1 //===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h" 10 11 #include "mlir/Conversion/LLVMCommon/VectorPattern.h" 12 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 13 #include "mlir/Dialect/Arithmetic/Utils/Utils.h" 14 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h" 15 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 16 #include "mlir/Dialect/MemRef/IR/MemRef.h" 17 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" 18 #include "mlir/IR/BuiltinTypes.h" 19 #include "mlir/IR/TypeUtilities.h" 20 #include "mlir/Support/MathExtras.h" 21 #include "mlir/Target/LLVMIR/TypeToLLVM.h" 22 #include "mlir/Transforms/DialectConversion.h" 23 24 using namespace mlir; 25 using namespace mlir::vector; 26 27 // Helper to reduce vector type by one rank at front. 28 static VectorType reducedVectorTypeFront(VectorType tp) { 29 assert((tp.getRank() > 1) && "unlowerable vector type"); 30 unsigned numScalableDims = tp.getNumScalableDims(); 31 if (tp.getShape().size() == numScalableDims) 32 --numScalableDims; 33 return VectorType::get(tp.getShape().drop_front(), tp.getElementType(), 34 numScalableDims); 35 } 36 37 // Helper to reduce vector type by *all* but one rank at back. 38 static VectorType reducedVectorTypeBack(VectorType tp) { 39 assert((tp.getRank() > 1) && "unlowerable vector type"); 40 unsigned numScalableDims = tp.getNumScalableDims(); 41 if (numScalableDims > 0) 42 --numScalableDims; 43 return VectorType::get(tp.getShape().take_back(), tp.getElementType(), 44 numScalableDims); 45 } 46 47 // Helper that picks the proper sequence for inserting. 48 static Value insertOne(ConversionPatternRewriter &rewriter, 49 LLVMTypeConverter &typeConverter, Location loc, 50 Value val1, Value val2, Type llvmType, int64_t rank, 51 int64_t pos) { 52 assert(rank > 0 && "0-D vector corner case should have been handled already"); 53 if (rank == 1) { 54 auto idxType = rewriter.getIndexType(); 55 auto constant = rewriter.create<LLVM::ConstantOp>( 56 loc, typeConverter.convertType(idxType), 57 rewriter.getIntegerAttr(idxType, pos)); 58 return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2, 59 constant); 60 } 61 return rewriter.create<LLVM::InsertValueOp>(loc, val1, val2, pos); 62 } 63 64 // Helper that picks the proper sequence for extracting. 65 static Value extractOne(ConversionPatternRewriter &rewriter, 66 LLVMTypeConverter &typeConverter, Location loc, 67 Value val, Type llvmType, int64_t rank, int64_t pos) { 68 if (rank <= 1) { 69 auto idxType = rewriter.getIndexType(); 70 auto constant = rewriter.create<LLVM::ConstantOp>( 71 loc, typeConverter.convertType(idxType), 72 rewriter.getIntegerAttr(idxType, pos)); 73 return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val, 74 constant); 75 } 76 return rewriter.create<LLVM::ExtractValueOp>(loc, val, pos); 77 } 78 79 // Helper that returns data layout alignment of a memref. 80 LogicalResult getMemRefAlignment(LLVMTypeConverter &typeConverter, 81 MemRefType memrefType, unsigned &align) { 82 Type elementTy = typeConverter.convertType(memrefType.getElementType()); 83 if (!elementTy) 84 return failure(); 85 86 // TODO: this should use the MLIR data layout when it becomes available and 87 // stop depending on translation. 88 llvm::LLVMContext llvmContext; 89 align = LLVM::TypeToLLVMIRTranslator(llvmContext) 90 .getPreferredAlignment(elementTy, typeConverter.getDataLayout()); 91 return success(); 92 } 93 94 // Check if the last stride is non-unit or the memory space is not zero. 95 static LogicalResult isMemRefTypeSupported(MemRefType memRefType) { 96 int64_t offset; 97 SmallVector<int64_t, 4> strides; 98 auto successStrides = getStridesAndOffset(memRefType, strides, offset); 99 if (failed(successStrides) || strides.back() != 1 || 100 memRefType.getMemorySpaceAsInt() != 0) 101 return failure(); 102 return success(); 103 } 104 105 // Add an index vector component to a base pointer. 106 static Value getIndexedPtrs(ConversionPatternRewriter &rewriter, Location loc, 107 MemRefType memRefType, Value llvmMemref, Value base, 108 Value index, uint64_t vLen) { 109 assert(succeeded(isMemRefTypeSupported(memRefType)) && 110 "unsupported memref type"); 111 auto pType = MemRefDescriptor(llvmMemref).getElementPtrType(); 112 auto ptrsType = LLVM::getFixedVectorType(pType, vLen); 113 return rewriter.create<LLVM::GEPOp>(loc, ptrsType, base, index); 114 } 115 116 // Casts a strided element pointer to a vector pointer. The vector pointer 117 // will be in the same address space as the incoming memref type. 118 static Value castDataPtr(ConversionPatternRewriter &rewriter, Location loc, 119 Value ptr, MemRefType memRefType, Type vt) { 120 auto pType = LLVM::LLVMPointerType::get(vt, memRefType.getMemorySpaceAsInt()); 121 return rewriter.create<LLVM::BitcastOp>(loc, pType, ptr); 122 } 123 124 namespace { 125 126 /// Trivial Vector to LLVM conversions 127 using VectorScaleOpConversion = 128 OneToOneConvertToLLVMPattern<vector::VectorScaleOp, LLVM::vscale>; 129 130 /// Conversion pattern for a vector.bitcast. 131 class VectorBitCastOpConversion 132 : public ConvertOpToLLVMPattern<vector::BitCastOp> { 133 public: 134 using ConvertOpToLLVMPattern<vector::BitCastOp>::ConvertOpToLLVMPattern; 135 136 LogicalResult 137 matchAndRewrite(vector::BitCastOp bitCastOp, OpAdaptor adaptor, 138 ConversionPatternRewriter &rewriter) const override { 139 // Only 0-D and 1-D vectors can be lowered to LLVM. 140 VectorType resultTy = bitCastOp.getResultVectorType(); 141 if (resultTy.getRank() > 1) 142 return failure(); 143 Type newResultTy = typeConverter->convertType(resultTy); 144 rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(bitCastOp, newResultTy, 145 adaptor.getOperands()[0]); 146 return success(); 147 } 148 }; 149 150 /// Conversion pattern for a vector.matrix_multiply. 151 /// This is lowered directly to the proper llvm.intr.matrix.multiply. 152 class VectorMatmulOpConversion 153 : public ConvertOpToLLVMPattern<vector::MatmulOp> { 154 public: 155 using ConvertOpToLLVMPattern<vector::MatmulOp>::ConvertOpToLLVMPattern; 156 157 LogicalResult 158 matchAndRewrite(vector::MatmulOp matmulOp, OpAdaptor adaptor, 159 ConversionPatternRewriter &rewriter) const override { 160 rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>( 161 matmulOp, typeConverter->convertType(matmulOp.getRes().getType()), 162 adaptor.getLhs(), adaptor.getRhs(), matmulOp.getLhsRows(), 163 matmulOp.getLhsColumns(), matmulOp.getRhsColumns()); 164 return success(); 165 } 166 }; 167 168 /// Conversion pattern for a vector.flat_transpose. 169 /// This is lowered directly to the proper llvm.intr.matrix.transpose. 170 class VectorFlatTransposeOpConversion 171 : public ConvertOpToLLVMPattern<vector::FlatTransposeOp> { 172 public: 173 using ConvertOpToLLVMPattern<vector::FlatTransposeOp>::ConvertOpToLLVMPattern; 174 175 LogicalResult 176 matchAndRewrite(vector::FlatTransposeOp transOp, OpAdaptor adaptor, 177 ConversionPatternRewriter &rewriter) const override { 178 rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>( 179 transOp, typeConverter->convertType(transOp.getRes().getType()), 180 adaptor.getMatrix(), transOp.getRows(), transOp.getColumns()); 181 return success(); 182 } 183 }; 184 185 /// Overloaded utility that replaces a vector.load, vector.store, 186 /// vector.maskedload and vector.maskedstore with their respective LLVM 187 /// couterparts. 188 static void replaceLoadOrStoreOp(vector::LoadOp loadOp, 189 vector::LoadOpAdaptor adaptor, 190 VectorType vectorTy, Value ptr, unsigned align, 191 ConversionPatternRewriter &rewriter) { 192 rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, ptr, align); 193 } 194 195 static void replaceLoadOrStoreOp(vector::MaskedLoadOp loadOp, 196 vector::MaskedLoadOpAdaptor adaptor, 197 VectorType vectorTy, Value ptr, unsigned align, 198 ConversionPatternRewriter &rewriter) { 199 rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>( 200 loadOp, vectorTy, ptr, adaptor.getMask(), adaptor.getPassThru(), align); 201 } 202 203 static void replaceLoadOrStoreOp(vector::StoreOp storeOp, 204 vector::StoreOpAdaptor adaptor, 205 VectorType vectorTy, Value ptr, unsigned align, 206 ConversionPatternRewriter &rewriter) { 207 rewriter.replaceOpWithNewOp<LLVM::StoreOp>(storeOp, adaptor.getValueToStore(), 208 ptr, align); 209 } 210 211 static void replaceLoadOrStoreOp(vector::MaskedStoreOp storeOp, 212 vector::MaskedStoreOpAdaptor adaptor, 213 VectorType vectorTy, Value ptr, unsigned align, 214 ConversionPatternRewriter &rewriter) { 215 rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>( 216 storeOp, adaptor.getValueToStore(), ptr, adaptor.getMask(), align); 217 } 218 219 /// Conversion pattern for a vector.load, vector.store, vector.maskedload, and 220 /// vector.maskedstore. 221 template <class LoadOrStoreOp, class LoadOrStoreOpAdaptor> 222 class VectorLoadStoreConversion : public ConvertOpToLLVMPattern<LoadOrStoreOp> { 223 public: 224 using ConvertOpToLLVMPattern<LoadOrStoreOp>::ConvertOpToLLVMPattern; 225 226 LogicalResult 227 matchAndRewrite(LoadOrStoreOp loadOrStoreOp, 228 typename LoadOrStoreOp::Adaptor adaptor, 229 ConversionPatternRewriter &rewriter) const override { 230 // Only 1-D vectors can be lowered to LLVM. 231 VectorType vectorTy = loadOrStoreOp.getVectorType(); 232 if (vectorTy.getRank() > 1) 233 return failure(); 234 235 auto loc = loadOrStoreOp->getLoc(); 236 MemRefType memRefTy = loadOrStoreOp.getMemRefType(); 237 238 // Resolve alignment. 239 unsigned align; 240 if (failed(getMemRefAlignment(*this->getTypeConverter(), memRefTy, align))) 241 return failure(); 242 243 // Resolve address. 244 auto vtype = this->typeConverter->convertType(loadOrStoreOp.getVectorType()) 245 .template cast<VectorType>(); 246 Value dataPtr = this->getStridedElementPtr(loc, memRefTy, adaptor.getBase(), 247 adaptor.getIndices(), rewriter); 248 Value ptr = castDataPtr(rewriter, loc, dataPtr, memRefTy, vtype); 249 250 replaceLoadOrStoreOp(loadOrStoreOp, adaptor, vtype, ptr, align, rewriter); 251 return success(); 252 } 253 }; 254 255 /// Conversion pattern for a vector.gather. 256 class VectorGatherOpConversion 257 : public ConvertOpToLLVMPattern<vector::GatherOp> { 258 public: 259 using ConvertOpToLLVMPattern<vector::GatherOp>::ConvertOpToLLVMPattern; 260 261 LogicalResult 262 matchAndRewrite(vector::GatherOp gather, OpAdaptor adaptor, 263 ConversionPatternRewriter &rewriter) const override { 264 MemRefType memRefType = gather.getBaseType().dyn_cast<MemRefType>(); 265 assert(memRefType && "The base should be bufferized"); 266 267 if (failed(isMemRefTypeSupported(memRefType))) 268 return failure(); 269 270 auto loc = gather->getLoc(); 271 272 // Resolve alignment. 273 unsigned align; 274 if (failed(getMemRefAlignment(*getTypeConverter(), memRefType, align))) 275 return failure(); 276 277 Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(), 278 adaptor.getIndices(), rewriter); 279 Value base = adaptor.getBase(); 280 281 auto llvmNDVectorTy = adaptor.getIndexVec().getType(); 282 // Handle the simple case of 1-D vector. 283 if (!llvmNDVectorTy.isa<LLVM::LLVMArrayType>()) { 284 auto vType = gather.getVectorType(); 285 // Resolve address. 286 Value ptrs = getIndexedPtrs(rewriter, loc, memRefType, base, ptr, 287 adaptor.getIndexVec(), 288 /*vLen=*/vType.getDimSize(0)); 289 // Replace with the gather intrinsic. 290 rewriter.replaceOpWithNewOp<LLVM::masked_gather>( 291 gather, typeConverter->convertType(vType), ptrs, adaptor.getMask(), 292 adaptor.getPassThru(), rewriter.getI32IntegerAttr(align)); 293 return success(); 294 } 295 296 auto callback = [align, memRefType, base, ptr, loc, &rewriter]( 297 Type llvm1DVectorTy, ValueRange vectorOperands) { 298 // Resolve address. 299 Value ptrs = getIndexedPtrs( 300 rewriter, loc, memRefType, base, ptr, /*index=*/vectorOperands[0], 301 LLVM::getVectorNumElements(llvm1DVectorTy).getFixedValue()); 302 // Create the gather intrinsic. 303 return rewriter.create<LLVM::masked_gather>( 304 loc, llvm1DVectorTy, ptrs, /*mask=*/vectorOperands[1], 305 /*passThru=*/vectorOperands[2], rewriter.getI32IntegerAttr(align)); 306 }; 307 SmallVector<Value> vectorOperands = { 308 adaptor.getIndexVec(), adaptor.getMask(), adaptor.getPassThru()}; 309 return LLVM::detail::handleMultidimensionalVectors( 310 gather, vectorOperands, *getTypeConverter(), callback, rewriter); 311 } 312 }; 313 314 /// Conversion pattern for a vector.scatter. 315 class VectorScatterOpConversion 316 : public ConvertOpToLLVMPattern<vector::ScatterOp> { 317 public: 318 using ConvertOpToLLVMPattern<vector::ScatterOp>::ConvertOpToLLVMPattern; 319 320 LogicalResult 321 matchAndRewrite(vector::ScatterOp scatter, OpAdaptor adaptor, 322 ConversionPatternRewriter &rewriter) const override { 323 auto loc = scatter->getLoc(); 324 MemRefType memRefType = scatter.getMemRefType(); 325 326 if (failed(isMemRefTypeSupported(memRefType))) 327 return failure(); 328 329 // Resolve alignment. 330 unsigned align; 331 if (failed(getMemRefAlignment(*getTypeConverter(), memRefType, align))) 332 return failure(); 333 334 // Resolve address. 335 VectorType vType = scatter.getVectorType(); 336 Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(), 337 adaptor.getIndices(), rewriter); 338 Value ptrs = 339 getIndexedPtrs(rewriter, loc, memRefType, adaptor.getBase(), ptr, 340 adaptor.getIndexVec(), /*vLen=*/vType.getDimSize(0)); 341 342 // Replace with the scatter intrinsic. 343 rewriter.replaceOpWithNewOp<LLVM::masked_scatter>( 344 scatter, adaptor.getValueToStore(), ptrs, adaptor.getMask(), 345 rewriter.getI32IntegerAttr(align)); 346 return success(); 347 } 348 }; 349 350 /// Conversion pattern for a vector.expandload. 351 class VectorExpandLoadOpConversion 352 : public ConvertOpToLLVMPattern<vector::ExpandLoadOp> { 353 public: 354 using ConvertOpToLLVMPattern<vector::ExpandLoadOp>::ConvertOpToLLVMPattern; 355 356 LogicalResult 357 matchAndRewrite(vector::ExpandLoadOp expand, OpAdaptor adaptor, 358 ConversionPatternRewriter &rewriter) const override { 359 auto loc = expand->getLoc(); 360 MemRefType memRefType = expand.getMemRefType(); 361 362 // Resolve address. 363 auto vtype = typeConverter->convertType(expand.getVectorType()); 364 Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(), 365 adaptor.getIndices(), rewriter); 366 367 rewriter.replaceOpWithNewOp<LLVM::masked_expandload>( 368 expand, vtype, ptr, adaptor.getMask(), adaptor.getPassThru()); 369 return success(); 370 } 371 }; 372 373 /// Conversion pattern for a vector.compressstore. 374 class VectorCompressStoreOpConversion 375 : public ConvertOpToLLVMPattern<vector::CompressStoreOp> { 376 public: 377 using ConvertOpToLLVMPattern<vector::CompressStoreOp>::ConvertOpToLLVMPattern; 378 379 LogicalResult 380 matchAndRewrite(vector::CompressStoreOp compress, OpAdaptor adaptor, 381 ConversionPatternRewriter &rewriter) const override { 382 auto loc = compress->getLoc(); 383 MemRefType memRefType = compress.getMemRefType(); 384 385 // Resolve address. 386 Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(), 387 adaptor.getIndices(), rewriter); 388 389 rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>( 390 compress, adaptor.getValueToStore(), ptr, adaptor.getMask()); 391 return success(); 392 } 393 }; 394 395 /// Helper method to lower a `vector.reduction` op that performs an arithmetic 396 /// operation like add,mul, etc.. `VectorOp` is the LLVM vector intrinsic to use 397 /// and `ScalarOp` is the scalar operation used to add the accumulation value if 398 /// non-null. 399 template <class VectorOp, class ScalarOp> 400 static Value createIntegerReductionArithmeticOpLowering( 401 ConversionPatternRewriter &rewriter, Location loc, Type llvmType, 402 Value vectorOperand, Value accumulator) { 403 Value result = rewriter.create<VectorOp>(loc, llvmType, vectorOperand); 404 if (accumulator) 405 result = rewriter.create<ScalarOp>(loc, accumulator, result); 406 return result; 407 } 408 409 /// Helper method to lower a `vector.reduction` operation that performs 410 /// a comparison operation like `min`/`max`. `VectorOp` is the LLVM vector 411 /// intrinsic to use and `predicate` is the predicate to use to compare+combine 412 /// the accumulator value if non-null. 413 template <class VectorOp> 414 static Value createIntegerReductionComparisonOpLowering( 415 ConversionPatternRewriter &rewriter, Location loc, Type llvmType, 416 Value vectorOperand, Value accumulator, LLVM::ICmpPredicate predicate) { 417 Value result = rewriter.create<VectorOp>(loc, llvmType, vectorOperand); 418 if (accumulator) { 419 Value cmp = 420 rewriter.create<LLVM::ICmpOp>(loc, predicate, accumulator, result); 421 result = rewriter.create<LLVM::SelectOp>(loc, cmp, accumulator, result); 422 } 423 return result; 424 } 425 426 /// Create lowering of minf/maxf op. We cannot use llvm.maximum/llvm.minimum 427 /// with vector types. 428 static Value createMinMaxF(OpBuilder &builder, Location loc, Value lhs, 429 Value rhs, bool isMin) { 430 auto floatType = getElementTypeOrSelf(lhs.getType()).cast<FloatType>(); 431 Type i1Type = builder.getI1Type(); 432 if (auto vecType = lhs.getType().dyn_cast<VectorType>()) 433 i1Type = VectorType::get(vecType.getShape(), i1Type); 434 Value cmp = builder.create<LLVM::FCmpOp>( 435 loc, i1Type, isMin ? LLVM::FCmpPredicate::olt : LLVM::FCmpPredicate::ogt, 436 lhs, rhs); 437 Value sel = builder.create<LLVM::SelectOp>(loc, cmp, lhs, rhs); 438 Value isNan = builder.create<LLVM::FCmpOp>( 439 loc, i1Type, LLVM::FCmpPredicate::uno, lhs, rhs); 440 Value nan = builder.create<LLVM::ConstantOp>( 441 loc, lhs.getType(), 442 builder.getFloatAttr(floatType, 443 APFloat::getQNaN(floatType.getFloatSemantics()))); 444 return builder.create<LLVM::SelectOp>(loc, isNan, nan, sel); 445 } 446 447 /// Conversion pattern for all vector reductions. 448 class VectorReductionOpConversion 449 : public ConvertOpToLLVMPattern<vector::ReductionOp> { 450 public: 451 explicit VectorReductionOpConversion(LLVMTypeConverter &typeConv, 452 bool reassociateFPRed) 453 : ConvertOpToLLVMPattern<vector::ReductionOp>(typeConv), 454 reassociateFPReductions(reassociateFPRed) {} 455 456 LogicalResult 457 matchAndRewrite(vector::ReductionOp reductionOp, OpAdaptor adaptor, 458 ConversionPatternRewriter &rewriter) const override { 459 auto kind = reductionOp.getKind(); 460 Type eltType = reductionOp.getDest().getType(); 461 Type llvmType = typeConverter->convertType(eltType); 462 Value operand = adaptor.getVector(); 463 Value acc = adaptor.getAcc(); 464 Location loc = reductionOp.getLoc(); 465 if (eltType.isIntOrIndex()) { 466 // Integer reductions: add/mul/min/max/and/or/xor. 467 Value result; 468 switch (kind) { 469 case vector::CombiningKind::ADD: 470 result = 471 createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_add, 472 LLVM::AddOp>( 473 rewriter, loc, llvmType, operand, acc); 474 break; 475 case vector::CombiningKind::MUL: 476 result = 477 createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_mul, 478 LLVM::MulOp>( 479 rewriter, loc, llvmType, operand, acc); 480 break; 481 case vector::CombiningKind::MINUI: 482 result = createIntegerReductionComparisonOpLowering< 483 LLVM::vector_reduce_umin>(rewriter, loc, llvmType, operand, acc, 484 LLVM::ICmpPredicate::ule); 485 break; 486 case vector::CombiningKind::MINSI: 487 result = createIntegerReductionComparisonOpLowering< 488 LLVM::vector_reduce_smin>(rewriter, loc, llvmType, operand, acc, 489 LLVM::ICmpPredicate::sle); 490 break; 491 case vector::CombiningKind::MAXUI: 492 result = createIntegerReductionComparisonOpLowering< 493 LLVM::vector_reduce_umax>(rewriter, loc, llvmType, operand, acc, 494 LLVM::ICmpPredicate::uge); 495 break; 496 case vector::CombiningKind::MAXSI: 497 result = createIntegerReductionComparisonOpLowering< 498 LLVM::vector_reduce_smax>(rewriter, loc, llvmType, operand, acc, 499 LLVM::ICmpPredicate::sge); 500 break; 501 case vector::CombiningKind::AND: 502 result = 503 createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_and, 504 LLVM::AndOp>( 505 rewriter, loc, llvmType, operand, acc); 506 break; 507 case vector::CombiningKind::OR: 508 result = 509 createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_or, 510 LLVM::OrOp>( 511 rewriter, loc, llvmType, operand, acc); 512 break; 513 case vector::CombiningKind::XOR: 514 result = 515 createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_xor, 516 LLVM::XOrOp>( 517 rewriter, loc, llvmType, operand, acc); 518 break; 519 default: 520 return failure(); 521 } 522 rewriter.replaceOp(reductionOp, result); 523 524 return success(); 525 } 526 527 if (!eltType.isa<FloatType>()) 528 return failure(); 529 530 // Floating-point reductions: add/mul/min/max 531 if (kind == vector::CombiningKind::ADD) { 532 // Optional accumulator (or zero). 533 Value acc = adaptor.getOperands().size() > 1 534 ? adaptor.getOperands()[1] 535 : rewriter.create<LLVM::ConstantOp>( 536 reductionOp->getLoc(), llvmType, 537 rewriter.getZeroAttr(eltType)); 538 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fadd>( 539 reductionOp, llvmType, acc, operand, 540 rewriter.getBoolAttr(reassociateFPReductions)); 541 } else if (kind == vector::CombiningKind::MUL) { 542 // Optional accumulator (or one). 543 Value acc = adaptor.getOperands().size() > 1 544 ? adaptor.getOperands()[1] 545 : rewriter.create<LLVM::ConstantOp>( 546 reductionOp->getLoc(), llvmType, 547 rewriter.getFloatAttr(eltType, 1.0)); 548 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmul>( 549 reductionOp, llvmType, acc, operand, 550 rewriter.getBoolAttr(reassociateFPReductions)); 551 } else if (kind == vector::CombiningKind::MINF) { 552 // FIXME: MLIR's 'minf' and LLVM's 'vector_reduce_fmin' do not handle 553 // NaNs/-0.0/+0.0 in the same way. 554 Value result = 555 rewriter.create<LLVM::vector_reduce_fmin>(loc, llvmType, operand); 556 if (acc) 557 result = createMinMaxF(rewriter, loc, result, acc, /*isMin=*/true); 558 rewriter.replaceOp(reductionOp, result); 559 } else if (kind == vector::CombiningKind::MAXF) { 560 // FIXME: MLIR's 'maxf' and LLVM's 'vector_reduce_fmax' do not handle 561 // NaNs/-0.0/+0.0 in the same way. 562 Value result = 563 rewriter.create<LLVM::vector_reduce_fmax>(loc, llvmType, operand); 564 if (acc) 565 result = createMinMaxF(rewriter, loc, result, acc, /*isMin=*/false); 566 rewriter.replaceOp(reductionOp, result); 567 } else 568 return failure(); 569 570 return success(); 571 } 572 573 private: 574 const bool reassociateFPReductions; 575 }; 576 577 class VectorShuffleOpConversion 578 : public ConvertOpToLLVMPattern<vector::ShuffleOp> { 579 public: 580 using ConvertOpToLLVMPattern<vector::ShuffleOp>::ConvertOpToLLVMPattern; 581 582 LogicalResult 583 matchAndRewrite(vector::ShuffleOp shuffleOp, OpAdaptor adaptor, 584 ConversionPatternRewriter &rewriter) const override { 585 auto loc = shuffleOp->getLoc(); 586 auto v1Type = shuffleOp.getV1VectorType(); 587 auto v2Type = shuffleOp.getV2VectorType(); 588 auto vectorType = shuffleOp.getVectorType(); 589 Type llvmType = typeConverter->convertType(vectorType); 590 auto maskArrayAttr = shuffleOp.getMask(); 591 592 // Bail if result type cannot be lowered. 593 if (!llvmType) 594 return failure(); 595 596 // Get rank and dimension sizes. 597 int64_t rank = vectorType.getRank(); 598 assert(v1Type.getRank() == rank); 599 assert(v2Type.getRank() == rank); 600 int64_t v1Dim = v1Type.getDimSize(0); 601 602 // For rank 1, where both operands have *exactly* the same vector type, 603 // there is direct shuffle support in LLVM. Use it! 604 if (rank == 1 && v1Type == v2Type) { 605 Value llvmShuffleOp = rewriter.create<LLVM::ShuffleVectorOp>( 606 loc, adaptor.getV1(), adaptor.getV2(), 607 LLVM::convertArrayToIndices<int32_t>(maskArrayAttr)); 608 rewriter.replaceOp(shuffleOp, llvmShuffleOp); 609 return success(); 610 } 611 612 // For all other cases, insert the individual values individually. 613 Type eltType; 614 if (auto arrayType = llvmType.dyn_cast<LLVM::LLVMArrayType>()) 615 eltType = arrayType.getElementType(); 616 else 617 eltType = llvmType.cast<VectorType>().getElementType(); 618 Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType); 619 int64_t insPos = 0; 620 for (const auto &en : llvm::enumerate(maskArrayAttr)) { 621 int64_t extPos = en.value().cast<IntegerAttr>().getInt(); 622 Value value = adaptor.getV1(); 623 if (extPos >= v1Dim) { 624 extPos -= v1Dim; 625 value = adaptor.getV2(); 626 } 627 Value extract = extractOne(rewriter, *getTypeConverter(), loc, value, 628 eltType, rank, extPos); 629 insert = insertOne(rewriter, *getTypeConverter(), loc, insert, extract, 630 llvmType, rank, insPos++); 631 } 632 rewriter.replaceOp(shuffleOp, insert); 633 return success(); 634 } 635 }; 636 637 class VectorExtractElementOpConversion 638 : public ConvertOpToLLVMPattern<vector::ExtractElementOp> { 639 public: 640 using ConvertOpToLLVMPattern< 641 vector::ExtractElementOp>::ConvertOpToLLVMPattern; 642 643 LogicalResult 644 matchAndRewrite(vector::ExtractElementOp extractEltOp, OpAdaptor adaptor, 645 ConversionPatternRewriter &rewriter) const override { 646 auto vectorType = extractEltOp.getVectorType(); 647 auto llvmType = typeConverter->convertType(vectorType.getElementType()); 648 649 // Bail if result type cannot be lowered. 650 if (!llvmType) 651 return failure(); 652 653 if (vectorType.getRank() == 0) { 654 Location loc = extractEltOp.getLoc(); 655 auto idxType = rewriter.getIndexType(); 656 auto zero = rewriter.create<LLVM::ConstantOp>( 657 loc, typeConverter->convertType(idxType), 658 rewriter.getIntegerAttr(idxType, 0)); 659 rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>( 660 extractEltOp, llvmType, adaptor.getVector(), zero); 661 return success(); 662 } 663 664 rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>( 665 extractEltOp, llvmType, adaptor.getVector(), adaptor.getPosition()); 666 return success(); 667 } 668 }; 669 670 class VectorExtractOpConversion 671 : public ConvertOpToLLVMPattern<vector::ExtractOp> { 672 public: 673 using ConvertOpToLLVMPattern<vector::ExtractOp>::ConvertOpToLLVMPattern; 674 675 LogicalResult 676 matchAndRewrite(vector::ExtractOp extractOp, OpAdaptor adaptor, 677 ConversionPatternRewriter &rewriter) const override { 678 auto loc = extractOp->getLoc(); 679 auto resultType = extractOp.getResult().getType(); 680 auto llvmResultType = typeConverter->convertType(resultType); 681 auto positionArrayAttr = extractOp.getPosition(); 682 683 // Bail if result type cannot be lowered. 684 if (!llvmResultType) 685 return failure(); 686 687 // Extract entire vector. Should be handled by folder, but just to be safe. 688 if (positionArrayAttr.empty()) { 689 rewriter.replaceOp(extractOp, adaptor.getVector()); 690 return success(); 691 } 692 693 // One-shot extraction of vector from array (only requires extractvalue). 694 if (resultType.isa<VectorType>()) { 695 SmallVector<int64_t> indices; 696 for (auto idx : positionArrayAttr.getAsRange<IntegerAttr>()) 697 indices.push_back(idx.getInt()); 698 Value extracted = rewriter.create<LLVM::ExtractValueOp>( 699 loc, adaptor.getVector(), indices); 700 rewriter.replaceOp(extractOp, extracted); 701 return success(); 702 } 703 704 // Potential extraction of 1-D vector from array. 705 Value extracted = adaptor.getVector(); 706 auto positionAttrs = positionArrayAttr.getValue(); 707 if (positionAttrs.size() > 1) { 708 SmallVector<int64_t> nMinusOnePosition; 709 for (auto idx : positionAttrs.drop_back()) 710 nMinusOnePosition.push_back(idx.cast<IntegerAttr>().getInt()); 711 extracted = rewriter.create<LLVM::ExtractValueOp>(loc, extracted, 712 nMinusOnePosition); 713 } 714 715 // Remaining extraction of element from 1-D LLVM vector 716 auto position = positionAttrs.back().cast<IntegerAttr>(); 717 auto i64Type = IntegerType::get(rewriter.getContext(), 64); 718 auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); 719 extracted = 720 rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant); 721 rewriter.replaceOp(extractOp, extracted); 722 723 return success(); 724 } 725 }; 726 727 /// Conversion pattern that turns a vector.fma on a 1-D vector 728 /// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion. 729 /// This does not match vectors of n >= 2 rank. 730 /// 731 /// Example: 732 /// ``` 733 /// vector.fma %a, %a, %a : vector<8xf32> 734 /// ``` 735 /// is converted to: 736 /// ``` 737 /// llvm.intr.fmuladd %va, %va, %va: 738 /// (!llvm."<8 x f32>">, !llvm<"<8 x f32>">, !llvm<"<8 x f32>">) 739 /// -> !llvm."<8 x f32>"> 740 /// ``` 741 class VectorFMAOp1DConversion : public ConvertOpToLLVMPattern<vector::FMAOp> { 742 public: 743 using ConvertOpToLLVMPattern<vector::FMAOp>::ConvertOpToLLVMPattern; 744 745 LogicalResult 746 matchAndRewrite(vector::FMAOp fmaOp, OpAdaptor adaptor, 747 ConversionPatternRewriter &rewriter) const override { 748 VectorType vType = fmaOp.getVectorType(); 749 if (vType.getRank() != 1) 750 return failure(); 751 rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>( 752 fmaOp, adaptor.getLhs(), adaptor.getRhs(), adaptor.getAcc()); 753 return success(); 754 } 755 }; 756 757 class VectorInsertElementOpConversion 758 : public ConvertOpToLLVMPattern<vector::InsertElementOp> { 759 public: 760 using ConvertOpToLLVMPattern<vector::InsertElementOp>::ConvertOpToLLVMPattern; 761 762 LogicalResult 763 matchAndRewrite(vector::InsertElementOp insertEltOp, OpAdaptor adaptor, 764 ConversionPatternRewriter &rewriter) const override { 765 auto vectorType = insertEltOp.getDestVectorType(); 766 auto llvmType = typeConverter->convertType(vectorType); 767 768 // Bail if result type cannot be lowered. 769 if (!llvmType) 770 return failure(); 771 772 if (vectorType.getRank() == 0) { 773 Location loc = insertEltOp.getLoc(); 774 auto idxType = rewriter.getIndexType(); 775 auto zero = rewriter.create<LLVM::ConstantOp>( 776 loc, typeConverter->convertType(idxType), 777 rewriter.getIntegerAttr(idxType, 0)); 778 rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( 779 insertEltOp, llvmType, adaptor.getDest(), adaptor.getSource(), zero); 780 return success(); 781 } 782 783 rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( 784 insertEltOp, llvmType, adaptor.getDest(), adaptor.getSource(), 785 adaptor.getPosition()); 786 return success(); 787 } 788 }; 789 790 class VectorInsertOpConversion 791 : public ConvertOpToLLVMPattern<vector::InsertOp> { 792 public: 793 using ConvertOpToLLVMPattern<vector::InsertOp>::ConvertOpToLLVMPattern; 794 795 LogicalResult 796 matchAndRewrite(vector::InsertOp insertOp, OpAdaptor adaptor, 797 ConversionPatternRewriter &rewriter) const override { 798 auto loc = insertOp->getLoc(); 799 auto sourceType = insertOp.getSourceType(); 800 auto destVectorType = insertOp.getDestVectorType(); 801 auto llvmResultType = typeConverter->convertType(destVectorType); 802 auto positionArrayAttr = insertOp.getPosition(); 803 804 // Bail if result type cannot be lowered. 805 if (!llvmResultType) 806 return failure(); 807 808 // Overwrite entire vector with value. Should be handled by folder, but 809 // just to be safe. 810 if (positionArrayAttr.empty()) { 811 rewriter.replaceOp(insertOp, adaptor.getSource()); 812 return success(); 813 } 814 815 // One-shot insertion of a vector into an array (only requires insertvalue). 816 if (sourceType.isa<VectorType>()) { 817 Value inserted = rewriter.create<LLVM::InsertValueOp>( 818 loc, adaptor.getDest(), adaptor.getSource(), 819 LLVM::convertArrayToIndices(positionArrayAttr)); 820 rewriter.replaceOp(insertOp, inserted); 821 return success(); 822 } 823 824 // Potential extraction of 1-D vector from array. 825 Value extracted = adaptor.getDest(); 826 auto positionAttrs = positionArrayAttr.getValue(); 827 auto position = positionAttrs.back().cast<IntegerAttr>(); 828 auto oneDVectorType = destVectorType; 829 if (positionAttrs.size() > 1) { 830 oneDVectorType = reducedVectorTypeBack(destVectorType); 831 extracted = rewriter.create<LLVM::ExtractValueOp>( 832 loc, extracted, 833 LLVM::convertArrayToIndices(positionAttrs.drop_back())); 834 } 835 836 // Insertion of an element into a 1-D LLVM vector. 837 auto i64Type = IntegerType::get(rewriter.getContext(), 64); 838 auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); 839 Value inserted = rewriter.create<LLVM::InsertElementOp>( 840 loc, typeConverter->convertType(oneDVectorType), extracted, 841 adaptor.getSource(), constant); 842 843 // Potential insertion of resulting 1-D vector into array. 844 if (positionAttrs.size() > 1) { 845 inserted = rewriter.create<LLVM::InsertValueOp>( 846 loc, adaptor.getDest(), inserted, 847 LLVM::convertArrayToIndices(positionAttrs.drop_back())); 848 } 849 850 rewriter.replaceOp(insertOp, inserted); 851 return success(); 852 } 853 }; 854 855 /// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1. 856 /// 857 /// Example: 858 /// ``` 859 /// %d = vector.fma %a, %b, %c : vector<2x4xf32> 860 /// ``` 861 /// is rewritten into: 862 /// ``` 863 /// %r = splat %f0: vector<2x4xf32> 864 /// %va = vector.extractvalue %a[0] : vector<2x4xf32> 865 /// %vb = vector.extractvalue %b[0] : vector<2x4xf32> 866 /// %vc = vector.extractvalue %c[0] : vector<2x4xf32> 867 /// %vd = vector.fma %va, %vb, %vc : vector<4xf32> 868 /// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32> 869 /// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32> 870 /// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32> 871 /// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32> 872 /// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32> 873 /// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32> 874 /// // %r3 holds the final value. 875 /// ``` 876 class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> { 877 public: 878 using OpRewritePattern<FMAOp>::OpRewritePattern; 879 880 void initialize() { 881 // This pattern recursively unpacks one dimension at a time. The recursion 882 // bounded as the rank is strictly decreasing. 883 setHasBoundedRewriteRecursion(); 884 } 885 886 LogicalResult matchAndRewrite(FMAOp op, 887 PatternRewriter &rewriter) const override { 888 auto vType = op.getVectorType(); 889 if (vType.getRank() < 2) 890 return failure(); 891 892 auto loc = op.getLoc(); 893 auto elemType = vType.getElementType(); 894 Value zero = rewriter.create<arith::ConstantOp>( 895 loc, elemType, rewriter.getZeroAttr(elemType)); 896 Value desc = rewriter.create<vector::SplatOp>(loc, vType, zero); 897 for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) { 898 Value extrLHS = rewriter.create<ExtractOp>(loc, op.getLhs(), i); 899 Value extrRHS = rewriter.create<ExtractOp>(loc, op.getRhs(), i); 900 Value extrACC = rewriter.create<ExtractOp>(loc, op.getAcc(), i); 901 Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC); 902 desc = rewriter.create<InsertOp>(loc, fma, desc, i); 903 } 904 rewriter.replaceOp(op, desc); 905 return success(); 906 } 907 }; 908 909 /// Returns the strides if the memory underlying `memRefType` has a contiguous 910 /// static layout. 911 static llvm::Optional<SmallVector<int64_t, 4>> 912 computeContiguousStrides(MemRefType memRefType) { 913 int64_t offset; 914 SmallVector<int64_t, 4> strides; 915 if (failed(getStridesAndOffset(memRefType, strides, offset))) 916 return None; 917 if (!strides.empty() && strides.back() != 1) 918 return None; 919 // If no layout or identity layout, this is contiguous by definition. 920 if (memRefType.getLayout().isIdentity()) 921 return strides; 922 923 // Otherwise, we must determine contiguity form shapes. This can only ever 924 // work in static cases because MemRefType is underspecified to represent 925 // contiguous dynamic shapes in other ways than with just empty/identity 926 // layout. 927 auto sizes = memRefType.getShape(); 928 for (int index = 0, e = strides.size() - 1; index < e; ++index) { 929 if (ShapedType::isDynamic(sizes[index + 1]) || 930 ShapedType::isDynamicStrideOrOffset(strides[index]) || 931 ShapedType::isDynamicStrideOrOffset(strides[index + 1])) 932 return None; 933 if (strides[index] != strides[index + 1] * sizes[index + 1]) 934 return None; 935 } 936 return strides; 937 } 938 939 class VectorTypeCastOpConversion 940 : public ConvertOpToLLVMPattern<vector::TypeCastOp> { 941 public: 942 using ConvertOpToLLVMPattern<vector::TypeCastOp>::ConvertOpToLLVMPattern; 943 944 LogicalResult 945 matchAndRewrite(vector::TypeCastOp castOp, OpAdaptor adaptor, 946 ConversionPatternRewriter &rewriter) const override { 947 auto loc = castOp->getLoc(); 948 MemRefType sourceMemRefType = 949 castOp.getOperand().getType().cast<MemRefType>(); 950 MemRefType targetMemRefType = castOp.getType(); 951 952 // Only static shape casts supported atm. 953 if (!sourceMemRefType.hasStaticShape() || 954 !targetMemRefType.hasStaticShape()) 955 return failure(); 956 957 auto llvmSourceDescriptorTy = 958 adaptor.getOperands()[0].getType().dyn_cast<LLVM::LLVMStructType>(); 959 if (!llvmSourceDescriptorTy) 960 return failure(); 961 MemRefDescriptor sourceMemRef(adaptor.getOperands()[0]); 962 963 auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType) 964 .dyn_cast_or_null<LLVM::LLVMStructType>(); 965 if (!llvmTargetDescriptorTy) 966 return failure(); 967 968 // Only contiguous source buffers supported atm. 969 auto sourceStrides = computeContiguousStrides(sourceMemRefType); 970 if (!sourceStrides) 971 return failure(); 972 auto targetStrides = computeContiguousStrides(targetMemRefType); 973 if (!targetStrides) 974 return failure(); 975 // Only support static strides for now, regardless of contiguity. 976 if (llvm::any_of(*targetStrides, ShapedType::isDynamicStrideOrOffset)) 977 return failure(); 978 979 auto int64Ty = IntegerType::get(rewriter.getContext(), 64); 980 981 // Create descriptor. 982 auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy); 983 Type llvmTargetElementTy = desc.getElementPtrType(); 984 // Set allocated ptr. 985 Value allocated = sourceMemRef.allocatedPtr(rewriter, loc); 986 allocated = 987 rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated); 988 desc.setAllocatedPtr(rewriter, loc, allocated); 989 // Set aligned ptr. 990 Value ptr = sourceMemRef.alignedPtr(rewriter, loc); 991 ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr); 992 desc.setAlignedPtr(rewriter, loc, ptr); 993 // Fill offset 0. 994 auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0); 995 auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr); 996 desc.setOffset(rewriter, loc, zero); 997 998 // Fill size and stride descriptors in memref. 999 for (const auto &indexedSize : 1000 llvm::enumerate(targetMemRefType.getShape())) { 1001 int64_t index = indexedSize.index(); 1002 auto sizeAttr = 1003 rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value()); 1004 auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr); 1005 desc.setSize(rewriter, loc, index, size); 1006 auto strideAttr = rewriter.getIntegerAttr(rewriter.getIndexType(), 1007 (*targetStrides)[index]); 1008 auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr); 1009 desc.setStride(rewriter, loc, index, stride); 1010 } 1011 1012 rewriter.replaceOp(castOp, {desc}); 1013 return success(); 1014 } 1015 }; 1016 1017 /// Conversion pattern for a `vector.create_mask` (1-D scalable vectors only). 1018 /// Non-scalable versions of this operation are handled in Vector Transforms. 1019 class VectorCreateMaskOpRewritePattern 1020 : public OpRewritePattern<vector::CreateMaskOp> { 1021 public: 1022 explicit VectorCreateMaskOpRewritePattern(MLIRContext *context, 1023 bool enableIndexOpt) 1024 : OpRewritePattern<vector::CreateMaskOp>(context), 1025 force32BitVectorIndices(enableIndexOpt) {} 1026 1027 LogicalResult matchAndRewrite(vector::CreateMaskOp op, 1028 PatternRewriter &rewriter) const override { 1029 auto dstType = op.getType(); 1030 if (dstType.getRank() != 1 || !dstType.cast<VectorType>().isScalable()) 1031 return failure(); 1032 IntegerType idxType = 1033 force32BitVectorIndices ? rewriter.getI32Type() : rewriter.getI64Type(); 1034 auto loc = op->getLoc(); 1035 Value indices = rewriter.create<LLVM::StepVectorOp>( 1036 loc, LLVM::getVectorType(idxType, dstType.getShape()[0], 1037 /*isScalable=*/true)); 1038 auto bound = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, 1039 op.getOperand(0)); 1040 Value bounds = rewriter.create<SplatOp>(loc, indices.getType(), bound); 1041 Value comp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, 1042 indices, bounds); 1043 rewriter.replaceOp(op, comp); 1044 return success(); 1045 } 1046 1047 private: 1048 const bool force32BitVectorIndices; 1049 }; 1050 1051 class VectorPrintOpConversion : public ConvertOpToLLVMPattern<vector::PrintOp> { 1052 public: 1053 using ConvertOpToLLVMPattern<vector::PrintOp>::ConvertOpToLLVMPattern; 1054 1055 // Proof-of-concept lowering implementation that relies on a small 1056 // runtime support library, which only needs to provide a few 1057 // printing methods (single value for all data types, opening/closing 1058 // bracket, comma, newline). The lowering fully unrolls a vector 1059 // in terms of these elementary printing operations. The advantage 1060 // of this approach is that the library can remain unaware of all 1061 // low-level implementation details of vectors while still supporting 1062 // output of any shaped and dimensioned vector. Due to full unrolling, 1063 // this approach is less suited for very large vectors though. 1064 // 1065 // TODO: rely solely on libc in future? something else? 1066 // 1067 LogicalResult 1068 matchAndRewrite(vector::PrintOp printOp, OpAdaptor adaptor, 1069 ConversionPatternRewriter &rewriter) const override { 1070 Type printType = printOp.getPrintType(); 1071 1072 if (typeConverter->convertType(printType) == nullptr) 1073 return failure(); 1074 1075 // Make sure element type has runtime support. 1076 PrintConversion conversion = PrintConversion::None; 1077 VectorType vectorType = printType.dyn_cast<VectorType>(); 1078 Type eltType = vectorType ? vectorType.getElementType() : printType; 1079 Operation *printer; 1080 if (eltType.isF32()) { 1081 printer = 1082 LLVM::lookupOrCreatePrintF32Fn(printOp->getParentOfType<ModuleOp>()); 1083 } else if (eltType.isF64()) { 1084 printer = 1085 LLVM::lookupOrCreatePrintF64Fn(printOp->getParentOfType<ModuleOp>()); 1086 } else if (eltType.isIndex()) { 1087 printer = 1088 LLVM::lookupOrCreatePrintU64Fn(printOp->getParentOfType<ModuleOp>()); 1089 } else if (auto intTy = eltType.dyn_cast<IntegerType>()) { 1090 // Integers need a zero or sign extension on the operand 1091 // (depending on the source type) as well as a signed or 1092 // unsigned print method. Up to 64-bit is supported. 1093 unsigned width = intTy.getWidth(); 1094 if (intTy.isUnsigned()) { 1095 if (width <= 64) { 1096 if (width < 64) 1097 conversion = PrintConversion::ZeroExt64; 1098 printer = LLVM::lookupOrCreatePrintU64Fn( 1099 printOp->getParentOfType<ModuleOp>()); 1100 } else { 1101 return failure(); 1102 } 1103 } else { 1104 assert(intTy.isSignless() || intTy.isSigned()); 1105 if (width <= 64) { 1106 // Note that we *always* zero extend booleans (1-bit integers), 1107 // so that true/false is printed as 1/0 rather than -1/0. 1108 if (width == 1) 1109 conversion = PrintConversion::ZeroExt64; 1110 else if (width < 64) 1111 conversion = PrintConversion::SignExt64; 1112 printer = LLVM::lookupOrCreatePrintI64Fn( 1113 printOp->getParentOfType<ModuleOp>()); 1114 } else { 1115 return failure(); 1116 } 1117 } 1118 } else { 1119 return failure(); 1120 } 1121 1122 // Unroll vector into elementary print calls. 1123 int64_t rank = vectorType ? vectorType.getRank() : 0; 1124 Type type = vectorType ? vectorType : eltType; 1125 emitRanks(rewriter, printOp, adaptor.getSource(), type, printer, rank, 1126 conversion); 1127 emitCall(rewriter, printOp->getLoc(), 1128 LLVM::lookupOrCreatePrintNewlineFn( 1129 printOp->getParentOfType<ModuleOp>())); 1130 rewriter.eraseOp(printOp); 1131 return success(); 1132 } 1133 1134 private: 1135 enum class PrintConversion { 1136 // clang-format off 1137 None, 1138 ZeroExt64, 1139 SignExt64 1140 // clang-format on 1141 }; 1142 1143 void emitRanks(ConversionPatternRewriter &rewriter, Operation *op, 1144 Value value, Type type, Operation *printer, int64_t rank, 1145 PrintConversion conversion) const { 1146 VectorType vectorType = type.dyn_cast<VectorType>(); 1147 Location loc = op->getLoc(); 1148 if (!vectorType) { 1149 assert(rank == 0 && "The scalar case expects rank == 0"); 1150 switch (conversion) { 1151 case PrintConversion::ZeroExt64: 1152 value = rewriter.create<arith::ExtUIOp>( 1153 loc, IntegerType::get(rewriter.getContext(), 64), value); 1154 break; 1155 case PrintConversion::SignExt64: 1156 value = rewriter.create<arith::ExtSIOp>( 1157 loc, IntegerType::get(rewriter.getContext(), 64), value); 1158 break; 1159 case PrintConversion::None: 1160 break; 1161 } 1162 emitCall(rewriter, loc, printer, value); 1163 return; 1164 } 1165 1166 emitCall(rewriter, loc, 1167 LLVM::lookupOrCreatePrintOpenFn(op->getParentOfType<ModuleOp>())); 1168 Operation *printComma = 1169 LLVM::lookupOrCreatePrintCommaFn(op->getParentOfType<ModuleOp>()); 1170 1171 if (rank <= 1) { 1172 auto reducedType = vectorType.getElementType(); 1173 auto llvmType = typeConverter->convertType(reducedType); 1174 int64_t dim = rank == 0 ? 1 : vectorType.getDimSize(0); 1175 for (int64_t d = 0; d < dim; ++d) { 1176 Value nestedVal = extractOne(rewriter, *getTypeConverter(), loc, value, 1177 llvmType, /*rank=*/0, /*pos=*/d); 1178 emitRanks(rewriter, op, nestedVal, reducedType, printer, /*rank=*/0, 1179 conversion); 1180 if (d != dim - 1) 1181 emitCall(rewriter, loc, printComma); 1182 } 1183 emitCall( 1184 rewriter, loc, 1185 LLVM::lookupOrCreatePrintCloseFn(op->getParentOfType<ModuleOp>())); 1186 return; 1187 } 1188 1189 int64_t dim = vectorType.getDimSize(0); 1190 for (int64_t d = 0; d < dim; ++d) { 1191 auto reducedType = reducedVectorTypeFront(vectorType); 1192 auto llvmType = typeConverter->convertType(reducedType); 1193 Value nestedVal = extractOne(rewriter, *getTypeConverter(), loc, value, 1194 llvmType, rank, d); 1195 emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1, 1196 conversion); 1197 if (d != dim - 1) 1198 emitCall(rewriter, loc, printComma); 1199 } 1200 emitCall(rewriter, loc, 1201 LLVM::lookupOrCreatePrintCloseFn(op->getParentOfType<ModuleOp>())); 1202 } 1203 1204 // Helper to emit a call. 1205 static void emitCall(ConversionPatternRewriter &rewriter, Location loc, 1206 Operation *ref, ValueRange params = ValueRange()) { 1207 rewriter.create<LLVM::CallOp>(loc, TypeRange(), SymbolRefAttr::get(ref), 1208 params); 1209 } 1210 }; 1211 1212 /// The Splat operation is lowered to an insertelement + a shufflevector 1213 /// operation. Splat to only 0-d and 1-d vector result types are lowered. 1214 struct VectorSplatOpLowering : public ConvertOpToLLVMPattern<vector::SplatOp> { 1215 using ConvertOpToLLVMPattern<vector::SplatOp>::ConvertOpToLLVMPattern; 1216 1217 LogicalResult 1218 matchAndRewrite(vector::SplatOp splatOp, OpAdaptor adaptor, 1219 ConversionPatternRewriter &rewriter) const override { 1220 VectorType resultType = splatOp.getType().cast<VectorType>(); 1221 if (resultType.getRank() > 1) 1222 return failure(); 1223 1224 // First insert it into an undef vector so we can shuffle it. 1225 auto vectorType = typeConverter->convertType(splatOp.getType()); 1226 Value undef = rewriter.create<LLVM::UndefOp>(splatOp.getLoc(), vectorType); 1227 auto zero = rewriter.create<LLVM::ConstantOp>( 1228 splatOp.getLoc(), 1229 typeConverter->convertType(rewriter.getIntegerType(32)), 1230 rewriter.getZeroAttr(rewriter.getIntegerType(32))); 1231 1232 // For 0-d vector, we simply do `insertelement`. 1233 if (resultType.getRank() == 0) { 1234 rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( 1235 splatOp, vectorType, undef, adaptor.getInput(), zero); 1236 return success(); 1237 } 1238 1239 // For 1-d vector, we additionally do a `vectorshuffle`. 1240 auto v = rewriter.create<LLVM::InsertElementOp>( 1241 splatOp.getLoc(), vectorType, undef, adaptor.getInput(), zero); 1242 1243 int64_t width = splatOp.getType().cast<VectorType>().getDimSize(0); 1244 SmallVector<int32_t> zeroValues(width, 0); 1245 1246 // Shuffle the value across the desired number of elements. 1247 rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>(splatOp, v, undef, 1248 zeroValues); 1249 return success(); 1250 } 1251 }; 1252 1253 /// The Splat operation is lowered to an insertelement + a shufflevector 1254 /// operation. Splat to only 2+-d vector result types are lowered by the 1255 /// SplatNdOpLowering, the 1-d case is handled by SplatOpLowering. 1256 struct VectorSplatNdOpLowering : public ConvertOpToLLVMPattern<SplatOp> { 1257 using ConvertOpToLLVMPattern<SplatOp>::ConvertOpToLLVMPattern; 1258 1259 LogicalResult 1260 matchAndRewrite(SplatOp splatOp, OpAdaptor adaptor, 1261 ConversionPatternRewriter &rewriter) const override { 1262 VectorType resultType = splatOp.getType(); 1263 if (resultType.getRank() <= 1) 1264 return failure(); 1265 1266 // First insert it into an undef vector so we can shuffle it. 1267 auto loc = splatOp.getLoc(); 1268 auto vectorTypeInfo = 1269 LLVM::detail::extractNDVectorTypeInfo(resultType, *getTypeConverter()); 1270 auto llvmNDVectorTy = vectorTypeInfo.llvmNDVectorTy; 1271 auto llvm1DVectorTy = vectorTypeInfo.llvm1DVectorTy; 1272 if (!llvmNDVectorTy || !llvm1DVectorTy) 1273 return failure(); 1274 1275 // Construct returned value. 1276 Value desc = rewriter.create<LLVM::UndefOp>(loc, llvmNDVectorTy); 1277 1278 // Construct a 1-D vector with the splatted value that we insert in all the 1279 // places within the returned descriptor. 1280 Value vdesc = rewriter.create<LLVM::UndefOp>(loc, llvm1DVectorTy); 1281 auto zero = rewriter.create<LLVM::ConstantOp>( 1282 loc, typeConverter->convertType(rewriter.getIntegerType(32)), 1283 rewriter.getZeroAttr(rewriter.getIntegerType(32))); 1284 Value v = rewriter.create<LLVM::InsertElementOp>(loc, llvm1DVectorTy, vdesc, 1285 adaptor.getInput(), zero); 1286 1287 // Shuffle the value across the desired number of elements. 1288 int64_t width = resultType.getDimSize(resultType.getRank() - 1); 1289 SmallVector<int32_t> zeroValues(width, 0); 1290 v = rewriter.create<LLVM::ShuffleVectorOp>(loc, v, v, zeroValues); 1291 1292 // Iterate of linear index, convert to coords space and insert splatted 1-D 1293 // vector in each position. 1294 nDVectorIterate(vectorTypeInfo, rewriter, [&](ArrayRef<int64_t> position) { 1295 desc = rewriter.create<LLVM::InsertValueOp>(loc, desc, v, position); 1296 }); 1297 rewriter.replaceOp(splatOp, desc); 1298 return success(); 1299 } 1300 }; 1301 1302 } // namespace 1303 1304 /// Populate the given list with patterns that convert from Vector to LLVM. 1305 void mlir::populateVectorToLLVMConversionPatterns( 1306 LLVMTypeConverter &converter, RewritePatternSet &patterns, 1307 bool reassociateFPReductions, bool force32BitVectorIndices) { 1308 MLIRContext *ctx = converter.getDialect()->getContext(); 1309 patterns.add<VectorFMAOpNDRewritePattern>(ctx); 1310 populateVectorInsertExtractStridedSliceTransforms(patterns); 1311 patterns.add<VectorReductionOpConversion>(converter, reassociateFPReductions); 1312 patterns.add<VectorCreateMaskOpRewritePattern>(ctx, force32BitVectorIndices); 1313 patterns 1314 .add<VectorBitCastOpConversion, VectorShuffleOpConversion, 1315 VectorExtractElementOpConversion, VectorExtractOpConversion, 1316 VectorFMAOp1DConversion, VectorInsertElementOpConversion, 1317 VectorInsertOpConversion, VectorPrintOpConversion, 1318 VectorTypeCastOpConversion, VectorScaleOpConversion, 1319 VectorLoadStoreConversion<vector::LoadOp, vector::LoadOpAdaptor>, 1320 VectorLoadStoreConversion<vector::MaskedLoadOp, 1321 vector::MaskedLoadOpAdaptor>, 1322 VectorLoadStoreConversion<vector::StoreOp, vector::StoreOpAdaptor>, 1323 VectorLoadStoreConversion<vector::MaskedStoreOp, 1324 vector::MaskedStoreOpAdaptor>, 1325 VectorGatherOpConversion, VectorScatterOpConversion, 1326 VectorExpandLoadOpConversion, VectorCompressStoreOpConversion, 1327 VectorSplatOpLowering, VectorSplatNdOpLowering>(converter); 1328 // Transfer ops with rank > 1 are handled by VectorToSCF. 1329 populateVectorTransferLoweringPatterns(patterns, /*maxTransferRank=*/1); 1330 } 1331 1332 void mlir::populateVectorToLLVMMatrixConversionPatterns( 1333 LLVMTypeConverter &converter, RewritePatternSet &patterns) { 1334 patterns.add<VectorMatmulOpConversion>(converter); 1335 patterns.add<VectorFlatTransposeOpConversion>(converter); 1336 } 1337