1 //===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h" 10 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h" 11 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h" 12 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 13 #include "mlir/Dialect/StandardOps/Ops.h" 14 #include "mlir/Dialect/VectorOps/VectorOps.h" 15 #include "mlir/IR/Attributes.h" 16 #include "mlir/IR/Builders.h" 17 #include "mlir/IR/MLIRContext.h" 18 #include "mlir/IR/Module.h" 19 #include "mlir/IR/Operation.h" 20 #include "mlir/IR/PatternMatch.h" 21 #include "mlir/IR/StandardTypes.h" 22 #include "mlir/IR/Types.h" 23 #include "mlir/Pass/Pass.h" 24 #include "mlir/Pass/PassManager.h" 25 #include "mlir/Transforms/DialectConversion.h" 26 #include "mlir/Transforms/Passes.h" 27 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/Support/Allocator.h" 32 #include "llvm/Support/ErrorHandling.h" 33 34 using namespace mlir; 35 using namespace mlir::vector; 36 37 template <typename T> 38 static LLVM::LLVMType getPtrToElementType(T containerType, 39 LLVMTypeConverter &lowering) { 40 return lowering.convertType(containerType.getElementType()) 41 .template cast<LLVM::LLVMType>() 42 .getPointerTo(); 43 } 44 45 // Helper to reduce vector type by one rank at front. 46 static VectorType reducedVectorTypeFront(VectorType tp) { 47 assert((tp.getRank() > 1) && "unlowerable vector type"); 48 return VectorType::get(tp.getShape().drop_front(), tp.getElementType()); 49 } 50 51 // Helper to reduce vector type by *all* but one rank at back. 52 static VectorType reducedVectorTypeBack(VectorType tp) { 53 assert((tp.getRank() > 1) && "unlowerable vector type"); 54 return VectorType::get(tp.getShape().take_back(), tp.getElementType()); 55 } 56 57 // Helper that picks the proper sequence for inserting. 58 static Value insertOne(ConversionPatternRewriter &rewriter, 59 LLVMTypeConverter &lowering, Location loc, Value val1, 60 Value val2, Type llvmType, int64_t rank, int64_t pos) { 61 if (rank == 1) { 62 auto idxType = rewriter.getIndexType(); 63 auto constant = rewriter.create<LLVM::ConstantOp>( 64 loc, lowering.convertType(idxType), 65 rewriter.getIntegerAttr(idxType, pos)); 66 return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2, 67 constant); 68 } 69 return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2, 70 rewriter.getI64ArrayAttr(pos)); 71 } 72 73 // Helper that picks the proper sequence for inserting. 74 static Value insertOne(PatternRewriter &rewriter, Location loc, Value from, 75 Value into, int64_t offset) { 76 auto vectorType = into.getType().cast<VectorType>(); 77 if (vectorType.getRank() > 1) 78 return rewriter.create<InsertOp>(loc, from, into, offset); 79 return rewriter.create<vector::InsertElementOp>( 80 loc, vectorType, from, into, 81 rewriter.create<ConstantIndexOp>(loc, offset)); 82 } 83 84 // Helper that picks the proper sequence for extracting. 85 static Value extractOne(ConversionPatternRewriter &rewriter, 86 LLVMTypeConverter &lowering, Location loc, Value val, 87 Type llvmType, int64_t rank, int64_t pos) { 88 if (rank == 1) { 89 auto idxType = rewriter.getIndexType(); 90 auto constant = rewriter.create<LLVM::ConstantOp>( 91 loc, lowering.convertType(idxType), 92 rewriter.getIntegerAttr(idxType, pos)); 93 return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val, 94 constant); 95 } 96 return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val, 97 rewriter.getI64ArrayAttr(pos)); 98 } 99 100 // Helper that picks the proper sequence for extracting. 101 static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector, 102 int64_t offset) { 103 auto vectorType = vector.getType().cast<VectorType>(); 104 if (vectorType.getRank() > 1) 105 return rewriter.create<ExtractOp>(loc, vector, offset); 106 return rewriter.create<vector::ExtractElementOp>( 107 loc, vectorType.getElementType(), vector, 108 rewriter.create<ConstantIndexOp>(loc, offset)); 109 } 110 111 // Helper that returns a subset of `arrayAttr` as a vector of int64_t. 112 // TODO(rriddle): Better support for attribute subtype forwarding + slicing. 113 static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr, 114 unsigned dropFront = 0, 115 unsigned dropBack = 0) { 116 assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds"); 117 auto range = arrayAttr.getAsRange<IntegerAttr>(); 118 SmallVector<int64_t, 4> res; 119 res.reserve(arrayAttr.size() - dropFront - dropBack); 120 for (auto it = range.begin() + dropFront, eit = range.end() - dropBack; 121 it != eit; ++it) 122 res.push_back((*it).getValue().getSExtValue()); 123 return res; 124 } 125 126 namespace { 127 128 class VectorBroadcastOpConversion : public LLVMOpLowering { 129 public: 130 explicit VectorBroadcastOpConversion(MLIRContext *context, 131 LLVMTypeConverter &typeConverter) 132 : LLVMOpLowering(vector::BroadcastOp::getOperationName(), context, 133 typeConverter) {} 134 135 PatternMatchResult 136 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 137 ConversionPatternRewriter &rewriter) const override { 138 auto broadcastOp = cast<vector::BroadcastOp>(op); 139 VectorType dstVectorType = broadcastOp.getVectorType(); 140 if (lowering.convertType(dstVectorType) == nullptr) 141 return matchFailure(); 142 // Rewrite when the full vector type can be lowered (which 143 // implies all 'reduced' types can be lowered too). 144 auto adaptor = vector::BroadcastOpOperandAdaptor(operands); 145 VectorType srcVectorType = 146 broadcastOp.getSourceType().dyn_cast<VectorType>(); 147 rewriter.replaceOp( 148 op, expandRanks(adaptor.source(), // source value to be expanded 149 op->getLoc(), // location of original broadcast 150 srcVectorType, dstVectorType, rewriter)); 151 return matchSuccess(); 152 } 153 154 private: 155 // Expands the given source value over all the ranks, as defined 156 // by the source and destination type (a null source type denotes 157 // expansion from a scalar value into a vector). 158 // 159 // TODO(ajcbik): consider replacing this one-pattern lowering 160 // with a two-pattern lowering using other vector 161 // ops once all insert/extract/shuffle operations 162 // are available with lowering implementation. 163 // 164 Value expandRanks(Value value, Location loc, VectorType srcVectorType, 165 VectorType dstVectorType, 166 ConversionPatternRewriter &rewriter) const { 167 assert((dstVectorType != nullptr) && "invalid result type in broadcast"); 168 // Determine rank of source and destination. 169 int64_t srcRank = srcVectorType ? srcVectorType.getRank() : 0; 170 int64_t dstRank = dstVectorType.getRank(); 171 int64_t curDim = dstVectorType.getDimSize(0); 172 if (srcRank < dstRank) 173 // Duplicate this rank. 174 return duplicateOneRank(value, loc, srcVectorType, dstVectorType, dstRank, 175 curDim, rewriter); 176 // If all trailing dimensions are the same, the broadcast consists of 177 // simply passing through the source value and we are done. Otherwise, 178 // any non-matching dimension forces a stretch along this rank. 179 assert((srcVectorType != nullptr) && (srcRank > 0) && 180 (srcRank == dstRank) && "invalid rank in broadcast"); 181 for (int64_t r = 0; r < dstRank; r++) { 182 if (srcVectorType.getDimSize(r) != dstVectorType.getDimSize(r)) { 183 return stretchOneRank(value, loc, srcVectorType, dstVectorType, dstRank, 184 curDim, rewriter); 185 } 186 } 187 return value; 188 } 189 190 // Picks the best way to duplicate a single rank. For the 1-D case, a 191 // single insert-elt/shuffle is the most efficient expansion. For higher 192 // dimensions, however, we need dim x insert-values on a new broadcast 193 // with one less leading dimension, which will be lowered "recursively" 194 // to matching LLVM IR. 195 // For example: 196 // v = broadcast s : f32 to vector<4x2xf32> 197 // becomes: 198 // x = broadcast s : f32 to vector<2xf32> 199 // v = [x,x,x,x] 200 // becomes: 201 // x = [s,s] 202 // v = [x,x,x,x] 203 Value duplicateOneRank(Value value, Location loc, VectorType srcVectorType, 204 VectorType dstVectorType, int64_t rank, int64_t dim, 205 ConversionPatternRewriter &rewriter) const { 206 Type llvmType = lowering.convertType(dstVectorType); 207 assert((llvmType != nullptr) && "unlowerable vector type"); 208 if (rank == 1) { 209 Value undef = rewriter.create<LLVM::UndefOp>(loc, llvmType); 210 Value expand = 211 insertOne(rewriter, lowering, loc, undef, value, llvmType, rank, 0); 212 SmallVector<int32_t, 4> zeroValues(dim, 0); 213 return rewriter.create<LLVM::ShuffleVectorOp>( 214 loc, expand, undef, rewriter.getI32ArrayAttr(zeroValues)); 215 } 216 Value expand = expandRanks(value, loc, srcVectorType, 217 reducedVectorTypeFront(dstVectorType), rewriter); 218 Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType); 219 for (int64_t d = 0; d < dim; ++d) { 220 result = 221 insertOne(rewriter, lowering, loc, result, expand, llvmType, rank, d); 222 } 223 return result; 224 } 225 226 // Picks the best way to stretch a single rank. For the 1-D case, a 227 // single insert-elt/shuffle is the most efficient expansion when at 228 // a stretch. Otherwise, every dimension needs to be expanded 229 // individually and individually inserted in the resulting vector. 230 // For example: 231 // v = broadcast w : vector<4x1x2xf32> to vector<4x2x2xf32> 232 // becomes: 233 // a = broadcast w[0] : vector<1x2xf32> to vector<2x2xf32> 234 // b = broadcast w[1] : vector<1x2xf32> to vector<2x2xf32> 235 // c = broadcast w[2] : vector<1x2xf32> to vector<2x2xf32> 236 // d = broadcast w[3] : vector<1x2xf32> to vector<2x2xf32> 237 // v = [a,b,c,d] 238 // becomes: 239 // x = broadcast w[0][0] : vector<2xf32> to vector <2x2xf32> 240 // y = broadcast w[1][0] : vector<2xf32> to vector <2x2xf32> 241 // a = [x, y] 242 // etc. 243 Value stretchOneRank(Value value, Location loc, VectorType srcVectorType, 244 VectorType dstVectorType, int64_t rank, int64_t dim, 245 ConversionPatternRewriter &rewriter) const { 246 Type llvmType = lowering.convertType(dstVectorType); 247 assert((llvmType != nullptr) && "unlowerable vector type"); 248 Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType); 249 bool atStretch = dim != srcVectorType.getDimSize(0); 250 if (rank == 1) { 251 assert(atStretch); 252 Type redLlvmType = lowering.convertType(dstVectorType.getElementType()); 253 Value one = 254 extractOne(rewriter, lowering, loc, value, redLlvmType, rank, 0); 255 Value expand = 256 insertOne(rewriter, lowering, loc, result, one, llvmType, rank, 0); 257 SmallVector<int32_t, 4> zeroValues(dim, 0); 258 return rewriter.create<LLVM::ShuffleVectorOp>( 259 loc, expand, result, rewriter.getI32ArrayAttr(zeroValues)); 260 } 261 VectorType redSrcType = reducedVectorTypeFront(srcVectorType); 262 VectorType redDstType = reducedVectorTypeFront(dstVectorType); 263 Type redLlvmType = lowering.convertType(redSrcType); 264 for (int64_t d = 0; d < dim; ++d) { 265 int64_t pos = atStretch ? 0 : d; 266 Value one = 267 extractOne(rewriter, lowering, loc, value, redLlvmType, rank, pos); 268 Value expand = expandRanks(one, loc, redSrcType, redDstType, rewriter); 269 result = 270 insertOne(rewriter, lowering, loc, result, expand, llvmType, rank, d); 271 } 272 return result; 273 } 274 }; 275 276 class VectorReductionOpConversion : public LLVMOpLowering { 277 public: 278 explicit VectorReductionOpConversion(MLIRContext *context, 279 LLVMTypeConverter &typeConverter) 280 : LLVMOpLowering(vector::ReductionOp::getOperationName(), context, 281 typeConverter) {} 282 283 PatternMatchResult 284 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 285 ConversionPatternRewriter &rewriter) const override { 286 auto reductionOp = cast<vector::ReductionOp>(op); 287 auto kind = reductionOp.kind(); 288 Type eltType = reductionOp.dest().getType(); 289 Type llvmType = lowering.convertType(eltType); 290 if (eltType.isInteger(32) || eltType.isInteger(64)) { 291 // Integer reductions: add/mul/min/max/and/or/xor. 292 if (kind == "add") 293 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_add>( 294 op, llvmType, operands[0]); 295 else if (kind == "mul") 296 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_mul>( 297 op, llvmType, operands[0]); 298 else if (kind == "min") 299 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smin>( 300 op, llvmType, operands[0]); 301 else if (kind == "max") 302 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smax>( 303 op, llvmType, operands[0]); 304 else if (kind == "and") 305 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_and>( 306 op, llvmType, operands[0]); 307 else if (kind == "or") 308 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_or>( 309 op, llvmType, operands[0]); 310 else if (kind == "xor") 311 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_xor>( 312 op, llvmType, operands[0]); 313 else 314 return matchFailure(); 315 return matchSuccess(); 316 317 } else if (eltType.isF32() || eltType.isF64()) { 318 // Floating-point reductions: add/mul/min/max 319 if (kind == "add") { 320 Value zero = rewriter.create<LLVM::ConstantOp>( 321 op->getLoc(), llvmType, rewriter.getZeroAttr(eltType)); 322 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fadd>( 323 op, llvmType, zero, operands[0]); 324 } else if (kind == "mul") { 325 Value one = rewriter.create<LLVM::ConstantOp>( 326 op->getLoc(), llvmType, rewriter.getFloatAttr(eltType, 1.0)); 327 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fmul>( 328 op, llvmType, one, operands[0]); 329 } else if (kind == "min") 330 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmin>( 331 op, llvmType, operands[0]); 332 else if (kind == "max") 333 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmax>( 334 op, llvmType, operands[0]); 335 else 336 return matchFailure(); 337 return matchSuccess(); 338 } 339 return matchFailure(); 340 } 341 }; 342 343 class VectorShuffleOpConversion : public LLVMOpLowering { 344 public: 345 explicit VectorShuffleOpConversion(MLIRContext *context, 346 LLVMTypeConverter &typeConverter) 347 : LLVMOpLowering(vector::ShuffleOp::getOperationName(), context, 348 typeConverter) {} 349 350 PatternMatchResult 351 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 352 ConversionPatternRewriter &rewriter) const override { 353 auto loc = op->getLoc(); 354 auto adaptor = vector::ShuffleOpOperandAdaptor(operands); 355 auto shuffleOp = cast<vector::ShuffleOp>(op); 356 auto v1Type = shuffleOp.getV1VectorType(); 357 auto v2Type = shuffleOp.getV2VectorType(); 358 auto vectorType = shuffleOp.getVectorType(); 359 Type llvmType = lowering.convertType(vectorType); 360 auto maskArrayAttr = shuffleOp.mask(); 361 362 // Bail if result type cannot be lowered. 363 if (!llvmType) 364 return matchFailure(); 365 366 // Get rank and dimension sizes. 367 int64_t rank = vectorType.getRank(); 368 assert(v1Type.getRank() == rank); 369 assert(v2Type.getRank() == rank); 370 int64_t v1Dim = v1Type.getDimSize(0); 371 372 // For rank 1, where both operands have *exactly* the same vector type, 373 // there is direct shuffle support in LLVM. Use it! 374 if (rank == 1 && v1Type == v2Type) { 375 Value shuffle = rewriter.create<LLVM::ShuffleVectorOp>( 376 loc, adaptor.v1(), adaptor.v2(), maskArrayAttr); 377 rewriter.replaceOp(op, shuffle); 378 return matchSuccess(); 379 } 380 381 // For all other cases, insert the individual values individually. 382 Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType); 383 int64_t insPos = 0; 384 for (auto en : llvm::enumerate(maskArrayAttr)) { 385 int64_t extPos = en.value().cast<IntegerAttr>().getInt(); 386 Value value = adaptor.v1(); 387 if (extPos >= v1Dim) { 388 extPos -= v1Dim; 389 value = adaptor.v2(); 390 } 391 Value extract = 392 extractOne(rewriter, lowering, loc, value, llvmType, rank, extPos); 393 insert = insertOne(rewriter, lowering, loc, insert, extract, llvmType, 394 rank, insPos++); 395 } 396 rewriter.replaceOp(op, insert); 397 return matchSuccess(); 398 } 399 }; 400 401 class VectorExtractElementOpConversion : public LLVMOpLowering { 402 public: 403 explicit VectorExtractElementOpConversion(MLIRContext *context, 404 LLVMTypeConverter &typeConverter) 405 : LLVMOpLowering(vector::ExtractElementOp::getOperationName(), context, 406 typeConverter) {} 407 408 PatternMatchResult 409 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 410 ConversionPatternRewriter &rewriter) const override { 411 auto adaptor = vector::ExtractElementOpOperandAdaptor(operands); 412 auto extractEltOp = cast<vector::ExtractElementOp>(op); 413 auto vectorType = extractEltOp.getVectorType(); 414 auto llvmType = lowering.convertType(vectorType.getElementType()); 415 416 // Bail if result type cannot be lowered. 417 if (!llvmType) 418 return matchFailure(); 419 420 rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>( 421 op, llvmType, adaptor.vector(), adaptor.position()); 422 return matchSuccess(); 423 } 424 }; 425 426 class VectorExtractOpConversion : public LLVMOpLowering { 427 public: 428 explicit VectorExtractOpConversion(MLIRContext *context, 429 LLVMTypeConverter &typeConverter) 430 : LLVMOpLowering(vector::ExtractOp::getOperationName(), context, 431 typeConverter) {} 432 433 PatternMatchResult 434 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 435 ConversionPatternRewriter &rewriter) const override { 436 auto loc = op->getLoc(); 437 auto adaptor = vector::ExtractOpOperandAdaptor(operands); 438 auto extractOp = cast<vector::ExtractOp>(op); 439 auto vectorType = extractOp.getVectorType(); 440 auto resultType = extractOp.getResult().getType(); 441 auto llvmResultType = lowering.convertType(resultType); 442 auto positionArrayAttr = extractOp.position(); 443 444 // Bail if result type cannot be lowered. 445 if (!llvmResultType) 446 return matchFailure(); 447 448 // One-shot extraction of vector from array (only requires extractvalue). 449 if (resultType.isa<VectorType>()) { 450 Value extracted = rewriter.create<LLVM::ExtractValueOp>( 451 loc, llvmResultType, adaptor.vector(), positionArrayAttr); 452 rewriter.replaceOp(op, extracted); 453 return matchSuccess(); 454 } 455 456 // Potential extraction of 1-D vector from array. 457 auto *context = op->getContext(); 458 Value extracted = adaptor.vector(); 459 auto positionAttrs = positionArrayAttr.getValue(); 460 if (positionAttrs.size() > 1) { 461 auto oneDVectorType = reducedVectorTypeBack(vectorType); 462 auto nMinusOnePositionAttrs = 463 ArrayAttr::get(positionAttrs.drop_back(), context); 464 extracted = rewriter.create<LLVM::ExtractValueOp>( 465 loc, lowering.convertType(oneDVectorType), extracted, 466 nMinusOnePositionAttrs); 467 } 468 469 // Remaining extraction of element from 1-D LLVM vector 470 auto position = positionAttrs.back().cast<IntegerAttr>(); 471 auto i64Type = LLVM::LLVMType::getInt64Ty(lowering.getDialect()); 472 auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); 473 extracted = 474 rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant); 475 rewriter.replaceOp(op, extracted); 476 477 return matchSuccess(); 478 } 479 }; 480 481 /// Conversion pattern that turns a vector.fma on a 1-D vector 482 /// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion. 483 /// This does not match vectors of n >= 2 rank. 484 /// 485 /// Example: 486 /// ``` 487 /// vector.fma %a, %a, %a : vector<8xf32> 488 /// ``` 489 /// is converted to: 490 /// ``` 491 /// llvm.intr.fma %va, %va, %va: 492 /// (!llvm<"<8 x float>">, !llvm<"<8 x float>">, !llvm<"<8 x float>">) 493 /// -> !llvm<"<8 x float>"> 494 /// ``` 495 class VectorFMAOp1DConversion : public LLVMOpLowering { 496 public: 497 explicit VectorFMAOp1DConversion(MLIRContext *context, 498 LLVMTypeConverter &typeConverter) 499 : LLVMOpLowering(vector::FMAOp::getOperationName(), context, 500 typeConverter) {} 501 502 PatternMatchResult 503 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 504 ConversionPatternRewriter &rewriter) const override { 505 auto adaptor = vector::FMAOpOperandAdaptor(operands); 506 vector::FMAOp fmaOp = cast<vector::FMAOp>(op); 507 VectorType vType = fmaOp.getVectorType(); 508 if (vType.getRank() != 1) 509 return matchFailure(); 510 rewriter.replaceOpWithNewOp<LLVM::FMAOp>(op, adaptor.lhs(), adaptor.rhs(), 511 adaptor.acc()); 512 return matchSuccess(); 513 } 514 }; 515 516 class VectorInsertElementOpConversion : public LLVMOpLowering { 517 public: 518 explicit VectorInsertElementOpConversion(MLIRContext *context, 519 LLVMTypeConverter &typeConverter) 520 : LLVMOpLowering(vector::InsertElementOp::getOperationName(), context, 521 typeConverter) {} 522 523 PatternMatchResult 524 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 525 ConversionPatternRewriter &rewriter) const override { 526 auto adaptor = vector::InsertElementOpOperandAdaptor(operands); 527 auto insertEltOp = cast<vector::InsertElementOp>(op); 528 auto vectorType = insertEltOp.getDestVectorType(); 529 auto llvmType = lowering.convertType(vectorType); 530 531 // Bail if result type cannot be lowered. 532 if (!llvmType) 533 return matchFailure(); 534 535 rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( 536 op, llvmType, adaptor.dest(), adaptor.source(), adaptor.position()); 537 return matchSuccess(); 538 } 539 }; 540 541 class VectorInsertOpConversion : public LLVMOpLowering { 542 public: 543 explicit VectorInsertOpConversion(MLIRContext *context, 544 LLVMTypeConverter &typeConverter) 545 : LLVMOpLowering(vector::InsertOp::getOperationName(), context, 546 typeConverter) {} 547 548 PatternMatchResult 549 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 550 ConversionPatternRewriter &rewriter) const override { 551 auto loc = op->getLoc(); 552 auto adaptor = vector::InsertOpOperandAdaptor(operands); 553 auto insertOp = cast<vector::InsertOp>(op); 554 auto sourceType = insertOp.getSourceType(); 555 auto destVectorType = insertOp.getDestVectorType(); 556 auto llvmResultType = lowering.convertType(destVectorType); 557 auto positionArrayAttr = insertOp.position(); 558 559 // Bail if result type cannot be lowered. 560 if (!llvmResultType) 561 return matchFailure(); 562 563 // One-shot insertion of a vector into an array (only requires insertvalue). 564 if (sourceType.isa<VectorType>()) { 565 Value inserted = rewriter.create<LLVM::InsertValueOp>( 566 loc, llvmResultType, adaptor.dest(), adaptor.source(), 567 positionArrayAttr); 568 rewriter.replaceOp(op, inserted); 569 return matchSuccess(); 570 } 571 572 // Potential extraction of 1-D vector from array. 573 auto *context = op->getContext(); 574 Value extracted = adaptor.dest(); 575 auto positionAttrs = positionArrayAttr.getValue(); 576 auto position = positionAttrs.back().cast<IntegerAttr>(); 577 auto oneDVectorType = destVectorType; 578 if (positionAttrs.size() > 1) { 579 oneDVectorType = reducedVectorTypeBack(destVectorType); 580 auto nMinusOnePositionAttrs = 581 ArrayAttr::get(positionAttrs.drop_back(), context); 582 extracted = rewriter.create<LLVM::ExtractValueOp>( 583 loc, lowering.convertType(oneDVectorType), extracted, 584 nMinusOnePositionAttrs); 585 } 586 587 // Insertion of an element into a 1-D LLVM vector. 588 auto i64Type = LLVM::LLVMType::getInt64Ty(lowering.getDialect()); 589 auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); 590 Value inserted = rewriter.create<LLVM::InsertElementOp>( 591 loc, lowering.convertType(oneDVectorType), extracted, adaptor.source(), 592 constant); 593 594 // Potential insertion of resulting 1-D vector into array. 595 if (positionAttrs.size() > 1) { 596 auto nMinusOnePositionAttrs = 597 ArrayAttr::get(positionAttrs.drop_back(), context); 598 inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType, 599 adaptor.dest(), inserted, 600 nMinusOnePositionAttrs); 601 } 602 603 rewriter.replaceOp(op, inserted); 604 return matchSuccess(); 605 } 606 }; 607 608 /// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1. 609 /// 610 /// Example: 611 /// ``` 612 /// %d = vector.fma %a, %b, %c : vector<2x4xf32> 613 /// ``` 614 /// is rewritten into: 615 /// ``` 616 /// %r = splat %f0: vector<2x4xf32> 617 /// %va = vector.extractvalue %a[0] : vector<2x4xf32> 618 /// %vb = vector.extractvalue %b[0] : vector<2x4xf32> 619 /// %vc = vector.extractvalue %c[0] : vector<2x4xf32> 620 /// %vd = vector.fma %va, %vb, %vc : vector<4xf32> 621 /// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32> 622 /// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32> 623 /// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32> 624 /// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32> 625 /// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32> 626 /// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32> 627 /// // %r3 holds the final value. 628 /// ``` 629 class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> { 630 public: 631 using OpRewritePattern<FMAOp>::OpRewritePattern; 632 633 PatternMatchResult matchAndRewrite(FMAOp op, 634 PatternRewriter &rewriter) const override { 635 auto vType = op.getVectorType(); 636 if (vType.getRank() < 2) 637 return matchFailure(); 638 639 auto loc = op.getLoc(); 640 auto elemType = vType.getElementType(); 641 Value zero = rewriter.create<ConstantOp>(loc, elemType, 642 rewriter.getZeroAttr(elemType)); 643 Value desc = rewriter.create<SplatOp>(loc, vType, zero); 644 for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) { 645 Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i); 646 Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i); 647 Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i); 648 Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC); 649 desc = rewriter.create<InsertOp>(loc, fma, desc, i); 650 } 651 rewriter.replaceOp(op, desc); 652 return matchSuccess(); 653 } 654 }; 655 656 // When ranks are different, InsertStridedSlice needs to extract a properly 657 // ranked vector from the destination vector into which to insert. This pattern 658 // only takes care of this part and forwards the rest of the conversion to 659 // another pattern that converts InsertStridedSlice for operands of the same 660 // rank. 661 // 662 // RewritePattern for InsertStridedSliceOp where source and destination vectors 663 // have different ranks. In this case: 664 // 1. the proper subvector is extracted from the destination vector 665 // 2. a new InsertStridedSlice op is created to insert the source in the 666 // destination subvector 667 // 3. the destination subvector is inserted back in the proper place 668 // 4. the op is replaced by the result of step 3. 669 // The new InsertStridedSlice from step 2. will be picked up by a 670 // `VectorInsertStridedSliceOpSameRankRewritePattern`. 671 class VectorInsertStridedSliceOpDifferentRankRewritePattern 672 : public OpRewritePattern<InsertStridedSliceOp> { 673 public: 674 using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; 675 676 PatternMatchResult matchAndRewrite(InsertStridedSliceOp op, 677 PatternRewriter &rewriter) const override { 678 auto srcType = op.getSourceVectorType(); 679 auto dstType = op.getDestVectorType(); 680 681 if (op.offsets().getValue().empty()) 682 return matchFailure(); 683 684 auto loc = op.getLoc(); 685 int64_t rankDiff = dstType.getRank() - srcType.getRank(); 686 assert(rankDiff >= 0); 687 if (rankDiff == 0) 688 return matchFailure(); 689 690 int64_t rankRest = dstType.getRank() - rankDiff; 691 // Extract / insert the subvector of matching rank and InsertStridedSlice 692 // on it. 693 Value extracted = 694 rewriter.create<ExtractOp>(loc, op.dest(), 695 getI64SubArray(op.offsets(), /*dropFront=*/0, 696 /*dropFront=*/rankRest)); 697 // A different pattern will kick in for InsertStridedSlice with matching 698 // ranks. 699 auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>( 700 loc, op.source(), extracted, 701 getI64SubArray(op.offsets(), /*dropFront=*/rankDiff), 702 getI64SubArray(op.strides(), /*dropFront=*/0)); 703 rewriter.replaceOpWithNewOp<InsertOp>( 704 op, stridedSliceInnerOp.getResult(), op.dest(), 705 getI64SubArray(op.offsets(), /*dropFront=*/0, 706 /*dropFront=*/rankRest)); 707 return matchSuccess(); 708 } 709 }; 710 711 // RewritePattern for InsertStridedSliceOp where source and destination vectors 712 // have the same rank. In this case, we reduce 713 // 1. the proper subvector is extracted from the destination vector 714 // 2. a new InsertStridedSlice op is created to insert the source in the 715 // destination subvector 716 // 3. the destination subvector is inserted back in the proper place 717 // 4. the op is replaced by the result of step 3. 718 // The new InsertStridedSlice from step 2. will be picked up by a 719 // `VectorInsertStridedSliceOpSameRankRewritePattern`. 720 class VectorInsertStridedSliceOpSameRankRewritePattern 721 : public OpRewritePattern<InsertStridedSliceOp> { 722 public: 723 using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; 724 725 PatternMatchResult matchAndRewrite(InsertStridedSliceOp op, 726 PatternRewriter &rewriter) const override { 727 auto srcType = op.getSourceVectorType(); 728 auto dstType = op.getDestVectorType(); 729 730 if (op.offsets().getValue().empty()) 731 return matchFailure(); 732 733 int64_t rankDiff = dstType.getRank() - srcType.getRank(); 734 assert(rankDiff >= 0); 735 if (rankDiff != 0) 736 return matchFailure(); 737 738 if (srcType == dstType) { 739 rewriter.replaceOp(op, op.source()); 740 return matchSuccess(); 741 } 742 743 int64_t offset = 744 op.offsets().getValue().front().cast<IntegerAttr>().getInt(); 745 int64_t size = srcType.getShape().front(); 746 int64_t stride = 747 op.strides().getValue().front().cast<IntegerAttr>().getInt(); 748 749 auto loc = op.getLoc(); 750 Value res = op.dest(); 751 // For each slice of the source vector along the most major dimension. 752 for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e; 753 off += stride, ++idx) { 754 // 1. extract the proper subvector (or element) from source 755 Value extractedSource = extractOne(rewriter, loc, op.source(), idx); 756 if (extractedSource.getType().isa<VectorType>()) { 757 // 2. If we have a vector, extract the proper subvector from destination 758 // Otherwise we are at the element level and no need to recurse. 759 Value extractedDest = extractOne(rewriter, loc, op.dest(), off); 760 // 3. Reduce the problem to lowering a new InsertStridedSlice op with 761 // smaller rank. 762 InsertStridedSliceOp insertStridedSliceOp = 763 rewriter.create<InsertStridedSliceOp>( 764 loc, extractedSource, extractedDest, 765 getI64SubArray(op.offsets(), /* dropFront=*/1), 766 getI64SubArray(op.strides(), /* dropFront=*/1)); 767 // Call matchAndRewrite recursively from within the pattern. This 768 // circumvents the current limitation that a given pattern cannot 769 // be called multiple times by the PatternRewrite infrastructure (to 770 // avoid infinite recursion, but in this case, infinite recursion 771 // cannot happen because the rank is strictly decreasing). 772 // TODO(rriddle, nicolasvasilache) Implement something like a hook for 773 // a potential function that must decrease and allow the same pattern 774 // multiple times. 775 auto success = matchAndRewrite(insertStridedSliceOp, rewriter); 776 (void)success; 777 assert(success && "Unexpected failure"); 778 extractedSource = insertStridedSliceOp; 779 } 780 // 4. Insert the extractedSource into the res vector. 781 res = insertOne(rewriter, loc, extractedSource, res, off); 782 } 783 784 rewriter.replaceOp(op, res); 785 return matchSuccess(); 786 } 787 }; 788 789 class VectorOuterProductOpConversion : public LLVMOpLowering { 790 public: 791 explicit VectorOuterProductOpConversion(MLIRContext *context, 792 LLVMTypeConverter &typeConverter) 793 : LLVMOpLowering(vector::OuterProductOp::getOperationName(), context, 794 typeConverter) {} 795 796 PatternMatchResult 797 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 798 ConversionPatternRewriter &rewriter) const override { 799 auto loc = op->getLoc(); 800 auto adaptor = vector::OuterProductOpOperandAdaptor(operands); 801 auto *ctx = op->getContext(); 802 auto vLHS = adaptor.lhs().getType().cast<LLVM::LLVMType>(); 803 auto vRHS = adaptor.rhs().getType().cast<LLVM::LLVMType>(); 804 auto rankLHS = vLHS.getUnderlyingType()->getVectorNumElements(); 805 auto rankRHS = vRHS.getUnderlyingType()->getVectorNumElements(); 806 auto llvmArrayOfVectType = lowering.convertType( 807 cast<vector::OuterProductOp>(op).getResult().getType()); 808 Value desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayOfVectType); 809 Value a = adaptor.lhs(), b = adaptor.rhs(); 810 Value acc = adaptor.acc().empty() ? nullptr : adaptor.acc().front(); 811 SmallVector<Value, 8> lhs, accs; 812 lhs.reserve(rankLHS); 813 accs.reserve(rankLHS); 814 for (unsigned d = 0, e = rankLHS; d < e; ++d) { 815 // shufflevector explicitly requires i32. 816 auto attr = rewriter.getI32IntegerAttr(d); 817 SmallVector<Attribute, 4> bcastAttr(rankRHS, attr); 818 auto bcastArrayAttr = ArrayAttr::get(bcastAttr, ctx); 819 Value aD = nullptr, accD = nullptr; 820 // 1. Broadcast the element a[d] into vector aD. 821 aD = rewriter.create<LLVM::ShuffleVectorOp>(loc, a, a, bcastArrayAttr); 822 // 2. If acc is present, extract 1-d vector acc[d] into accD. 823 if (acc) 824 accD = rewriter.create<LLVM::ExtractValueOp>( 825 loc, vRHS, acc, rewriter.getI64ArrayAttr(d)); 826 // 3. Compute aD outer b (plus accD, if relevant). 827 Value aOuterbD = 828 accD 829 ? rewriter.create<LLVM::FMAOp>(loc, vRHS, aD, b, accD).getResult() 830 : rewriter.create<LLVM::FMulOp>(loc, aD, b).getResult(); 831 // 4. Insert as value `d` in the descriptor. 832 desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayOfVectType, 833 desc, aOuterbD, 834 rewriter.getI64ArrayAttr(d)); 835 } 836 rewriter.replaceOp(op, desc); 837 return matchSuccess(); 838 } 839 }; 840 841 class VectorTypeCastOpConversion : public LLVMOpLowering { 842 public: 843 explicit VectorTypeCastOpConversion(MLIRContext *context, 844 LLVMTypeConverter &typeConverter) 845 : LLVMOpLowering(vector::TypeCastOp::getOperationName(), context, 846 typeConverter) {} 847 848 PatternMatchResult 849 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 850 ConversionPatternRewriter &rewriter) const override { 851 auto loc = op->getLoc(); 852 vector::TypeCastOp castOp = cast<vector::TypeCastOp>(op); 853 MemRefType sourceMemRefType = 854 castOp.getOperand().getType().cast<MemRefType>(); 855 MemRefType targetMemRefType = 856 castOp.getResult().getType().cast<MemRefType>(); 857 858 // Only static shape casts supported atm. 859 if (!sourceMemRefType.hasStaticShape() || 860 !targetMemRefType.hasStaticShape()) 861 return matchFailure(); 862 863 auto llvmSourceDescriptorTy = 864 operands[0].getType().dyn_cast<LLVM::LLVMType>(); 865 if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy()) 866 return matchFailure(); 867 MemRefDescriptor sourceMemRef(operands[0]); 868 869 auto llvmTargetDescriptorTy = lowering.convertType(targetMemRefType) 870 .dyn_cast_or_null<LLVM::LLVMType>(); 871 if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy()) 872 return matchFailure(); 873 874 int64_t offset; 875 SmallVector<int64_t, 4> strides; 876 auto successStrides = 877 getStridesAndOffset(sourceMemRefType, strides, offset); 878 bool isContiguous = (strides.back() == 1); 879 if (isContiguous) { 880 auto sizes = sourceMemRefType.getShape(); 881 for (int index = 0, e = strides.size() - 2; index < e; ++index) { 882 if (strides[index] != strides[index + 1] * sizes[index + 1]) { 883 isContiguous = false; 884 break; 885 } 886 } 887 } 888 // Only contiguous source tensors supported atm. 889 if (failed(successStrides) || !isContiguous) 890 return matchFailure(); 891 892 auto int64Ty = LLVM::LLVMType::getInt64Ty(lowering.getDialect()); 893 894 // Create descriptor. 895 auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy); 896 Type llvmTargetElementTy = desc.getElementType(); 897 // Set allocated ptr. 898 Value allocated = sourceMemRef.allocatedPtr(rewriter, loc); 899 allocated = 900 rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated); 901 desc.setAllocatedPtr(rewriter, loc, allocated); 902 // Set aligned ptr. 903 Value ptr = sourceMemRef.alignedPtr(rewriter, loc); 904 ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr); 905 desc.setAlignedPtr(rewriter, loc, ptr); 906 // Fill offset 0. 907 auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0); 908 auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr); 909 desc.setOffset(rewriter, loc, zero); 910 911 // Fill size and stride descriptors in memref. 912 for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) { 913 int64_t index = indexedSize.index(); 914 auto sizeAttr = 915 rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value()); 916 auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr); 917 desc.setSize(rewriter, loc, index, size); 918 auto strideAttr = 919 rewriter.getIntegerAttr(rewriter.getIndexType(), strides[index]); 920 auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr); 921 desc.setStride(rewriter, loc, index, stride); 922 } 923 924 rewriter.replaceOp(op, {desc}); 925 return matchSuccess(); 926 } 927 }; 928 929 class VectorPrintOpConversion : public LLVMOpLowering { 930 public: 931 explicit VectorPrintOpConversion(MLIRContext *context, 932 LLVMTypeConverter &typeConverter) 933 : LLVMOpLowering(vector::PrintOp::getOperationName(), context, 934 typeConverter) {} 935 936 // Proof-of-concept lowering implementation that relies on a small 937 // runtime support library, which only needs to provide a few 938 // printing methods (single value for all data types, opening/closing 939 // bracket, comma, newline). The lowering fully unrolls a vector 940 // in terms of these elementary printing operations. The advantage 941 // of this approach is that the library can remain unaware of all 942 // low-level implementation details of vectors while still supporting 943 // output of any shaped and dimensioned vector. Due to full unrolling, 944 // this approach is less suited for very large vectors though. 945 // 946 // TODO(ajcbik): rely solely on libc in future? something else? 947 // 948 PatternMatchResult 949 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 950 ConversionPatternRewriter &rewriter) const override { 951 auto printOp = cast<vector::PrintOp>(op); 952 auto adaptor = vector::PrintOpOperandAdaptor(operands); 953 Type printType = printOp.getPrintType(); 954 955 if (lowering.convertType(printType) == nullptr) 956 return matchFailure(); 957 958 // Make sure element type has runtime support (currently just Float/Double). 959 VectorType vectorType = printType.dyn_cast<VectorType>(); 960 Type eltType = vectorType ? vectorType.getElementType() : printType; 961 int64_t rank = vectorType ? vectorType.getRank() : 0; 962 Operation *printer; 963 if (eltType.isInteger(32)) 964 printer = getPrintI32(op); 965 else if (eltType.isInteger(64)) 966 printer = getPrintI64(op); 967 else if (eltType.isF32()) 968 printer = getPrintFloat(op); 969 else if (eltType.isF64()) 970 printer = getPrintDouble(op); 971 else 972 return matchFailure(); 973 974 // Unroll vector into elementary print calls. 975 emitRanks(rewriter, op, adaptor.source(), vectorType, printer, rank); 976 emitCall(rewriter, op->getLoc(), getPrintNewline(op)); 977 rewriter.eraseOp(op); 978 return matchSuccess(); 979 } 980 981 private: 982 void emitRanks(ConversionPatternRewriter &rewriter, Operation *op, 983 Value value, VectorType vectorType, Operation *printer, 984 int64_t rank) const { 985 Location loc = op->getLoc(); 986 if (rank == 0) { 987 emitCall(rewriter, loc, printer, value); 988 return; 989 } 990 991 emitCall(rewriter, loc, getPrintOpen(op)); 992 Operation *printComma = getPrintComma(op); 993 int64_t dim = vectorType.getDimSize(0); 994 for (int64_t d = 0; d < dim; ++d) { 995 auto reducedType = 996 rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr; 997 auto llvmType = lowering.convertType( 998 rank > 1 ? reducedType : vectorType.getElementType()); 999 Value nestedVal = 1000 extractOne(rewriter, lowering, loc, value, llvmType, rank, d); 1001 emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1); 1002 if (d != dim - 1) 1003 emitCall(rewriter, loc, printComma); 1004 } 1005 emitCall(rewriter, loc, getPrintClose(op)); 1006 } 1007 1008 // Helper to emit a call. 1009 static void emitCall(ConversionPatternRewriter &rewriter, Location loc, 1010 Operation *ref, ValueRange params = ValueRange()) { 1011 rewriter.create<LLVM::CallOp>(loc, ArrayRef<Type>{}, 1012 rewriter.getSymbolRefAttr(ref), params); 1013 } 1014 1015 // Helper for printer method declaration (first hit) and lookup. 1016 static Operation *getPrint(Operation *op, LLVM::LLVMDialect *dialect, 1017 StringRef name, ArrayRef<LLVM::LLVMType> params) { 1018 auto module = op->getParentOfType<ModuleOp>(); 1019 auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name); 1020 if (func) 1021 return func; 1022 OpBuilder moduleBuilder(module.getBodyRegion()); 1023 return moduleBuilder.create<LLVM::LLVMFuncOp>( 1024 op->getLoc(), name, 1025 LLVM::LLVMType::getFunctionTy(LLVM::LLVMType::getVoidTy(dialect), 1026 params, /*isVarArg=*/false)); 1027 } 1028 1029 // Helpers for method names. 1030 Operation *getPrintI32(Operation *op) const { 1031 LLVM::LLVMDialect *dialect = lowering.getDialect(); 1032 return getPrint(op, dialect, "print_i32", 1033 LLVM::LLVMType::getInt32Ty(dialect)); 1034 } 1035 Operation *getPrintI64(Operation *op) const { 1036 LLVM::LLVMDialect *dialect = lowering.getDialect(); 1037 return getPrint(op, dialect, "print_i64", 1038 LLVM::LLVMType::getInt64Ty(dialect)); 1039 } 1040 Operation *getPrintFloat(Operation *op) const { 1041 LLVM::LLVMDialect *dialect = lowering.getDialect(); 1042 return getPrint(op, dialect, "print_f32", 1043 LLVM::LLVMType::getFloatTy(dialect)); 1044 } 1045 Operation *getPrintDouble(Operation *op) const { 1046 LLVM::LLVMDialect *dialect = lowering.getDialect(); 1047 return getPrint(op, dialect, "print_f64", 1048 LLVM::LLVMType::getDoubleTy(dialect)); 1049 } 1050 Operation *getPrintOpen(Operation *op) const { 1051 return getPrint(op, lowering.getDialect(), "print_open", {}); 1052 } 1053 Operation *getPrintClose(Operation *op) const { 1054 return getPrint(op, lowering.getDialect(), "print_close", {}); 1055 } 1056 Operation *getPrintComma(Operation *op) const { 1057 return getPrint(op, lowering.getDialect(), "print_comma", {}); 1058 } 1059 Operation *getPrintNewline(Operation *op) const { 1060 return getPrint(op, lowering.getDialect(), "print_newline", {}); 1061 } 1062 }; 1063 1064 /// Progressive lowering of StridedSliceOp to either: 1065 /// 1. extractelement + insertelement for the 1-D case 1066 /// 2. extract + optional strided_slice + insert for the n-D case. 1067 class VectorStridedSliceOpConversion : public OpRewritePattern<StridedSliceOp> { 1068 public: 1069 using OpRewritePattern<StridedSliceOp>::OpRewritePattern; 1070 1071 PatternMatchResult matchAndRewrite(StridedSliceOp op, 1072 PatternRewriter &rewriter) const override { 1073 auto dstType = op.getResult().getType().cast<VectorType>(); 1074 1075 assert(!op.offsets().getValue().empty() && "Unexpected empty offsets"); 1076 1077 int64_t offset = 1078 op.offsets().getValue().front().cast<IntegerAttr>().getInt(); 1079 int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt(); 1080 int64_t stride = 1081 op.strides().getValue().front().cast<IntegerAttr>().getInt(); 1082 1083 auto loc = op.getLoc(); 1084 auto elemType = dstType.getElementType(); 1085 assert(elemType.isIntOrIndexOrFloat()); 1086 Value zero = rewriter.create<ConstantOp>(loc, elemType, 1087 rewriter.getZeroAttr(elemType)); 1088 Value res = rewriter.create<SplatOp>(loc, dstType, zero); 1089 for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e; 1090 off += stride, ++idx) { 1091 Value extracted = extractOne(rewriter, loc, op.vector(), off); 1092 if (op.offsets().getValue().size() > 1) { 1093 StridedSliceOp stridedSliceOp = rewriter.create<StridedSliceOp>( 1094 loc, extracted, getI64SubArray(op.offsets(), /* dropFront=*/1), 1095 getI64SubArray(op.sizes(), /* dropFront=*/1), 1096 getI64SubArray(op.strides(), /* dropFront=*/1)); 1097 // Call matchAndRewrite recursively from within the pattern. This 1098 // circumvents the current limitation that a given pattern cannot 1099 // be called multiple times by the PatternRewrite infrastructure (to 1100 // avoid infinite recursion, but in this case, infinite recursion 1101 // cannot happen because the rank is strictly decreasing). 1102 // TODO(rriddle, nicolasvasilache) Implement something like a hook for 1103 // a potential function that must decrease and allow the same pattern 1104 // multiple times. 1105 auto success = matchAndRewrite(stridedSliceOp, rewriter); 1106 (void)success; 1107 assert(success && "Unexpected failure"); 1108 extracted = stridedSliceOp; 1109 } 1110 res = insertOne(rewriter, loc, extracted, res, idx); 1111 } 1112 rewriter.replaceOp(op, {res}); 1113 return matchSuccess(); 1114 } 1115 }; 1116 1117 } // namespace 1118 1119 /// Populate the given list with patterns that convert from Vector to LLVM. 1120 void mlir::populateVectorToLLVMConversionPatterns( 1121 LLVMTypeConverter &converter, OwningRewritePatternList &patterns) { 1122 MLIRContext *ctx = converter.getDialect()->getContext(); 1123 patterns.insert<VectorFMAOpNDRewritePattern, 1124 VectorInsertStridedSliceOpDifferentRankRewritePattern, 1125 VectorInsertStridedSliceOpSameRankRewritePattern, 1126 VectorStridedSliceOpConversion>(ctx); 1127 patterns.insert<VectorBroadcastOpConversion, VectorReductionOpConversion, 1128 VectorShuffleOpConversion, VectorExtractElementOpConversion, 1129 VectorExtractOpConversion, VectorFMAOp1DConversion, 1130 VectorInsertElementOpConversion, VectorInsertOpConversion, 1131 VectorOuterProductOpConversion, VectorTypeCastOpConversion, 1132 VectorPrintOpConversion>(ctx, converter); 1133 } 1134 1135 namespace { 1136 struct LowerVectorToLLVMPass : public ModulePass<LowerVectorToLLVMPass> { 1137 void runOnModule() override; 1138 }; 1139 } // namespace 1140 1141 void LowerVectorToLLVMPass::runOnModule() { 1142 // Perform progressive lowering of operations on "slices". 1143 // Folding and DCE get rid of all non-leaking tuple ops. 1144 { 1145 OwningRewritePatternList patterns; 1146 populateVectorSlicesLoweringPatterns(patterns, &getContext()); 1147 applyPatternsGreedily(getModule(), patterns); 1148 } 1149 1150 // Convert to the LLVM IR dialect. 1151 LLVMTypeConverter converter(&getContext()); 1152 OwningRewritePatternList patterns; 1153 populateVectorToLLVMConversionPatterns(converter, patterns); 1154 populateStdToLLVMConversionPatterns(converter, patterns); 1155 1156 ConversionTarget target(getContext()); 1157 target.addLegalDialect<LLVM::LLVMDialect>(); 1158 target.addDynamicallyLegalOp<FuncOp>( 1159 [&](FuncOp op) { return converter.isSignatureLegal(op.getType()); }); 1160 if (failed( 1161 applyPartialConversion(getModule(), target, patterns, &converter))) { 1162 signalPassFailure(); 1163 } 1164 } 1165 1166 OpPassBase<ModuleOp> *mlir::createLowerVectorToLLVMPass() { 1167 return new LowerVectorToLLVMPass(); 1168 } 1169 1170 static PassRegistration<LowerVectorToLLVMPass> 1171 pass("convert-vector-to-llvm", 1172 "Lower the operations from the vector dialect into the LLVM dialect"); 1173