'Node.outEdges[i].id' is the identifier of the dest node of the edge. 187 unsigned id; 188 // The SSA value on which this edge represents a dependence. 189 // If the value is a memref, then the dependence is between graph nodes 190 // which contain accesses to the same memref 'value'. If the value is a 191 // non-memref value, then the dependence is between a graph node which 192 // defines an SSA value and another graph node which uses the SSA value 193 // (e.g. a constant or load operation defining a value which is used inside 194 // a loop nest). 195 Value value; 196 }; 197 198 // Map from node id to Node. 199 DenseMap<unsigned, Node> nodes; 200 // Map from node id to list of input edges. 201 DenseMap<unsigned, SmallVector<Edge, 2>> inEdges; 202 // Map from node id to list of output edges. 203 DenseMap<unsigned, SmallVector<Edge, 2>> outEdges; 204 // Map from memref to a count on the dependence edges associated with that 205 // memref. 206 DenseMap<Value, unsigned> memrefEdgeCount; 207 // The next unique identifier to use for newly created graph nodes. 208 unsigned nextNodeId = 0; 209 210 MemRefDependenceGraph(Block &block) : block(block) {} 211 212 // Initializes the dependence graph based on operations in 'f'. 213 // Returns true on success, false otherwise. 214 bool init(Block *block); 215 216 // Returns the graph node for 'id'. 217 Node *getNode(unsigned id) { 218 auto it = nodes.find(id); 219 assert(it != nodes.end()); 220 return &it->second; 221 } 222 223 // Returns the graph node for 'forOp'. 224 Node *getForOpNode(AffineForOp forOp) { 225 for (auto &idAndNode : nodes) 226 if (idAndNode.second.op == forOp) 227 return &idAndNode.second; 228 return nullptr; 229 } 230 231 // Adds a node with 'op' to the graph and returns its unique identifier. 232 unsigned addNode(Operation *op) { 233 Node node(nextNodeId++, op); 234 nodes.insert({node.id, node}); 235 return node.id; 236 } 237 238 // Remove node 'id' (and its associated edges) from graph. 239 void removeNode(unsigned id) { 240 // Remove each edge in 'inEdges[id]'. 241 if (inEdges.count(id) > 0) { 242 SmallVector<Edge, 2> oldInEdges = inEdges[id]; 243 for (auto &inEdge : oldInEdges) { 244 removeEdge(inEdge.id, id, inEdge.value); 245 } 246 } 247 // Remove each edge in 'outEdges[id]'. 248 if (outEdges.count(id) > 0) { 249 SmallVector<Edge, 2> oldOutEdges = outEdges[id]; 250 for (auto &outEdge : oldOutEdges) { 251 removeEdge(id, outEdge.id, outEdge.value); 252 } 253 } 254 // Erase remaining node state. 255 inEdges.erase(id); 256 outEdges.erase(id); 257 nodes.erase(id); 258 } 259 260 // Returns true if node 'id' writes to any memref which escapes (or is an 261 // argument to) the block. Returns false otherwise. 262 bool writesToLiveInOrEscapingMemrefs(unsigned id) { 263 Node *node = getNode(id); 264 for (auto *storeOpInst : node->stores) { 265 auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef(); 266 auto *op = memref.getDefiningOp(); 267 // Return true if 'memref' is a block argument. 268 if (!op) 269 return true; 270 // Return true if any use of 'memref' does not deference it in an affine 271 // way. 272 for (auto *user : memref.getUsers()) 273 if (!isa<AffineMapAccessInterface>(*user)) 274 return true; 275 } 276 return false; 277 } 278 279 // Returns true iff there is an edge from node 'srcId' to node 'dstId' which 280 // is for 'value' if non-null, or for any value otherwise. Returns false 281 // otherwise. 282 bool hasEdge(unsigned srcId, unsigned dstId, Value value = nullptr) { 283 if (outEdges.count(srcId) == 0 || inEdges.count(dstId) == 0) { 284 return false; 285 } 286 bool hasOutEdge = llvm::any_of(outEdges[srcId], [=](Edge &edge) { 287 return edge.id == dstId && (!value || edge.value == value); 288 }); 289 bool hasInEdge = llvm::any_of(inEdges[dstId], [=](Edge &edge) { 290 return edge.id == srcId && (!value || edge.value == value); 291 }); 292 return hasOutEdge && hasInEdge; 293 } 294 295 // Adds an edge from node 'srcId' to node 'dstId' for 'value'. 296 void addEdge(unsigned srcId, unsigned dstId, Value value) { 297 if (!hasEdge(srcId, dstId, value)) { 298 outEdges[srcId].push_back({dstId, value}); 299 inEdges[dstId].push_back({srcId, value}); 300 if (value.getType().isa<MemRefType>()) 301 memrefEdgeCount[value]++; 302 } 303 } 304 305 // Removes an edge from node 'srcId' to node 'dstId' for 'value'. 306 void removeEdge(unsigned srcId, unsigned dstId, Value value) { 307 assert(inEdges.count(dstId) > 0); 308 assert(outEdges.count(srcId) > 0); 309 if (value.getType().isa<MemRefType>()) { 310 assert(memrefEdgeCount.count(value) > 0); 311 memrefEdgeCount[value]--; 312 } 313 // Remove 'srcId' from 'inEdges[dstId]'. 314 for (auto *it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) { 315 if ((*it).id == srcId && (*it).value == value) { 316 inEdges[dstId].erase(it); 317 break; 318 } 319 } 320 // Remove 'dstId' from 'outEdges[srcId]'. 321 for (auto *it = outEdges[srcId].begin(); it != outEdges[srcId].end(); 322 ++it) { 323 if ((*it).id == dstId && (*it).value == value) { 324 outEdges[srcId].erase(it); 325 break; 326 } 327 } 328 } 329 330 // Returns true if there is a path in the dependence graph from node 'srcId' 331 // to node 'dstId'. Returns false otherwise. `srcId`, `dstId`, and the 332 // operations that the edges connected are expected to be from the same block. 333 bool hasDependencePath(unsigned srcId, unsigned dstId) { 334 // Worklist state is: <node-id, next-output-edge-index-to-visit> 335 SmallVector<std::pair<unsigned, unsigned>, 4> worklist; 336 worklist.push_back({srcId, 0}); 337 Operation *dstOp = getNode(dstId)->op; 338 // Run DFS traversal to see if 'dstId' is reachable from 'srcId'. 339 while (!worklist.empty()) { 340 auto &idAndIndex = worklist.back(); 341 // Return true if we have reached 'dstId'. 342 if (idAndIndex.first == dstId) 343 return true; 344 // Pop and continue if node has no out edges, or if all out edges have 345 // already been visited. 346 if (outEdges.count(idAndIndex.first) == 0 || 347 idAndIndex.second == outEdges[idAndIndex.first].size()) { 348 worklist.pop_back(); 349 continue; 350 } 351 // Get graph edge to traverse. 352 Edge edge = outEdges[idAndIndex.first][idAndIndex.second]; 353 // Increment next output edge index for 'idAndIndex'. 354 ++idAndIndex.second; 355 // Add node at 'edge.id' to the worklist. We don't need to consider 356 // nodes that are "after" dstId in the containing block; one can't have a 357 // path to `dstId` from any of those nodes. 358 bool afterDst = dstOp->isBeforeInBlock(getNode(edge.id)->op); 359 if (!afterDst && edge.id != idAndIndex.first) 360 worklist.push_back({edge.id, 0}); 361 } 362 return false; 363 } 364 365 // Returns the input edge count for node 'id' and 'memref' from src nodes 366 // which access 'memref' with a store operation. 367 unsigned getIncomingMemRefAccesses(unsigned id, Value memref) { 368 unsigned inEdgeCount = 0; 369 if (inEdges.count(id) > 0) 370 for (auto &inEdge : inEdges[id]) 371 if (inEdge.value == memref) { 372 Node *srcNode = getNode(inEdge.id); 373 // Only count in edges from 'srcNode' if 'srcNode' accesses 'memref' 374 if (srcNode->getStoreOpCount(memref) > 0) 375 ++inEdgeCount; 376 } 377 return inEdgeCount; 378 } 379 380 // Returns the output edge count for node 'id' and 'memref' (if non-null), 381 // otherwise returns the total output edge count from node 'id'. 382 unsigned getOutEdgeCount(unsigned id, Value memref = nullptr) { 383 unsigned outEdgeCount = 0; 384 if (outEdges.count(id) > 0) 385 for (auto &outEdge : outEdges[id]) 386 if (!memref || outEdge.value == memref) 387 ++outEdgeCount; 388 return outEdgeCount; 389 } 390 391 /// Return all nodes which define SSA values used in node 'id'. 392 void gatherDefiningNodes(unsigned id, DenseSet<unsigned> &definingNodes) { 393 for (MemRefDependenceGraph::Edge edge : inEdges[id]) 394 // By definition of edge, if the edge value is a non-memref value, 395 // then the dependence is between a graph node which defines an SSA value 396 // and another graph node which uses the SSA value. 397 if (!edge.value.getType().isa<MemRefType>()) 398 definingNodes.insert(edge.id); 399 } 400 401 // Computes and returns an insertion point operation, before which the 402 // the fused <srcId, dstId> loop nest can be inserted while preserving 403 // dependences. Returns nullptr if no such insertion point is found. 404 Operation *getFusedLoopNestInsertionPoint(unsigned srcId, unsigned dstId) { 405 if (outEdges.count(srcId) == 0) 406 return getNode(dstId)->op; 407 408 // Skip if there is any defining node of 'dstId' that depends on 'srcId'. 409 DenseSet<unsigned> definingNodes; 410 gatherDefiningNodes(dstId, definingNodes); 411 if (llvm::any_of(definingNodes, [&](unsigned id) { 412 return hasDependencePath(srcId, id); 413 })) { 414 LLVM_DEBUG(llvm::dbgs() 415 << "Can't fuse: a defining op with a user in the dst " 416 "loop has dependence from the src loop\n"); 417 return nullptr; 418 } 419 420 // Build set of insts in range (srcId, dstId) which depend on 'srcId'. 421 SmallPtrSet<Operation *, 2> srcDepInsts; 422 for (auto &outEdge : outEdges[srcId]) 423 if (outEdge.id != dstId) 424 srcDepInsts.insert(getNode(outEdge.id)->op); 425 426 // Build set of insts in range (srcId, dstId) on which 'dstId' depends. 427 SmallPtrSet<Operation *, 2> dstDepInsts; 428 for (auto &inEdge : inEdges[dstId]) 429 if (inEdge.id != srcId) 430 dstDepInsts.insert(getNode(inEdge.id)->op); 431 432 Operation *srcNodeInst = getNode(srcId)->op; 433 Operation *dstNodeInst = getNode(dstId)->op; 434 435 // Computing insertion point: 436 // *) Walk all operation positions in Block operation list in the 437 // range (src, dst). For each operation 'op' visited in this search: 438 // *) Store in 'firstSrcDepPos' the first position where 'op' has a 439 // dependence edge from 'srcNode'. 440 // *) Store in 'lastDstDepPost' the last position where 'op' has a 441 // dependence edge to 'dstNode'. 442 // *) Compare 'firstSrcDepPos' and 'lastDstDepPost' to determine the 443 // operation insertion point (or return null pointer if no such 444 // insertion point exists: 'firstSrcDepPos' <= 'lastDstDepPos'). 445 SmallVector<Operation *, 2> depInsts; 446 std::optional<unsigned> firstSrcDepPos; 447 std::optional<unsigned> lastDstDepPos; 448 unsigned pos = 0; 449 for (Block::iterator it = std::next(Block::iterator(srcNodeInst)); 450 it != Block::iterator(dstNodeInst); ++it) { 451 Operation *op = &(*it); 452 if (srcDepInsts.count(op) > 0 && firstSrcDepPos == std::nullopt) 453 firstSrcDepPos = pos; 454 if (dstDepInsts.count(op) > 0) 455 lastDstDepPos = pos; 456 depInsts.push_back(op); 457 ++pos; 458 } 459 460 if (firstSrcDepPos.has_value()) { 461 if (lastDstDepPos.has_value()) { 462 if (*firstSrcDepPos <= *lastDstDepPos) { 463 // No valid insertion point exists which preserves dependences. 464 return nullptr; 465 } 466 } 467 // Return the insertion point at 'firstSrcDepPos'. 468 return depInsts[*firstSrcDepPos]; 469 } 470 // No dependence targets in range (or only dst deps in range), return 471 // 'dstNodInst' insertion point. 472 return dstNodeInst; 473 } 474 475 // Updates edge mappings from node 'srcId' to node 'dstId' after fusing them, 476 // taking into account that: 477 // *) if 'removeSrcId' is true, 'srcId' will be removed after fusion, 478 // *) memrefs in 'privateMemRefs' has been replaced in node at 'dstId' by a 479 // private memref. 480 void updateEdges(unsigned srcId, unsigned dstId, 481 const DenseSet<Value> &privateMemRefs, bool removeSrcId) { 482 // For each edge in 'inEdges[srcId]': add new edge remapping to 'dstId'. 483 if (inEdges.count(srcId) > 0) { 484 SmallVector<Edge, 2> oldInEdges = inEdges[srcId]; 485 for (auto &inEdge : oldInEdges) { 486 // Add edge from 'inEdge.id' to 'dstId' if it's not a private memref. 487 if (privateMemRefs.count(inEdge.value) == 0) 488 addEdge(inEdge.id, dstId, inEdge.value); 489 } 490 } 491 // For each edge in 'outEdges[srcId]': remove edge from 'srcId' to 'dstId'. 492 // If 'srcId' is going to be removed, remap all the out edges to 'dstId'. 493 if (outEdges.count(srcId) > 0) { 494 SmallVector<Edge, 2> oldOutEdges = outEdges[srcId]; 495 for (auto &outEdge : oldOutEdges) { 496 // Remove any out edges from 'srcId' to 'dstId' across memrefs. 497 if (outEdge.id == dstId) 498 removeEdge(srcId, outEdge.id, outEdge.value); 499 else if (removeSrcId) { 500 addEdge(dstId, outEdge.id, outEdge.value); 501 removeEdge(srcId, outEdge.id, outEdge.value); 502 } 503 } 504 } 505 // Remove any edges in 'inEdges[dstId]' on 'oldMemRef' (which is being 506 // replaced by a private memref). These edges could come from nodes 507 // other than 'srcId' which were removed in the previous step. 508 if (inEdges.count(dstId) > 0 && !privateMemRefs.empty()) { 509 SmallVector<Edge, 2> oldInEdges = inEdges[dstId]; 510 for (auto &inEdge : oldInEdges) 511 if (privateMemRefs.count(inEdge.value) > 0) 512 removeEdge(inEdge.id, dstId, inEdge.value); 513 } 514 } 515 516 // Update edge mappings for nodes 'sibId' and 'dstId' to reflect fusion 517 // of sibling node 'sibId' into node 'dstId'. 518 void updateEdges(unsigned sibId, unsigned dstId) { 519 // For each edge in 'inEdges[sibId]': 520 // *) Add new edge from source node 'inEdge.id' to 'dstNode'. 521 // *) Remove edge from source node 'inEdge.id' to 'sibNode'. 522 if (inEdges.count(sibId) > 0) { 523 SmallVector<Edge, 2> oldInEdges = inEdges[sibId]; 524 for (auto &inEdge : oldInEdges) { 525 addEdge(inEdge.id, dstId, inEdge.value); 526 removeEdge(inEdge.id, sibId, inEdge.value); 527 } 528 } 529 530 // For each edge in 'outEdges[sibId]' to node 'id' 531 // *) Add new edge from 'dstId' to 'outEdge.id'. 532 // *) Remove edge from 'sibId' to 'outEdge.id'. 533 if (outEdges.count(sibId) > 0) { 534 SmallVector<Edge, 2> oldOutEdges = outEdges[sibId]; 535 for (auto &outEdge : oldOutEdges) { 536 addEdge(dstId, outEdge.id, outEdge.value); 537 removeEdge(sibId, outEdge.id, outEdge.value); 538 } 539 } 540 } 541 542 // Adds ops in 'loads' and 'stores' to node at 'id'. 543 void addToNode(unsigned id, const SmallVectorImpl<Operation *> &loads, 544 const SmallVectorImpl<Operation *> &stores) { 545 Node *node = getNode(id); 546 llvm::append_range(node->loads, loads); 547 llvm::append_range(node->stores, stores); 548 } 549 550 void clearNodeLoadAndStores(unsigned id) { 551 Node *node = getNode(id); 552 node->loads.clear(); 553 node->stores.clear(); 554 } 555 556 // Calls 'callback' for each input edge incident to node 'id' which carries a 557 // memref dependence. 558 void forEachMemRefInputEdge(unsigned id, 559 const std::function<void(Edge)> &callback) { 560 if (inEdges.count(id) > 0) 561 forEachMemRefEdge(inEdges[id], callback); 562 } 563 564 // Calls 'callback' for each output edge from node 'id' which carries a 565 // memref dependence. 566 void forEachMemRefOutputEdge(unsigned id, 567 const std::function<void(Edge)> &callback) { 568 if (outEdges.count(id) > 0) 569 forEachMemRefEdge(outEdges[id], callback); 570 } 571 572 // Calls 'callback' for each edge in 'edges' which carries a memref 573 // dependence. 574 void forEachMemRefEdge(ArrayRef<Edge> edges, 575 const std::function<void(Edge)> &callback) { 576 for (const auto &edge : edges) { 577 // Skip if 'edge' is not a memref dependence edge. 578 if (!edge.value.getType().isa<MemRefType>()) 579 continue; 580 assert(nodes.count(edge.id) > 0); 581 // Skip if 'edge.id' is not a loop nest. 582 if (!isa<AffineForOp>(getNode(edge.id)->op)) 583 continue; 584 // Visit current input edge 'edge'. 585 callback(edge); 586 } 587 } 588 589 void print(raw_ostream &os) const { 590 os << "\nMemRefDependenceGraph\n"; 591 os << "\nNodes:\n"; 592 for (const auto &idAndNode : nodes) { 593 os << "Node: " << idAndNode.first << "\n"; 594 auto it = inEdges.find(idAndNode.first); 595 if (it != inEdges.end()) { 596 for (const auto &e : it->second) 597 os << " InEdge: " << e.id << " " << e.value << "\n"; 598 } 599 it = outEdges.find(idAndNode.first); 600 if (it != outEdges.end()) { 601 for (const auto &e : it->second) 602 os << " OutEdge: " << e.id << " " << e.value << "\n"; 603 } 604 } 605 } 606 void dump() const { print(llvm::errs()); } 607 608 /// The block for which this graph is created to perform fusion. 609 Block █ 610 }; 611 612 /// Returns true if node 'srcId' can be removed after fusing it with node 613 /// 'dstId'. The node can be removed if any of the following conditions are met: 614 /// 1. 'srcId' has no output dependences after fusion and no escaping memrefs. 615 /// 2. 'srcId' has no output dependences after fusion, has escaping memrefs 616 /// and the fusion slice is maximal. 617 /// 3. 'srcId' has output dependences after fusion, the fusion slice is 618 /// maximal and the fusion insertion point dominates all the dependences. 619 static bool canRemoveSrcNodeAfterFusion( 620 unsigned srcId, unsigned dstId, const ComputationSliceState &fusionSlice, 621 Operation *fusedLoopInsPoint, const DenseSet<Value> &escapingMemRefs, 622 MemRefDependenceGraph *mdg) { 623 624 Operation *dstNodeOp = mdg->getNode(dstId)->op; 625 bool hasOutDepsAfterFusion = false; 626 627 for (auto &outEdge : mdg->outEdges[srcId]) { 628 Operation *depNodeOp = mdg->getNode(outEdge.id)->op; 629 // Skip dependence with dstOp since it will be removed after fusion. 630 if (depNodeOp == dstNodeOp) 631 continue; 632 633 // Only fusion within the same block is supported. Use domination analysis 634 // when needed. 635 if (depNodeOp->getBlock() != dstNodeOp->getBlock()) 636 return false; 637 638 // Check if the insertion point of the fused loop dominates the dependence. 639 // Otherwise, the src loop can't be removed. 640 if (fusedLoopInsPoint != depNodeOp && 641 !fusedLoopInsPoint->isBeforeInBlock(depNodeOp)) { 642 LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: dst loop doesn't " 643 "dominate dependence\n"); 644 return false; 645 } 646 647 hasOutDepsAfterFusion = true; 648 } 649 650 // If src loop has dependences after fusion or it writes to an live-out or 651 // escaping memref, we can only remove it if the fusion slice is maximal so 652 // that all the dependences are preserved. 653 if (hasOutDepsAfterFusion || !escapingMemRefs.empty()) { 654 Optional<bool> isMaximal = fusionSlice.isMaximal(); 655 if (!isMaximal) { 656 LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: can't determine " 657 "if fusion is maximal\n"); 658 return false; 659 } 660 661 if (!*isMaximal) { 662 LLVM_DEBUG(llvm::dbgs() 663 << "Src loop can't be removed: fusion is not maximal\n"); 664 return false; 665 } 666 } 667 668 return true; 669 } 670 671 /// Returns in 'srcIdCandidates' the producer fusion candidates for consumer 672 /// 'dstId'. Candidates are sorted by node id order. This order corresponds to 673 /// the program order when the 'mdg' is created. However, program order is not 674 /// guaranteed and must not be required by the client. Program order won't be 675 /// held if the 'mdg' is reused from a previous fusion step or if the node 676 /// creation order changes in the future to support more advance cases. 677 // TODO: Move this to a loop fusion utility once 'mdg' is also moved. 678 static void getProducerCandidates(unsigned dstId, MemRefDependenceGraph *mdg, 679 SmallVectorImpl<unsigned> &srcIdCandidates) { 680 // Skip if no input edges along which to fuse. 681 if (mdg->inEdges.count(dstId) == 0) 682 return; 683 684 // Gather memrefs from loads in 'dstId'. 685 auto *dstNode = mdg->getNode(dstId); 686 DenseSet<Value> consumedMemrefs; 687 for (Operation *load : dstNode->loads) 688 consumedMemrefs.insert(cast<AffineReadOpInterface>(load).getMemRef()); 689 690 // Traverse 'dstId' incoming edges and gather the nodes that contain a store 691 // to one of the consumed memrefs. 692 for (auto &srcEdge : mdg->inEdges[dstId]) { 693 auto *srcNode = mdg->getNode(srcEdge.id); 694 // Skip if 'srcNode' is not a loop nest. 695 if (!isa<AffineForOp>(srcNode->op)) 696 continue; 697 698 if (any_of(srcNode->stores, [&](Operation *op) { 699 auto storeOp = cast<AffineWriteOpInterface>(op); 700 return consumedMemrefs.count(storeOp.getMemRef()) > 0; 701 })) 702 srcIdCandidates.push_back(srcNode->id); 703 } 704 705 llvm::sort(srcIdCandidates); 706 srcIdCandidates.erase( 707 std::unique(srcIdCandidates.begin(), srcIdCandidates.end()), 708 srcIdCandidates.end()); 709 } 710 711 /// Returns in 'producerConsumerMemrefs' the memrefs involved in a 712 /// producer-consumer dependence between 'srcId' and 'dstId'. 713 static void 714 gatherProducerConsumerMemrefs(unsigned srcId, unsigned dstId, 715 MemRefDependenceGraph *mdg, 716 DenseSet<Value> &producerConsumerMemrefs) { 717 auto *dstNode = mdg->getNode(dstId); 718 auto *srcNode = mdg->getNode(srcId); 719 gatherProducerConsumerMemrefs(srcNode->stores, dstNode->loads, 720 producerConsumerMemrefs); 721 } 722 723 /// A memref escapes in the context of the fusion pass if either: 724 /// 1. it (or its alias) is a block argument, or 725 /// 2. created by an op not known to guarantee alias freedom, 726 /// 3. it (or its alias) are used by ops other than affine dereferencing ops 727 /// (e.g., by call op, memref load/store ops, alias creating ops, unknown ops, 728 /// terminator ops, etc.); such ops do not deference the memref in an affine 729 /// way. 730 static bool isEscapingMemref(Value memref, Block *block) { 731 Operation *defOp = memref.getDefiningOp(); 732 // Check if 'memref' is a block argument. 733 if (!defOp) 734 return true; 735 736 // Check if this is defined to be an alias of another memref. 737 if (auto viewOp = dyn_cast<mlir::ViewLikeOpInterface>(defOp)) 738 if (isEscapingMemref(viewOp.getViewSource(), block)) 739 return true; 740 741 // Any op besides allocating ops wouldn't guarantee alias freedom 742 if (!hasSingleEffect<mlir::MemoryEffects::Allocate>(defOp, memref)) 743 return true; 744 745 // Check if 'memref' is used by a non-deferencing op (including unknown ones) 746 // (e.g., call ops, alias creating ops, etc.). 747 for (Operation *user : memref.getUsers()) { 748 // Ignore users outside of `block`. 749 if (block->getParent()->findAncestorOpInRegion(*user)->getBlock() != block) 750 continue; 751 if (!isa<AffineMapAccessInterface>(*user)) 752 return true; 753 } 754 return false; 755 } 756 757 /// Returns in 'escapingMemRefs' the memrefs from affine store ops in node 'id' 758 /// that escape the block or are accessed in a non-affine way. 759 void gatherEscapingMemrefs(unsigned id, MemRefDependenceGraph *mdg, 760 DenseSet<Value> &escapingMemRefs) { 761 auto *node = mdg->getNode(id); 762 for (Operation *storeOp : node->stores) { 763 auto memref = cast<AffineWriteOpInterface>(storeOp).getMemRef(); 764 if (escapingMemRefs.count(memref)) 765 continue; 766 if (isEscapingMemref(memref, &mdg->block)) 767 escapingMemRefs.insert(memref); 768 } 769 } 770 771 } // namespace 772 773 // Initializes the data dependence graph by walking operations in `block`. 774 // Assigns each node in the graph a node id based on program order in 'f'. 775 // TODO: Add support for taking a Block arg to construct the 776 // dependence graph at a different depth. 777 bool MemRefDependenceGraph::init(Block *block) { 778 LLVM_DEBUG(llvm::dbgs() << "--- Initializing MDG ---\n"); 779 // Map from a memref to the set of ids of the nodes that have ops accessing 780 // the memref. 781 DenseMap<Value, SetVector<unsigned>> memrefAccesses; 782 783 DenseMap<Operation *, unsigned> forToNodeMap; 784 for (Operation &op : *block) { 785 if (auto forOp = dyn_cast<AffineForOp>(op)) { 786 // Create graph node 'id' to represent top-level 'forOp' and record 787 // all loads and store accesses it contains. 788 LoopNestStateCollector collector; 789 collector.collect(&op); 790 // Return false if a region holding op other than 'affine.for' and 791 // 'affine.if' was found (not currently supported). 792 if (collector.hasNonAffineRegionOp) 793 return false; 794 Node node(nextNodeId++, &op); 795 for (auto *opInst : collector.loadOpInsts) { 796 node.loads.push_back(opInst); 797 auto memref = cast<AffineReadOpInterface>(opInst).getMemRef(); 798 memrefAccesses[memref].insert(node.id); 799 } 800 for (auto *opInst : collector.storeOpInsts) { 801 node.stores.push_back(opInst); 802 auto memref = cast<AffineWriteOpInterface>(opInst).getMemRef(); 803 memrefAccesses[memref].insert(node.id); 804 } 805 forToNodeMap[&op] = node.id; 806 nodes.insert({node.id, node}); 807 } else if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) { 808 // Create graph node for top-level load op. 809 Node node(nextNodeId++, &op); 810 node.loads.push_back(&op); 811 auto memref = cast<AffineReadOpInterface>(op).getMemRef(); 812 memrefAccesses[memref].insert(node.id); 813 nodes.insert({node.id, node}); 814 } else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) { 815 // Create graph node for top-level store op. 816 Node node(nextNodeId++, &op); 817 node.stores.push_back(&op); 818 auto memref = cast<AffineWriteOpInterface>(op).getMemRef(); 819 memrefAccesses[memref].insert(node.id); 820 nodes.insert({node.id, node}); 821 } else if (op.getNumRegions() != 0) { 822 // Return false if another region is found (not currently supported). 823 return false; 824 } else if (op.getNumResults() > 0 && !op.use_empty()) { 825 // Create graph node for top-level producer of SSA values, which 826 // could be used by loop nest nodes. 827 Node node(nextNodeId++, &op); 828 nodes.insert({node.id, node}); 829 } else if (isa<CallOpInterface>(op)) { 830 // Create graph node for top-level Call Op that takes any argument of 831 // memref type. Call Op that returns one or more memref type results 832 // is already taken care of, by the previous conditions. 833 if (llvm::any_of(op.getOperandTypes(), 834 [&](Type t) { return t.isa<MemRefType>(); })) { 835 Node node(nextNodeId++, &op); 836 nodes.insert({node.id, node}); 837 } 838 } else if (hasEffect<MemoryEffects::Write, MemoryEffects::Free>(&op)) { 839 // Create graph node for top-level op, which could have a memory write 840 // side effect. 841 Node node(nextNodeId++, &op); 842 nodes.insert({node.id, node}); 843 } 844 } 845 846 for (auto &idAndNode : nodes) { 847 LLVM_DEBUG(llvm::dbgs() << "Create node " << idAndNode.first << " for:\n" 848 << *(idAndNode.second.op) << "\n"); 849 (void)idAndNode; 850 } 851 852 // Add dependence edges between nodes which produce SSA values and their 853 // users. Load ops can be considered as the ones producing SSA values. 854 for (auto &idAndNode : nodes) { 855 const Node &node = idAndNode.second; 856 // Stores don't define SSA values, skip them. 857 if (!node.stores.empty()) 858 continue; 859 Operation *opInst = node.op; 860 for (Value value : opInst->getResults()) { 861 for (Operation *user : value.getUsers()) { 862 // Ignore users outside of the block. 863 if (block->getParent()->findAncestorOpInRegion(*user)->getBlock() != 864 block) 865 continue; 866 SmallVector<AffineForOp, 4> loops; 867 getLoopIVs(*user, &loops); 868 if (loops.empty()) 869 continue; 870 assert(forToNodeMap.count(loops[0]) > 0 && "missing mapping"); 871 unsigned userLoopNestId = forToNodeMap[loops[0]]; 872 addEdge(node.id, userLoopNestId, value); 873 } 874 } 875 } 876 877 // Walk memref access lists and add graph edges between dependent nodes. 878 for (auto &memrefAndList : memrefAccesses) { 879 unsigned n = memrefAndList.second.size(); 880 for (unsigned i = 0; i < n; ++i) { 881 unsigned srcId = memrefAndList.second[i]; 882 bool srcHasStore = 883 getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0; 884 for (unsigned j = i + 1; j < n; ++j) { 885 unsigned dstId = memrefAndList.second[j]; 886 bool dstHasStore = 887 getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0; 888 if (srcHasStore || dstHasStore) 889 addEdge(srcId, dstId, memrefAndList.first); 890 } 891 } 892 } 893 return true; 894 } 895 896 // Sinks all sequential loops to the innermost levels (while preserving 897 // relative order among them) and moves all parallel loops to the 898 // outermost (while again preserving relative order among them). 899 // This can increase the loop depth at which we can fuse a slice, since we are 900 // pushing loop carried dependence to a greater depth in the loop nest. 901 static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) { 902 assert(isa<AffineForOp>(node->op)); 903 AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op)); 904 node->op = newRootForOp; 905 } 906 907 // TODO: improve/complete this when we have target data. 908 static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) { 909 auto elementType = memRefType.getElementType(); 910 911 unsigned sizeInBits; 912 if (elementType.isIntOrFloat()) { 913 sizeInBits = elementType.getIntOrFloatBitWidth(); 914 } else { 915 auto vectorType = elementType.cast<VectorType>(); 916 sizeInBits = 917 vectorType.getElementTypeBitWidth() * vectorType.getNumElements(); 918 } 919 return llvm::divideCeil(sizeInBits, 8); 920 } 921 922 // Creates and returns a private (single-user) memref for fused loop rooted 923 // at 'forOp', with (potentially reduced) memref size based on the 924 // MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'. 925 // TODO: consider refactoring the common code from generateDma and 926 // this one. 927 static Value createPrivateMemRef(AffineForOp forOp, Operation *srcStoreOpInst, 928 unsigned dstLoopDepth, 929 Optional<unsigned> fastMemorySpace, 930 uint64_t localBufSizeThreshold) { 931 Operation *forInst = forOp.getOperation(); 932 933 // Create builder to insert alloc op just before 'forOp'. 934 OpBuilder b(forInst); 935 // Builder to create constants at the top level. 936 OpBuilder top(forInst->getParentRegion()); 937 // Create new memref type based on slice bounds. 938 auto oldMemRef = cast<AffineWriteOpInterface>(srcStoreOpInst).getMemRef(); 939 auto oldMemRefType = oldMemRef.getType().cast<MemRefType>(); 940 unsigned rank = oldMemRefType.getRank(); 941 942 // Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'. 943 MemRefRegion region(srcStoreOpInst->getLoc()); 944 bool validRegion = succeeded(region.compute(srcStoreOpInst, dstLoopDepth)); 945 (void)validRegion; 946 assert(validRegion && "unexpected memref region failure"); 947 SmallVector<int64_t, 4> newShape; 948 std::vector<SmallVector<int64_t, 4>> lbs; 949 SmallVector<int64_t, 8> lbDivisors; 950 lbs.reserve(rank); 951 // Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed 952 // by 'srcStoreOpInst' at depth 'dstLoopDepth'. 953 Optional<int64_t> numElements = 954 region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors); 955 assert(numElements && "non-constant number of elts in local buffer"); 956 957 const FlatAffineValueConstraints *cst = region.getConstraints(); 958 // 'outerIVs' holds the values that this memory region is symbolic/parametric 959 // on; this would correspond to loop IVs surrounding the level at which the 960 // slice is being materialized. 961 SmallVector<Value, 8> outerIVs; 962 cst->getValues(rank, cst->getNumVars(), &outerIVs); 963 964 // Build 'rank' AffineExprs from MemRefRegion 'lbs' 965 SmallVector<AffineExpr, 4> offsets; 966 offsets.reserve(rank); 967 for (unsigned d = 0; d < rank; ++d) { 968 assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size"); 969 970 AffineExpr offset = top.getAffineConstantExpr(0); 971 for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) { 972 offset = offset + lbs[d][j] * top.getAffineDimExpr(j); 973 } 974 assert(lbDivisors[d] > 0); 975 offset = 976 (offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]); 977 offsets.push_back(offset); 978 } 979 980 // Create 'newMemRefType' using 'newShape' from MemRefRegion accessed 981 // by 'srcStoreOpInst'. 982 uint64_t bufSize = getMemRefEltSizeInBytes(oldMemRefType) * *numElements; 983 unsigned newMemSpace; 984 if (bufSize <= localBufSizeThreshold && fastMemorySpace.has_value()) { 985 newMemSpace = *fastMemorySpace; 986 } else { 987 newMemSpace = oldMemRefType.getMemorySpaceAsInt(); 988 } 989 auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(), 990 {}, newMemSpace); 991 992 // Create new private memref for fused loop 'forOp'. 'newShape' is always 993 // a constant shape. 994 // TODO: Create/move alloc ops for private memrefs closer to their 995 // consumer loop nests to reduce their live range. Currently they are added 996 // at the beginning of the block, because loop nests can be reordered 997 // during the fusion pass. 998 Value newMemRef = top.create<memref::AllocOp>(forOp.getLoc(), newMemRefType); 999 1000 // Build an AffineMap to remap access functions based on lower bound offsets. 1001 SmallVector<AffineExpr, 4> remapExprs; 1002 remapExprs.reserve(rank); 1003 for (unsigned i = 0; i < rank; i++) { 1004 auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i); 1005 1006 auto remapExpr = 1007 simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0); 1008 remapExprs.push_back(remapExpr); 1009 } 1010 1011 auto indexRemap = 1012 AffineMap::get(outerIVs.size() + rank, 0, remapExprs, forOp.getContext()); 1013 1014 // Replace all users of 'oldMemRef' with 'newMemRef'. 1015 LogicalResult res = 1016 replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap, 1017 /*extraOperands=*/outerIVs, 1018 /*symbolOperands=*/{}, 1019 /*domOpFilter=*/&*forOp.getBody()->begin()); 1020 assert(succeeded(res) && 1021 "replaceAllMemrefUsesWith should always succeed here"); 1022 (void)res; 1023 return newMemRef; 1024 } 1025 1026 /// Walking from node 'srcId' to node 'dstId' (exclusive of 'srcId' and 1027 /// 'dstId'), if there is any non-affine operation accessing 'memref', return 1028 /// true. Otherwise, return false. 1029 static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId, 1030 Value memref, 1031 MemRefDependenceGraph *mdg) { 1032 auto *srcNode = mdg->getNode(srcId); 1033 auto *dstNode = mdg->getNode(dstId); 1034 Value::user_range users = memref.getUsers(); 1035 // For each MemRefDependenceGraph's node that is between 'srcNode' and 1036 // 'dstNode' (exclusive of 'srcNodes' and 'dstNode'), check whether any 1037 // non-affine operation in the node accesses the 'memref'. 1038 for (auto &idAndNode : mdg->nodes) { 1039 Operation *op = idAndNode.second.op; 1040 // Take care of operations between 'srcNode' and 'dstNode'. 1041 if (srcNode->op->isBeforeInBlock(op) && op->isBeforeInBlock(dstNode->op)) { 1042 // Walk inside the operation to find any use of the memref. 1043 // Interrupt the walk if found. 1044 auto walkResult = op->walk([&](Operation *user) { 1045 // Skip affine ops. 1046 if (isa<AffineMapAccessInterface>(*user)) 1047 return WalkResult::advance(); 1048 // Find a non-affine op that uses the memref. 1049 if (llvm::is_contained(users, user)) 1050 return WalkResult::interrupt(); 1051 return WalkResult::advance(); 1052 }); 1053 if (walkResult.wasInterrupted()) 1054 return true; 1055 } 1056 } 1057 return false; 1058 } 1059 1060 /// Check whether a memref value in node 'srcId' has a non-affine that 1061 /// is between node 'srcId' and node 'dstId' (exclusive of 'srcNode' and 1062 /// 'dstNode'). 1063 static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId, 1064 MemRefDependenceGraph *mdg) { 1065 // Collect memref values in node 'srcId'. 1066 auto *srcNode = mdg->getNode(srcId); 1067 llvm::SmallDenseSet<Value, 2> memRefValues; 1068 srcNode->op->walk([&](Operation *op) { 1069 // Skip affine ops. 1070 if (isa<AffineForOp>(op)) 1071 return WalkResult::advance(); 1072 for (Value v : op->getOperands()) 1073 // Collect memref values only. 1074 if (v.getType().isa<MemRefType>()) 1075 memRefValues.insert(v); 1076 return WalkResult::advance(); 1077 }); 1078 // Looking for users between node 'srcId' and node 'dstId'. 1079 for (Value memref : memRefValues) 1080 if (hasNonAffineUsersOnThePath(srcId, dstId, memref, mdg)) 1081 return true; 1082 return false; 1083 } 1084 1085 // Checks the profitability of fusing a backwards slice of the loop nest 1086 // surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'. 1087 // The argument 'srcStoreOpInst' is used to calculate the storage reduction on 1088 // the memref being produced and consumed, which is an input to the cost model. 1089 // For producer-consumer fusion, 'srcStoreOpInst' will be the same as 1090 // 'srcOpInst', as we are slicing w.r.t to that producer. For input-reuse 1091 // fusion, 'srcOpInst' will be the src loop nest LoadOp which reads from the 1092 // same memref as dst loop nest load ops, and 'srcStoreOpInst' will be the 1093 // unique store op in the src node, which will be used to check that the write 1094 // region is the same after input-reuse fusion. Computation slices are provided 1095 // in 'depthSliceUnions' for each legal fusion depth. The maximal depth at which 1096 // fusion is legal is provided in 'maxLegalFusionDepth'. Returns true if it is 1097 // profitable to fuse the candidate loop nests. Returns false otherwise. 1098 // `dstLoopDepth` is set to the most profitable depth at which to materialize 1099 // the source loop nest slice. 1100 // The profitability model executes the following steps: 1101 // *) Computes the backward computation slice at 'srcOpInst'. This 1102 // computation slice of the loop nest surrounding 'srcOpInst' is 1103 // represented by modified src loop bounds in 'sliceState', which are 1104 // functions of loop IVs in the loop nest surrounding 'srcOpInst'. 1105 // *) Computes the cost of unfused src/dst loop nests (currently the cost of a 1106 // loop nest is the total number of dynamic operation instances in the loop 1107 // nest). 1108 // *) Computes the cost of fusing a slice of the src loop nest into the dst 1109 // loop nest at various values of dst loop depth, attempting to fuse 1110 // the largest computation slice at the maximal dst loop depth (closest to 1111 // the load) to minimize reuse distance and potentially enable subsequent 1112 // load/store forwarding. 1113 // NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop 1114 // nest, at which the src computation slice is inserted/fused. 1115 // NOTE: We attempt to maximize the dst loop depth, but there are cases 1116 // where a particular setting for 'dstLoopNest' might fuse an unsliced 1117 // loop (within the src computation slice) at a depth which results in 1118 // excessive recomputation (see unit tests for examples). 1119 // *) Compares the total cost of the unfused loop nests to the min cost fused 1120 // loop nest computed in the previous step, and returns true if the latter 1121 // is lower. 1122 // TODO: Extend profitability analysis to support scenarios with multiple 1123 // stores. 1124 static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst, 1125 AffineForOp dstForOp, 1126 ArrayRef<ComputationSliceState> depthSliceUnions, 1127 unsigned maxLegalFusionDepth, 1128 unsigned *dstLoopDepth, 1129 double computeToleranceThreshold) { 1130 LLVM_DEBUG({ 1131 llvm::dbgs() << "Checking whether fusion is profitable between src op:\n"; 1132 llvm::dbgs() << ' ' << *srcOpInst << " and destination loop:\n"; 1133 llvm::dbgs() << dstForOp << "\n"; 1134 }); 1135 1136 if (maxLegalFusionDepth == 0) { 1137 LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxLegalFusionDepth == 0 .\n"); 1138 return false; 1139 } 1140 1141 // Compute cost of sliced and unsliced src loop nest. 1142 SmallVector<AffineForOp, 4> srcLoopIVs; 1143 getLoopIVs(*srcOpInst, &srcLoopIVs); 1144 1145 // Walk src loop nest and collect stats. 1146 LoopNestStats srcLoopNestStats; 1147 if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats)) 1148 return false; 1149 1150 // Compute cost of dst loop nest. 1151 LoopNestStats dstLoopNestStats; 1152 if (!getLoopNestStats(dstForOp, &dstLoopNestStats)) 1153 return false; 1154 1155 // Search for min cost value for 'dstLoopDepth'. At each value of 1156 // 'dstLoopDepth' from 'maxLegalLoopDepth' to '1', compute computation slice 1157 // bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union 1158 // of these bounds). Next the union slice bounds are used to calculate 1159 // the cost of the slice and the cost of the slice inserted into the dst 1160 // loop nest at 'dstLoopDepth'. 1161 uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max(); 1162 double maxStorageReduction = 0.0; 1163 std::optional<uint64_t> sliceMemEstimate; 1164 1165 // The best loop depth at which to materialize the slice. 1166 std::optional<unsigned> bestDstLoopDepth; 1167 1168 // Compute op instance count for the src loop nest without iteration slicing. 1169 uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats); 1170 1171 // Compute src loop nest write region size. 1172 MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc()); 1173 if (failed(srcWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0))) { 1174 LLVM_DEBUG(llvm::dbgs() 1175 << "Unable to compute MemRefRegion for source operation\n."); 1176 return false; 1177 } 1178 1179 Optional<int64_t> maybeSrcWriteRegionSizeBytes = 1180 srcWriteRegion.getRegionSize(); 1181 if (!maybeSrcWriteRegionSizeBytes.has_value()) 1182 return false; 1183 int64_t srcWriteRegionSizeBytes = *maybeSrcWriteRegionSizeBytes; 1184 1185 // Compute op instance count for the src loop nest. 1186 uint64_t dstLoopNestCost = getComputeCost(dstForOp, dstLoopNestStats); 1187 1188 // Evaluate all depth choices for materializing the slice in the destination 1189 // loop nest. 1190 for (unsigned i = maxLegalFusionDepth; i >= 1; --i) { 1191 const ComputationSliceState &slice = depthSliceUnions[i - 1]; 1192 // Skip slice union if it wasn't computed for this depth. 1193 if (slice.isEmpty()) 1194 continue; 1195 1196 int64_t fusedLoopNestComputeCost; 1197 if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstForOp, 1198 dstLoopNestStats, slice, 1199 &fusedLoopNestComputeCost)) { 1200 LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost.\n."); 1201 continue; 1202 } 1203 1204 double additionalComputeFraction = 1205 fusedLoopNestComputeCost / 1206 (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) - 1207 1; 1208 1209 // Determine what the slice write MemRefRegion would be, if the src loop 1210 // nest slice 'slice' were to be inserted into the dst loop nest at loop 1211 // depth 'i'. 1212 MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc()); 1213 if (failed(sliceWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0, 1214 &slice))) { 1215 LLVM_DEBUG(llvm::dbgs() 1216 << "Failed to compute slice write region at loopDepth: " << i 1217 << "\n"); 1218 continue; 1219 } 1220 1221 Optional<int64_t> maybeSliceWriteRegionSizeBytes = 1222 sliceWriteRegion.getRegionSize(); 1223 if (!maybeSliceWriteRegionSizeBytes.has_value() || 1224 *maybeSliceWriteRegionSizeBytes == 0) { 1225 LLVM_DEBUG(llvm::dbgs() 1226 << "Failed to get slice write region size at loopDepth: " << i 1227 << "\n"); 1228 continue; 1229 } 1230 int64_t sliceWriteRegionSizeBytes = *maybeSliceWriteRegionSizeBytes; 1231 1232 // If we are fusing for reuse, check that write regions remain the same. 1233 // TODO: Write region check should check sizes and offsets in 1234 // each dimension, so that we are sure they are covering the same memref 1235 // region. Also, move this out to a isMemRefRegionSuperSet helper function. 1236 if (srcOpInst != srcStoreOpInst && 1237 sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes) 1238 continue; 1239 1240 double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) / 1241 static_cast<double>(sliceWriteRegionSizeBytes); 1242 1243 LLVM_DEBUG({ 1244 std::stringstream msg; 1245 msg << " evaluating fusion profitability at depth : " << i << "\n" 1246 << std::fixed << std::setprecision(2) 1247 << " additional compute fraction: " 1248 << 100.0 * additionalComputeFraction << "%\n" 1249 << " storage reduction factor: " << storageReduction << "x\n" 1250 << " fused nest cost: " << fusedLoopNestComputeCost << "\n" 1251 << " src write region size: " << srcWriteRegionSizeBytes << "\n" 1252 << " slice write region size: " << sliceWriteRegionSizeBytes 1253 << "\n"; 1254 llvm::dbgs() << msg.str(); 1255 }); 1256 1257 // TODO: This is a placeholder cost model. 1258 // Among all choices that add an acceptable amount of redundant computation 1259 // (as per computeToleranceThreshold), we will simply pick the one that 1260 // reduces the intermediary size the most. 1261 if ((storageReduction > maxStorageReduction) && 1262 (additionalComputeFraction < computeToleranceThreshold)) { 1263 maxStorageReduction = storageReduction; 1264 bestDstLoopDepth = i; 1265 minFusedLoopNestComputeCost = fusedLoopNestComputeCost; 1266 sliceMemEstimate = sliceWriteRegionSizeBytes; 1267 } 1268 } 1269 1270 // A simple cost model: fuse if it reduces the memory footprint. 1271 1272 if (!bestDstLoopDepth) { 1273 LLVM_DEBUG( 1274 llvm::dbgs() 1275 << "All fusion choices involve more than the threshold amount of " 1276 "redundant computation; NOT fusing.\n"); 1277 return false; 1278 } 1279 1280 if (!bestDstLoopDepth) { 1281 LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n"); 1282 return false; 1283 } 1284 1285 // Set dstLoopDepth based on best values from search. 1286 *dstLoopDepth = *bestDstLoopDepth; 1287 1288 LLVM_DEBUG( 1289 llvm::dbgs() << " LoopFusion fusion stats:" 1290 << "\n best loop depth: " << bestDstLoopDepth 1291 << "\n src loop nest compute cost: " << srcLoopNestCost 1292 << "\n dst loop nest compute cost: " << dstLoopNestCost 1293 << "\n fused loop nest compute cost: " 1294 << minFusedLoopNestComputeCost << "\n"); 1295 1296 auto dstMemSize = getMemoryFootprintBytes(dstForOp); 1297 auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]); 1298 1299 std::optional<double> storageReduction; 1300 1301 if (!dstMemSize || !srcMemSize) { 1302 LLVM_DEBUG(llvm::dbgs() 1303 << " fusion memory benefit cannot be evaluated; NOT fusing.\n"); 1304 return false; 1305 } 1306 1307 auto srcMemSizeVal = *srcMemSize; 1308 auto dstMemSizeVal = *dstMemSize; 1309 1310 assert(sliceMemEstimate && "expected value"); 1311 auto fusedMem = dstMemSizeVal + *sliceMemEstimate; 1312 1313 LLVM_DEBUG(llvm::dbgs() << " src mem: " << srcMemSizeVal << "\n" 1314 << " dst mem: " << dstMemSizeVal << "\n" 1315 << " fused mem: " << fusedMem << "\n" 1316 << " slice mem: " << sliceMemEstimate << "\n"); 1317 1318 if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) { 1319 LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n"); 1320 return false; 1321 } 1322 storageReduction = 1323 100.0 * 1324 (1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal)); 1325 1326 double additionalComputeFraction = 1327 100.0 * (minFusedLoopNestComputeCost / 1328 (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) - 1329 1); 1330 (void)additionalComputeFraction; 1331 LLVM_DEBUG({ 1332 std::stringstream msg; 1333 msg << " fusion is most profitable at depth " << *dstLoopDepth << " with " 1334 << std::setprecision(2) << additionalComputeFraction 1335 << "% redundant computation and a "; 1336 msg << (storageReduction ? std::to_string(*storageReduction) : "<unknown>"); 1337 msg << "% storage reduction.\n"; 1338 llvm::dbgs() << msg.str(); 1339 }); 1340 1341 return true; 1342 } 1343 1344 namespace { 1345 1346 // GreedyFusion greedily fuses loop nests which have a producer/consumer or 1347 // input-reuse relationship on a memref, with the goal of improving locality. 1348 // 1349 // The steps of the producer-consumer fusion algorithm are as follows: 1350 // 1351 // *) A worklist is initialized with node ids from the dependence graph. 1352 // *) For each node id in the worklist: 1353 // *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a 1354 // candidate destination AffineForOp into which fusion will be attempted. 1355 // *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'. 1356 // *) For each LoadOp in 'dstLoadOps' do: 1357 // *) Look up dependent loop nests which have a single store op to the same 1358 // memref. 1359 // *) Check if dependences would be violated by the fusion. 1360 // *) Get a computation slice of 'srcLoopNest', which adjusts its loop 1361 // bounds to be functions of 'dstLoopNest' IVs and symbols. 1362 // *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest', 1363 // at a loop depth determined by the cost model in 'isFusionProfitable'. 1364 // *) Add the newly fused load/store operations to the state, 1365 // and also add newly fused load ops to 'dstLoopOps' to be considered 1366 // as fusion dst load ops in another iteration. 1367 // *) Remove old src loop nest and its associated state. 1368 // 1369 // The steps of the input-reuse fusion algorithm are as follows: 1370 // 1371 // *) Initialize 'worklist' with node ids from the dependence graph. 1372 // *) For each 'dstNode' in the worklist: 1373 // *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which 1374 // loads from the same memref, but which has no dependence paths to/from. 1375 // *) Get a computation slice of 'sibLoopNest', which adjusts its loop 1376 // bounds to be functions of 'dstLoopNest' IVs and symbols. 1377 // *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest', 1378 // at a loop depth determined by the cost model in 'isFusionProfitable'. 1379 // This function also checks that the memref write region of 'sibLoopNest', 1380 // is preserved in the fused loop nest. 1381 // *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'. 1382 // 1383 // Given a graph where top-level operations are vertices in the set 'V' and 1384 // edges in the set 'E' are dependences between vertices, this algorithm 1385 // takes O(V) time for initialization, and has runtime O(V + E). 1386 // 1387 // This greedy algorithm is not 'maximal' due to the current restriction of 1388 // fusing along single producer consumer edges, but there is a TODO: to fix 1389 // this. 1390 // 1391 // TODO: Experiment with other fusion policies. 1392 struct GreedyFusion { 1393 public: 1394 // The data dependence graph to traverse during fusion. 1395 MemRefDependenceGraph *mdg; 1396 // Worklist of graph nodes visited during the fusion pass. 1397 SmallVector<unsigned, 8> worklist; 1398 // Parameter for local buffer size threshold. 1399 unsigned localBufSizeThreshold; 1400 // Parameter for fast memory space. 1401 Optional<unsigned> fastMemorySpace; 1402 // If true, ignore any additional (redundant) computation tolerance threshold 1403 // that would have prevented fusion. 1404 bool maximalFusion; 1405 // The amount of additional computation that is tolerated while fusing 1406 // pair-wise as a fraction of the total computation. 1407 double computeToleranceThreshold; 1408 1409 using Node = MemRefDependenceGraph::Node; 1410 1411 GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold, 1412 Optional<unsigned> fastMemorySpace, bool maximalFusion, 1413 double computeToleranceThreshold) 1414 : mdg(mdg), localBufSizeThreshold(localBufSizeThreshold), 1415 fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion), 1416 computeToleranceThreshold(computeToleranceThreshold) {} 1417 1418 /// Initializes 'worklist' with nodes from 'mdg'. 1419 void init() { 1420 // TODO: Add a priority queue for prioritizing nodes by different 1421 // metrics (e.g. arithmetic intensity/flops-to-bytes ratio). 1422 worklist.clear(); 1423 for (auto &idAndNode : mdg->nodes) { 1424 const Node &node = idAndNode.second; 1425 worklist.push_back(node.id); 1426 } 1427 } 1428 /// Run only sibling fusion on the `mdg`. 1429 void runSiblingFusionOnly() { 1430 fuseSiblingNodes(); 1431 eraseUnusedMemRefAllocations(); 1432 } 1433 1434 /// Run only producer/consumer fusion on the `mdg`. 1435 void runProducerConsumerFusionOnly() { 1436 fuseProducerConsumerNodes( 1437 /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max()); 1438 eraseUnusedMemRefAllocations(); 1439 } 1440 1441 // Run the GreedyFusion pass. 1442 // *) First pass through the nodes fuses single-use producer nodes into their 1443 // unique consumer. 1444 // *) Second pass fuses sibling nodes which share no dependence edges. 1445 // *) Third pass fuses any remaining producer nodes into their users. 1446 void runGreedyFusion() { 1447 // TODO: Run this repeatedly until a fixed-point is reached. 1448 fuseProducerConsumerNodes(/*maxSrcUserCount=*/1); 1449 fuseSiblingNodes(); 1450 fuseProducerConsumerNodes( 1451 /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max()); 1452 eraseUnusedMemRefAllocations(); 1453 } 1454 1455 /// Visit each node in the graph, and for each node, attempt to fuse it with 1456 /// producer-consumer candidates. No fusion is performed when producers with a 1457 /// user count greater than `maxSrcUserCount` for any of the memrefs involved 1458 /// are encountered. 1459 void fuseProducerConsumerNodes(unsigned maxSrcUserCount) { 1460 LLVM_DEBUG(llvm::dbgs() << "--- Producer/Consumer Fusion ---\n"); 1461 init(); 1462 while (!worklist.empty()) { 1463 unsigned dstId = worklist.back(); 1464 worklist.pop_back(); 1465 1466 // Skip if this node was removed (fused into another node). 1467 if (mdg->nodes.count(dstId) == 0) 1468 continue; 1469 // Get 'dstNode' into which to attempt fusion. 1470 auto *dstNode = mdg->getNode(dstId); 1471 // Skip if 'dstNode' is not a loop nest. 1472 if (!isa<AffineForOp>(dstNode->op)) 1473 continue; 1474 // Skip if 'dstNode' is a loop nest returning values. 1475 // TODO: support loop nests that return values. 1476 if (dstNode->op->getNumResults() > 0) 1477 continue; 1478 1479 LLVM_DEBUG(llvm::dbgs() << "Evaluating dst loop " << dstId << "\n"); 1480 1481 // Sink sequential loops in 'dstNode' (and thus raise parallel loops) 1482 // while preserving relative order. This can increase the maximum loop 1483 // depth at which we can fuse a slice of a producer loop nest into a 1484 // consumer loop nest. 1485 sinkSequentialLoops(dstNode); 1486 auto dstAffineForOp = cast<AffineForOp>(dstNode->op); 1487 1488 // Try to fuse 'dstNode' with candidate producer loops until a fixed point 1489 // is reached. Fusing two loops may expose new fusion opportunities. 1490 bool dstNodeChanged; 1491 do { 1492 // Gather src loop candidates for 'dstNode' and visit them in "quasi" 1493 // reverse program order to minimize the number of iterations needed to 1494 // reach the fixed point. Note that this is a best effort approach since 1495 // 'getProducerCandidates' does not always guarantee that program order 1496 // in 'srcIdCandidates'. 1497 dstNodeChanged = false; 1498 SmallVector<unsigned, 16> srcIdCandidates; 1499 getProducerCandidates(dstId, mdg, srcIdCandidates); 1500 1501 for (unsigned srcId : llvm::reverse(srcIdCandidates)) { 1502 // Get 'srcNode' from which to attempt fusion into 'dstNode'. 1503 auto *srcNode = mdg->getNode(srcId); 1504 auto srcAffineForOp = cast<AffineForOp>(srcNode->op); 1505 LLVM_DEBUG(llvm::dbgs() << "Evaluating src loop " << srcId 1506 << " for dst loop " << dstId << "\n"); 1507 1508 // Skip if 'srcNode' is a loop nest returning values. 1509 // TODO: support loop nests that return values. 1510 if (isa<AffineForOp>(srcNode->op) && srcNode->op->getNumResults() > 0) 1511 continue; 1512 1513 DenseSet<Value> producerConsumerMemrefs; 1514 gatherProducerConsumerMemrefs(srcId, dstId, mdg, 1515 producerConsumerMemrefs); 1516 1517 // Skip if 'srcNode' out edge count on any memref is greater than 1518 // 'maxSrcUserCount'. 1519 if (any_of(producerConsumerMemrefs, [&](Value memref) { 1520 return mdg->getOutEdgeCount(srcNode->id, memref) > 1521 maxSrcUserCount; 1522 })) 1523 continue; 1524 1525 // Gather memrefs in 'srcNode' that are written and escape out of the 1526 // block (e.g., memref block arguments, returned memrefs, 1527 // memrefs passed to function calls, etc.). 1528 DenseSet<Value> srcEscapingMemRefs; 1529 gatherEscapingMemrefs(srcNode->id, mdg, srcEscapingMemRefs); 1530 1531 // Skip if there are non-affine operations in between the 'srcNode' 1532 // and 'dstNode' using their memrefs. If so, we wouldn't be able to 1533 // compute a legal insertion point for now. 'srcNode' and 'dstNode' 1534 // memrefs with non-affine operation users would be considered 1535 // escaping memrefs so we can limit this check to only scenarios with 1536 // escaping memrefs. 1537 if (!srcEscapingMemRefs.empty() && 1538 hasNonAffineUsersOnThePath(srcId, dstId, mdg)) { 1539 LLVM_DEBUG( 1540 llvm::dbgs() 1541 << "Can't fuse: non-affine users in between the loops\n."); 1542 continue; 1543 } 1544 1545 // Compute an operation list insertion point for the fused loop 1546 // nest which preserves dependences. 1547 Operation *fusedLoopInsPoint = 1548 mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id); 1549 if (fusedLoopInsPoint == nullptr) 1550 continue; 1551 1552 // Compute the innermost common loop depth for dstNode 1553 // producer-consumer loads/stores. 1554 SmallVector<Operation *, 2> dstMemrefOps; 1555 for (Operation *op : dstNode->loads) 1556 if (producerConsumerMemrefs.count( 1557 cast<AffineReadOpInterface>(op).getMemRef()) > 0) 1558 dstMemrefOps.push_back(op); 1559 for (Operation *op : dstNode->stores) 1560 if (producerConsumerMemrefs.count( 1561 cast<AffineWriteOpInterface>(op).getMemRef())) 1562 dstMemrefOps.push_back(op); 1563 unsigned dstLoopDepthTest = getInnermostCommonLoopDepth(dstMemrefOps); 1564 1565 // Check the feasibility of fusing src loop nest into dst loop nest 1566 // at loop depths in range [1, dstLoopDepthTest]. 1567 unsigned maxLegalFusionDepth = 0; 1568 SmallVector<ComputationSliceState, 8> depthSliceUnions; 1569 depthSliceUnions.resize(dstLoopDepthTest); 1570 FusionStrategy strategy(FusionStrategy::ProducerConsumer); 1571 for (unsigned i = 1; i <= dstLoopDepthTest; ++i) { 1572 FusionResult result = mlir::canFuseLoops( 1573 srcAffineForOp, dstAffineForOp, 1574 /*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy); 1575 1576 if (result.value == FusionResult::Success) 1577 maxLegalFusionDepth = i; 1578 } 1579 1580 if (maxLegalFusionDepth == 0) { 1581 LLVM_DEBUG(llvm::dbgs() 1582 << "Can't fuse: fusion is not legal at any depth\n"); 1583 continue; 1584 } 1585 1586 // Check if fusion would be profitable. We skip profitability analysis 1587 // for maximal fusion since we already know the maximal legal depth to 1588 // fuse. 1589 unsigned bestDstLoopDepth = maxLegalFusionDepth; 1590 if (!maximalFusion) { 1591 // Retrieve producer stores from the src loop. 1592 SmallVector<Operation *, 2> producerStores; 1593 for (Operation *op : srcNode->stores) 1594 if (producerConsumerMemrefs.count( 1595 cast<AffineWriteOpInterface>(op).getMemRef())) 1596 producerStores.push_back(op); 1597 1598 // TODO: Suppport multiple producer stores in profitability 1599 // analysis. We limit profitability analysis to only scenarios with 1600 // a single producer store for now. Note that some multi-store 1601 // producer scenarios will still go through profitability analysis 1602 // if only one of the stores is involved the producer-consumer 1603 // relationship of the candidate loops. 1604 assert(!producerStores.empty() && "Expected producer store"); 1605 if (producerStores.size() > 1) 1606 LLVM_DEBUG(llvm::dbgs() << "Skipping profitability analysis. Not " 1607 "supported for this case\n"); 1608 else if (!isFusionProfitable(producerStores[0], producerStores[0], 1609 dstAffineForOp, depthSliceUnions, 1610 maxLegalFusionDepth, &bestDstLoopDepth, 1611 computeToleranceThreshold)) 1612 continue; 1613 } 1614 1615 assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth"); 1616 ComputationSliceState &bestSlice = 1617 depthSliceUnions[bestDstLoopDepth - 1]; 1618 assert(!bestSlice.isEmpty() && "Missing slice union for depth"); 1619 1620 // Determine if 'srcId' can be removed after fusion, taking into 1621 // account remaining dependences, escaping memrefs and the fusion 1622 // insertion point. 1623 bool removeSrcNode = canRemoveSrcNodeAfterFusion( 1624 srcId, dstId, bestSlice, fusedLoopInsPoint, srcEscapingMemRefs, 1625 mdg); 1626 1627 DenseSet<Value> privateMemrefs; 1628 for (Value memref : producerConsumerMemrefs) { 1629 // If `memref` is an escaping one, do not create a private memref 1630 // for the below scenarios, since doing so will leave the escaping 1631 // memref unmodified as all the writes originally meant for the 1632 // escaping memref would be performed on the private memref: 1633 // 1. The source is to be removed after fusion, 1634 // OR 1635 // 2. The destination writes to `memref`. 1636 if (srcEscapingMemRefs.count(memref) > 0 && 1637 (removeSrcNode || dstNode->getStoreOpCount(memref) > 0)) 1638 continue; 1639 1640 // Don't create a private memref if 'srcNode' has in edges on 1641 // 'memref' or 'dstNode' has out edges on 'memref'. 1642 if (mdg->getIncomingMemRefAccesses(srcId, memref) > 0 || 1643 mdg->getOutEdgeCount(dstId, memref) > 0) 1644 continue; 1645 1646 // If 'srcNode' will be removed but it has out edges on 'memref' to 1647 // nodes other than 'dstNode', we have to preserve dependences and 1648 // cannot create a private memref. 1649 if (removeSrcNode && 1650 any_of(mdg->outEdges[srcId], [&](const auto &edge) { 1651 return edge.value == memref && edge.id != dstId; 1652 })) 1653 continue; 1654 1655 // Create a private version of this memref. 1656 privateMemrefs.insert(memref); 1657 } 1658 1659 // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'. 1660 fuseLoops(srcAffineForOp, dstAffineForOp, bestSlice); 1661 dstNodeChanged = true; 1662 1663 LLVM_DEBUG(llvm::dbgs() 1664 << "Fused src loop " << srcId << " into dst loop " << dstId 1665 << " at depth " << bestDstLoopDepth << ":\n" 1666 << dstAffineForOp << "\n"); 1667 1668 // Move 'dstAffineForOp' before 'insertPointInst' if needed. 1669 if (fusedLoopInsPoint != dstAffineForOp) 1670 dstAffineForOp->moveBefore(fusedLoopInsPoint); 1671 1672 // Update edges between 'srcNode' and 'dstNode'. 1673 mdg->updateEdges(srcNode->id, dstNode->id, privateMemrefs, 1674 removeSrcNode); 1675 1676 // Create private memrefs. 1677 if (!privateMemrefs.empty()) { 1678 // Gather stores for all the private-to-be memrefs. 1679 DenseMap<Value, SmallVector<Operation *, 4>> privateMemRefToStores; 1680 dstAffineForOp.walk([&](AffineWriteOpInterface storeOp) { 1681 Value storeMemRef = storeOp.getMemRef(); 1682 if (privateMemrefs.count(storeMemRef) > 0) 1683 privateMemRefToStores[storeMemRef].push_back(storeOp); 1684 }); 1685 1686 // Replace original memrefs with private memrefs. Note that all the 1687 // loads and stores on these memrefs will be replaced with a new 1688 // loads and stores. Any reference to the original ones becomes 1689 // invalid after this point. 1690 for (auto &memrefToStoresPair : privateMemRefToStores) { 1691 // TODO: Use union of memref write regions to compute 1692 // private memref footprint. 1693 SmallVector<Operation *, 4> &storesForMemref = 1694 memrefToStoresPair.second; 1695 Value newMemRef = createPrivateMemRef( 1696 dstAffineForOp, storesForMemref[0], bestDstLoopDepth, 1697 fastMemorySpace, localBufSizeThreshold); 1698 // Create new node in dependence graph for 'newMemRef' alloc op. 1699 unsigned newMemRefNodeId = 1700 mdg->addNode(newMemRef.getDefiningOp()); 1701 // Add edge from 'newMemRef' node to dstNode. 1702 mdg->addEdge(newMemRefNodeId, dstId, newMemRef); 1703 } 1704 // One or more entries for 'newMemRef' alloc op are inserted into 1705 // the DenseMap mdg->nodes. Since an insertion may cause DenseMap to 1706 // reallocate, update dstNode. 1707 dstNode = mdg->getNode(dstId); 1708 } 1709 1710 // Collect dst loop stats after memref privatization transformation. 1711 LoopNestStateCollector dstLoopCollector; 1712 dstLoopCollector.collect(dstAffineForOp); 1713 1714 // Clear and add back loads and stores. 1715 mdg->clearNodeLoadAndStores(dstNode->id); 1716 mdg->addToNode(dstId, dstLoopCollector.loadOpInsts, 1717 dstLoopCollector.storeOpInsts); 1718 1719 if (removeSrcNode) { 1720 LLVM_DEBUG(llvm::dbgs() 1721 << "Removing src loop " << srcId << " after fusion\n"); 1722 // srcNode is no longer valid after it is removed from mdg. 1723 srcAffineForOp.erase(); 1724 mdg->removeNode(srcId); 1725 srcNode = nullptr; 1726 } 1727 } 1728 } while (dstNodeChanged); 1729 } 1730 } 1731 1732 // Visits each node in the graph, and for each node, attempts to fuse it with 1733 // its sibling nodes (nodes which share a parent, but no dependence edges). 1734 void fuseSiblingNodes() { 1735 LLVM_DEBUG(llvm::dbgs() << "--- Sibling Fusion ---\n"); 1736 init(); 1737 while (!worklist.empty()) { 1738 unsigned dstId = worklist.back(); 1739 worklist.pop_back(); 1740 1741 // Skip if this node was removed (fused into another node). 1742 if (mdg->nodes.count(dstId) == 0) 1743 continue; 1744 // Get 'dstNode' into which to attempt fusion. 1745 auto *dstNode = mdg->getNode(dstId); 1746 // Skip if 'dstNode' is not a loop nest. 1747 if (!isa<AffineForOp>(dstNode->op)) 1748 continue; 1749 // Attempt to fuse 'dstNode' with its sibling nodes in the graph. 1750 fuseWithSiblingNodes(dstNode); 1751 } 1752 } 1753 1754 // Attempt to fuse 'dstNode' with sibling nodes in the graph. 1755 void fuseWithSiblingNodes(Node *dstNode) { 1756 DenseSet<unsigned> visitedSibNodeIds; 1757 std::pair<unsigned, Value> idAndMemref; 1758 auto dstAffineForOp = cast<AffineForOp>(dstNode->op); 1759 1760 while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) { 1761 unsigned sibId = idAndMemref.first; 1762 Value memref = idAndMemref.second; 1763 // TODO: Check that 'sibStoreOpInst' post-dominates all other 1764 // stores to the same memref in 'sibNode' loop nest. 1765 auto *sibNode = mdg->getNode(sibId); 1766 // Compute an operation list insertion point for the fused loop 1767 // nest which preserves dependences. 1768 assert(sibNode->op->getBlock() == dstNode->op->getBlock()); 1769 Operation *insertPointInst = 1770 sibNode->op->isBeforeInBlock(dstNode->op) 1771 ? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id) 1772 : mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id); 1773 if (insertPointInst == nullptr) 1774 continue; 1775 1776 // Check if fusion would be profitable and at what depth. 1777 1778 // Get unique 'sibNode' load op to 'memref'. 1779 SmallVector<Operation *, 2> sibLoadOpInsts; 1780 sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts); 1781 // Currently findSiblingNodeToFuse searches for siblings with one load. 1782 assert(sibLoadOpInsts.size() == 1); 1783 Operation *sibLoadOpInst = sibLoadOpInsts[0]; 1784 assert(!sibNode->stores.empty()); 1785 // TODO: Choose the store which postdominates all other stores. 1786 auto *sibStoreOpInst = sibNode->stores.back(); 1787 1788 // Gather 'dstNode' load ops to 'memref'. 1789 SmallVector<Operation *, 2> dstLoadOpInsts; 1790 dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts); 1791 1792 SmallVector<AffineForOp, 4> dstLoopIVs; 1793 getLoopIVs(*dstLoadOpInsts[0], &dstLoopIVs); 1794 unsigned dstLoopDepthTest = dstLoopIVs.size(); 1795 auto sibAffineForOp = cast<AffineForOp>(sibNode->op); 1796 1797 // Compute loop depth and slice union for fusion. 1798 SmallVector<ComputationSliceState, 8> depthSliceUnions; 1799 depthSliceUnions.resize(dstLoopDepthTest); 1800 unsigned maxLegalFusionDepth = 0; 1801 FusionStrategy strategy(memref); 1802 for (unsigned i = 1; i <= dstLoopDepthTest; ++i) { 1803 FusionResult result = mlir::canFuseLoops( 1804 sibAffineForOp, dstAffineForOp, 1805 /*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy); 1806 1807 if (result.value == FusionResult::Success) 1808 maxLegalFusionDepth = i; 1809 } 1810 1811 // Skip if fusion is not feasible at any loop depths. 1812 if (maxLegalFusionDepth == 0) 1813 continue; 1814 1815 unsigned bestDstLoopDepth = maxLegalFusionDepth; 1816 if (!maximalFusion) { 1817 // Check if fusion would be profitable. 1818 if (!isFusionProfitable(sibLoadOpInst, sibStoreOpInst, dstAffineForOp, 1819 depthSliceUnions, maxLegalFusionDepth, 1820 &bestDstLoopDepth, computeToleranceThreshold)) 1821 continue; 1822 } 1823 1824 assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth"); 1825 assert(!depthSliceUnions[bestDstLoopDepth - 1].isEmpty() && 1826 "Fusion depth has no computed slice union"); 1827 // Check if source loop is being inserted in the innermost 1828 // destination loop. Based on this, the fused loop may be optimized 1829 // further inside `fuseLoops`. 1830 bool isInnermostInsertion = (bestDstLoopDepth == dstLoopDepthTest); 1831 // Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'. 1832 mlir::fuseLoops(sibAffineForOp, dstAffineForOp, 1833 depthSliceUnions[bestDstLoopDepth - 1], 1834 isInnermostInsertion); 1835 1836 auto dstForInst = cast<AffineForOp>(dstNode->op); 1837 // Update operation position of fused loop nest (if needed). 1838 if (insertPointInst != dstForInst) { 1839 dstForInst->moveBefore(insertPointInst); 1840 } 1841 // Update data dependence graph state post fusion. 1842 updateStateAfterSiblingFusion(sibNode, dstNode); 1843 } 1844 } 1845 1846 // Searches block argument uses and the graph from 'dstNode' looking for a 1847 // fusion candidate sibling node which shares no dependences with 'dstNode' 1848 // but which loads from the same memref. Returns true and sets 1849 // 'idAndMemrefToFuse' on success. Returns false otherwise. 1850 bool findSiblingNodeToFuse(Node *dstNode, 1851 DenseSet<unsigned> *visitedSibNodeIds, 1852 std::pair<unsigned, Value> *idAndMemrefToFuse) { 1853 // Returns true if 'sibNode' can be fused with 'dstNode' for input reuse 1854 // on 'memref'. 1855 auto canFuseWithSibNode = [&](Node *sibNode, Value memref) { 1856 // Skip if 'outEdge' is not a read-after-write dependence. 1857 // TODO: Remove restrict to single load op restriction. 1858 if (sibNode->getLoadOpCount(memref) != 1) 1859 return false; 1860 // Skip if there exists a path of dependent edges between 1861 // 'sibNode' and 'dstNode'. 1862 if (mdg->hasDependencePath(sibNode->id, dstNode->id) || 1863 mdg->hasDependencePath(dstNode->id, sibNode->id)) 1864 return false; 1865 // Skip sib node if it loads to (and stores from) the same memref on 1866 // which it also has an input dependence edge. 1867 DenseSet<Value> loadAndStoreMemrefSet; 1868 sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet); 1869 if (llvm::any_of(loadAndStoreMemrefSet, [=](Value memref) { 1870 return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0; 1871 })) 1872 return false; 1873 1874 // Check that all stores are to the same memref. 1875 DenseSet<Value> storeMemrefs; 1876 for (auto *storeOpInst : sibNode->stores) { 1877 storeMemrefs.insert( 1878 cast<AffineWriteOpInterface>(storeOpInst).getMemRef()); 1879 } 1880 if (storeMemrefs.size() != 1) 1881 return false; 1882 1883 // Skip if a memref value in one node is used by a non-affine memref 1884 // access that lies between 'dstNode' and 'sibNode'. 1885 if (hasNonAffineUsersOnThePath(dstNode->id, sibNode->id, mdg) || 1886 hasNonAffineUsersOnThePath(sibNode->id, dstNode->id, mdg)) 1887 return false; 1888 return true; 1889 }; 1890 1891 // Search for siblings which load the same memref block argument. 1892 Block *block = dstNode->op->getBlock(); 1893 for (unsigned i = 0, e = block->getNumArguments(); i != e; ++i) { 1894 for (Operation *user : block->getArgument(i).getUsers()) { 1895 auto loadOp = dyn_cast<AffineReadOpInterface>(user); 1896 if (!loadOp) 1897 continue; 1898 // Gather loops surrounding 'use'. 1899 SmallVector<AffineForOp, 4> loops; 1900 getLoopIVs(*user, &loops); 1901 // Skip 'use' if it is not within a loop nest. 1902 if (loops.empty()) 1903 continue; 1904 Node *sibNode = mdg->getForOpNode(loops[0]); 1905 assert(sibNode != nullptr); 1906 // Skip 'use' if it not a sibling to 'dstNode'. 1907 if (sibNode->id == dstNode->id) 1908 continue; 1909 // Skip 'use' if it has been visited. 1910 if (visitedSibNodeIds->count(sibNode->id) > 0) 1911 continue; 1912 // Skip 'use' if it does not load from the same memref as 'dstNode'. 1913 auto memref = loadOp.getMemRef(); 1914 if (dstNode->getLoadOpCount(memref) == 0) 1915 continue; 1916 // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'. 1917 if (canFuseWithSibNode(sibNode, memref)) { 1918 visitedSibNodeIds->insert(sibNode->id); 1919 idAndMemrefToFuse->first = sibNode->id; 1920 idAndMemrefToFuse->second = memref; 1921 return true; 1922 } 1923 } 1924 } 1925 1926 // Search for siblings by following edges through an intermediate src node. 1927 // Collect candidate 'dstNode' input edges in 'inEdges'. 1928 SmallVector<MemRefDependenceGraph::Edge, 2> inEdges; 1929 mdg->forEachMemRefInputEdge( 1930 dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) { 1931 // Add 'inEdge' if it is a read-after-write dependence. 1932 if (dstNode->getLoadOpCount(inEdge.value) > 0 && 1933 mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0) 1934 inEdges.push_back(inEdge); 1935 }); 1936 1937 // Search for sibling nodes to fuse by visiting output edges from each input 1938 // edge in 'inEdges'. 1939 for (auto &inEdge : inEdges) { 1940 // Collect candidate output edges from each node 'inEdge.id' in 'inEdges'. 1941 SmallVector<MemRefDependenceGraph::Edge, 2> outEdges; 1942 mdg->forEachMemRefOutputEdge( 1943 inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) { 1944 unsigned sibNodeId = outEdge.id; 1945 if (visitedSibNodeIds->count(sibNodeId) > 0) 1946 return; 1947 // Skip output edge if not a sibling using the same memref. 1948 if (outEdge.id == dstNode->id || outEdge.value != inEdge.value) 1949 return; 1950 auto *sibNode = mdg->getNode(sibNodeId); 1951 if (!isa<AffineForOp>(sibNode->op)) 1952 return; 1953 // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'. 1954 if (canFuseWithSibNode(sibNode, outEdge.value)) { 1955 // Add candidate 'outEdge' to sibling node. 1956 outEdges.push_back(outEdge); 1957 } 1958 }); 1959 1960 // Add first candidate if any were returned. 1961 if (!outEdges.empty()) { 1962 visitedSibNodeIds->insert(outEdges[0].id); 1963 idAndMemrefToFuse->first = outEdges[0].id; 1964 idAndMemrefToFuse->second = outEdges[0].value; 1965 return true; 1966 } 1967 } 1968 return false; 1969 } 1970 1971 /// Update data dependence graph state to reflect sibling fusion of 'sibNode' 1972 /// into 'dstNode'. 1973 void updateStateAfterSiblingFusion(Node *sibNode, Node *dstNode) { 1974 // Update 'sibNode' and 'dstNode' input/output edges to reflect fusion. 1975 mdg->updateEdges(sibNode->id, dstNode->id); 1976 1977 // Collect dst loop stats after memref privatization transformation. 1978 auto dstForInst = cast<AffineForOp>(dstNode->op); 1979 LoopNestStateCollector dstLoopCollector; 1980 dstLoopCollector.collect(dstForInst); 1981 // Clear and add back loads and stores 1982 mdg->clearNodeLoadAndStores(dstNode->id); 1983 mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts, 1984 dstLoopCollector.storeOpInsts); 1985 // Remove old sibling loop nest if it no longer has outgoing dependence 1986 // edges, and it does not write to a memref which escapes the block. 1987 if (mdg->getOutEdgeCount(sibNode->id) == 0) { 1988 Operation *op = sibNode->op; 1989 mdg->removeNode(sibNode->id); 1990 op->erase(); 1991 } 1992 } 1993 1994 // Clean up any allocs with no users. 1995 void eraseUnusedMemRefAllocations() { 1996 for (auto &pair : mdg->memrefEdgeCount) { 1997 if (pair.second > 0) 1998 continue; 1999 auto memref = pair.first; 2000 // Skip if there exist other uses (return operation or function calls). 2001 if (!memref.use_empty()) 2002 continue; 2003 // Use list expected to match the dep graph info. 2004 auto *op = memref.getDefiningOp(); 2005 if (isa_and_nonnull<memref::AllocOp>(op)) 2006 op->erase(); 2007 } 2008 } 2009 }; 2010 2011 } // namespace 2012 2013 /// Run fusion on `block`. 2014 void LoopFusion::runOnBlock(Block *block) { 2015 MemRefDependenceGraph g(*block); 2016 if (!g.init(block)) 2017 return; 2018 2019 Optional<unsigned> fastMemorySpaceOpt; 2020 if (fastMemorySpace.hasValue()) 2021 fastMemorySpaceOpt = fastMemorySpace; 2022 unsigned localBufSizeThresholdBytes = localBufSizeThreshold * 1024; 2023 GreedyFusion fusion(&g, localBufSizeThresholdBytes, fastMemorySpaceOpt, 2024 maximalFusion, computeToleranceThreshold); 2025 2026 if (affineFusionMode == FusionMode::ProducerConsumer) 2027 fusion.runProducerConsumerFusionOnly(); 2028 else if (affineFusionMode == FusionMode::Sibling) 2029 fusion.runSiblingFusionOnly(); 2030 else 2031 fusion.runGreedyFusion(); 2032 } 2033 2034 void LoopFusion::runOnOperation() { 2035 for (Region ®ion : getOperation()->getRegions()) 2036 for (Block &block : region.getBlocks()) 2037 runOnBlock(&block); 2038 } 2039