xref: /llvm-project/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp (revision df186507e1d07c3ddba091a076ba7a33dbdc5867)
1 //===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
2 //
3 // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
10 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
11 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
12 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
13 #include "mlir/Dialect/StandardOps/Ops.h"
14 #include "mlir/Dialect/VectorOps/VectorOps.h"
15 #include "mlir/IR/Attributes.h"
16 #include "mlir/IR/Builders.h"
17 #include "mlir/IR/MLIRContext.h"
18 #include "mlir/IR/Module.h"
19 #include "mlir/IR/Operation.h"
20 #include "mlir/IR/PatternMatch.h"
21 #include "mlir/IR/StandardTypes.h"
22 #include "mlir/IR/Types.h"
23 #include "mlir/Pass/Pass.h"
24 #include "mlir/Pass/PassManager.h"
25 #include "mlir/Transforms/DialectConversion.h"
26 #include "mlir/Transforms/Passes.h"
27 
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Allocator.h"
32 #include "llvm/Support/ErrorHandling.h"
33 
34 using namespace mlir;
35 using namespace mlir::vector;
36 
37 namespace {
38 
39 template <typename T>
40 static LLVM::LLVMType getPtrToElementType(T containerType,
41                                           LLVMTypeConverter &lowering) {
42   return lowering.convertType(containerType.getElementType())
43       .template cast<LLVM::LLVMType>()
44       .getPointerTo();
45 }
46 
47 // Helper to reduce vector type by one rank at front.
48 static VectorType reducedVectorTypeFront(VectorType tp) {
49   assert((tp.getRank() > 1) && "unlowerable vector type");
50   return VectorType::get(tp.getShape().drop_front(), tp.getElementType());
51 }
52 
53 // Helper to reduce vector type by *all* but one rank at back.
54 static VectorType reducedVectorTypeBack(VectorType tp) {
55   assert((tp.getRank() > 1) && "unlowerable vector type");
56   return VectorType::get(tp.getShape().take_back(), tp.getElementType());
57 }
58 
59 // Helper that picks the proper sequence for inserting.
60 static Value insertOne(ConversionPatternRewriter &rewriter,
61                        LLVMTypeConverter &lowering, Location loc, Value val1,
62                        Value val2, Type llvmType, int64_t rank, int64_t pos) {
63   if (rank == 1) {
64     auto idxType = rewriter.getIndexType();
65     auto constant = rewriter.create<LLVM::ConstantOp>(
66         loc, lowering.convertType(idxType),
67         rewriter.getIntegerAttr(idxType, pos));
68     return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2,
69                                                   constant);
70   }
71   return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2,
72                                               rewriter.getI64ArrayAttr(pos));
73 }
74 
75 // Helper that picks the proper sequence for inserting.
76 static Value insertOne(PatternRewriter &rewriter, Location loc, Value from,
77                        Value into, int64_t offset) {
78   auto vectorType = into.getType().cast<VectorType>();
79   if (vectorType.getRank() > 1)
80     return rewriter.create<InsertOp>(loc, from, into, offset);
81   return rewriter.create<vector::InsertElementOp>(
82       loc, vectorType, from, into,
83       rewriter.create<ConstantIndexOp>(loc, offset));
84 }
85 
86 // Helper that picks the proper sequence for extracting.
87 static Value extractOne(ConversionPatternRewriter &rewriter,
88                         LLVMTypeConverter &lowering, Location loc, Value val,
89                         Type llvmType, int64_t rank, int64_t pos) {
90   if (rank == 1) {
91     auto idxType = rewriter.getIndexType();
92     auto constant = rewriter.create<LLVM::ConstantOp>(
93         loc, lowering.convertType(idxType),
94         rewriter.getIntegerAttr(idxType, pos));
95     return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val,
96                                                    constant);
97   }
98   return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val,
99                                                rewriter.getI64ArrayAttr(pos));
100 }
101 
102 // Helper that picks the proper sequence for extracting.
103 static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector,
104                         int64_t offset) {
105   auto vectorType = vector.getType().cast<VectorType>();
106   if (vectorType.getRank() > 1)
107     return rewriter.create<ExtractOp>(loc, vector, offset);
108   return rewriter.create<vector::ExtractElementOp>(
109       loc, vectorType.getElementType(), vector,
110       rewriter.create<ConstantIndexOp>(loc, offset));
111 }
112 
113 // Helper that returns a subset of `arrayAttr` as a vector of int64_t.
114 // TODO(rriddle): Better support for attribute subtype forwarding + slicing.
115 static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr,
116                                               unsigned dropFront = 0,
117                                               unsigned dropBack = 0) {
118   assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds");
119   auto range = arrayAttr.getAsRange<IntegerAttr>();
120   SmallVector<int64_t, 4> res;
121   res.reserve(arrayAttr.size() - dropFront - dropBack);
122   for (auto it = range.begin() + dropFront, eit = range.end() - dropBack;
123        it != eit; ++it)
124     res.push_back((*it).getValue().getSExtValue());
125   return res;
126 }
127 
128 class VectorBroadcastOpConversion : public LLVMOpLowering {
129 public:
130   explicit VectorBroadcastOpConversion(MLIRContext *context,
131                                        LLVMTypeConverter &typeConverter)
132       : LLVMOpLowering(vector::BroadcastOp::getOperationName(), context,
133                        typeConverter) {}
134 
135   PatternMatchResult
136   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
137                   ConversionPatternRewriter &rewriter) const override {
138     auto broadcastOp = cast<vector::BroadcastOp>(op);
139     VectorType dstVectorType = broadcastOp.getVectorType();
140     if (lowering.convertType(dstVectorType) == nullptr)
141       return matchFailure();
142     // Rewrite when the full vector type can be lowered (which
143     // implies all 'reduced' types can be lowered too).
144     auto adaptor = vector::BroadcastOpOperandAdaptor(operands);
145     VectorType srcVectorType =
146         broadcastOp.getSourceType().dyn_cast<VectorType>();
147     rewriter.replaceOp(
148         op, expandRanks(adaptor.source(), // source value to be expanded
149                         op->getLoc(),     // location of original broadcast
150                         srcVectorType, dstVectorType, rewriter));
151     return matchSuccess();
152   }
153 
154 private:
155   // Expands the given source value over all the ranks, as defined
156   // by the source and destination type (a null source type denotes
157   // expansion from a scalar value into a vector).
158   //
159   // TODO(ajcbik): consider replacing this one-pattern lowering
160   //               with a two-pattern lowering using other vector
161   //               ops once all insert/extract/shuffle operations
162   //               are available with lowering implemention.
163   //
164   Value expandRanks(Value value, Location loc, VectorType srcVectorType,
165                     VectorType dstVectorType,
166                     ConversionPatternRewriter &rewriter) const {
167     assert((dstVectorType != nullptr) && "invalid result type in broadcast");
168     // Determine rank of source and destination.
169     int64_t srcRank = srcVectorType ? srcVectorType.getRank() : 0;
170     int64_t dstRank = dstVectorType.getRank();
171     int64_t curDim = dstVectorType.getDimSize(0);
172     if (srcRank < dstRank)
173       // Duplicate this rank.
174       return duplicateOneRank(value, loc, srcVectorType, dstVectorType, dstRank,
175                               curDim, rewriter);
176     // If all trailing dimensions are the same, the broadcast consists of
177     // simply passing through the source value and we are done. Otherwise,
178     // any non-matching dimension forces a stretch along this rank.
179     assert((srcVectorType != nullptr) && (srcRank > 0) &&
180            (srcRank == dstRank) && "invalid rank in broadcast");
181     for (int64_t r = 0; r < dstRank; r++) {
182       if (srcVectorType.getDimSize(r) != dstVectorType.getDimSize(r)) {
183         return stretchOneRank(value, loc, srcVectorType, dstVectorType, dstRank,
184                               curDim, rewriter);
185       }
186     }
187     return value;
188   }
189 
190   // Picks the best way to duplicate a single rank. For the 1-D case, a
191   // single insert-elt/shuffle is the most efficient expansion. For higher
192   // dimensions, however, we need dim x insert-values on a new broadcast
193   // with one less leading dimension, which will be lowered "recursively"
194   // to matching LLVM IR.
195   // For example:
196   //   v = broadcast s : f32 to vector<4x2xf32>
197   // becomes:
198   //   x = broadcast s : f32 to vector<2xf32>
199   //   v = [x,x,x,x]
200   // becomes:
201   //   x = [s,s]
202   //   v = [x,x,x,x]
203   Value duplicateOneRank(Value value, Location loc, VectorType srcVectorType,
204                          VectorType dstVectorType, int64_t rank, int64_t dim,
205                          ConversionPatternRewriter &rewriter) const {
206     Type llvmType = lowering.convertType(dstVectorType);
207     assert((llvmType != nullptr) && "unlowerable vector type");
208     if (rank == 1) {
209       Value undef = rewriter.create<LLVM::UndefOp>(loc, llvmType);
210       Value expand =
211           insertOne(rewriter, lowering, loc, undef, value, llvmType, rank, 0);
212       SmallVector<int32_t, 4> zeroValues(dim, 0);
213       return rewriter.create<LLVM::ShuffleVectorOp>(
214           loc, expand, undef, rewriter.getI32ArrayAttr(zeroValues));
215     }
216     Value expand = expandRanks(value, loc, srcVectorType,
217                                reducedVectorTypeFront(dstVectorType), rewriter);
218     Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType);
219     for (int64_t d = 0; d < dim; ++d) {
220       result =
221           insertOne(rewriter, lowering, loc, result, expand, llvmType, rank, d);
222     }
223     return result;
224   }
225 
226   // Picks the best way to stretch a single rank. For the 1-D case, a
227   // single insert-elt/shuffle is the most efficient expansion when at
228   // a stretch. Otherwise, every dimension needs to be expanded
229   // individually and individually inserted in the resulting vector.
230   // For example:
231   //   v = broadcast w : vector<4x1x2xf32> to vector<4x2x2xf32>
232   // becomes:
233   //   a = broadcast w[0] : vector<1x2xf32> to vector<2x2xf32>
234   //   b = broadcast w[1] : vector<1x2xf32> to vector<2x2xf32>
235   //   c = broadcast w[2] : vector<1x2xf32> to vector<2x2xf32>
236   //   d = broadcast w[3] : vector<1x2xf32> to vector<2x2xf32>
237   //   v = [a,b,c,d]
238   // becomes:
239   //   x = broadcast w[0][0] : vector<2xf32> to vector <2x2xf32>
240   //   y = broadcast w[1][0] : vector<2xf32> to vector <2x2xf32>
241   //   a = [x, y]
242   //   etc.
243   Value stretchOneRank(Value value, Location loc, VectorType srcVectorType,
244                        VectorType dstVectorType, int64_t rank, int64_t dim,
245                        ConversionPatternRewriter &rewriter) const {
246     Type llvmType = lowering.convertType(dstVectorType);
247     assert((llvmType != nullptr) && "unlowerable vector type");
248     Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType);
249     bool atStretch = dim != srcVectorType.getDimSize(0);
250     if (rank == 1) {
251       assert(atStretch);
252       Type redLlvmType = lowering.convertType(dstVectorType.getElementType());
253       Value one =
254           extractOne(rewriter, lowering, loc, value, redLlvmType, rank, 0);
255       Value expand =
256           insertOne(rewriter, lowering, loc, result, one, llvmType, rank, 0);
257       SmallVector<int32_t, 4> zeroValues(dim, 0);
258       return rewriter.create<LLVM::ShuffleVectorOp>(
259           loc, expand, result, rewriter.getI32ArrayAttr(zeroValues));
260     }
261     VectorType redSrcType = reducedVectorTypeFront(srcVectorType);
262     VectorType redDstType = reducedVectorTypeFront(dstVectorType);
263     Type redLlvmType = lowering.convertType(redSrcType);
264     for (int64_t d = 0; d < dim; ++d) {
265       int64_t pos = atStretch ? 0 : d;
266       Value one =
267           extractOne(rewriter, lowering, loc, value, redLlvmType, rank, pos);
268       Value expand = expandRanks(one, loc, redSrcType, redDstType, rewriter);
269       result =
270           insertOne(rewriter, lowering, loc, result, expand, llvmType, rank, d);
271     }
272     return result;
273   }
274 };
275 
276 class VectorShuffleOpConversion : public LLVMOpLowering {
277 public:
278   explicit VectorShuffleOpConversion(MLIRContext *context,
279                                      LLVMTypeConverter &typeConverter)
280       : LLVMOpLowering(vector::ShuffleOp::getOperationName(), context,
281                        typeConverter) {}
282 
283   PatternMatchResult
284   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
285                   ConversionPatternRewriter &rewriter) const override {
286     auto loc = op->getLoc();
287     auto adaptor = vector::ShuffleOpOperandAdaptor(operands);
288     auto shuffleOp = cast<vector::ShuffleOp>(op);
289     auto v1Type = shuffleOp.getV1VectorType();
290     auto v2Type = shuffleOp.getV2VectorType();
291     auto vectorType = shuffleOp.getVectorType();
292     Type llvmType = lowering.convertType(vectorType);
293     auto maskArrayAttr = shuffleOp.mask();
294 
295     // Bail if result type cannot be lowered.
296     if (!llvmType)
297       return matchFailure();
298 
299     // Get rank and dimension sizes.
300     int64_t rank = vectorType.getRank();
301     assert(v1Type.getRank() == rank);
302     assert(v2Type.getRank() == rank);
303     int64_t v1Dim = v1Type.getDimSize(0);
304 
305     // For rank 1, where both operands have *exactly* the same vector type,
306     // there is direct shuffle support in LLVM. Use it!
307     if (rank == 1 && v1Type == v2Type) {
308       Value shuffle = rewriter.create<LLVM::ShuffleVectorOp>(
309           loc, adaptor.v1(), adaptor.v2(), maskArrayAttr);
310       rewriter.replaceOp(op, shuffle);
311       return matchSuccess();
312     }
313 
314     // For all other cases, insert the individual values individually.
315     Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType);
316     int64_t insPos = 0;
317     for (auto en : llvm::enumerate(maskArrayAttr)) {
318       int64_t extPos = en.value().cast<IntegerAttr>().getInt();
319       Value value = adaptor.v1();
320       if (extPos >= v1Dim) {
321         extPos -= v1Dim;
322         value = adaptor.v2();
323       }
324       Value extract =
325           extractOne(rewriter, lowering, loc, value, llvmType, rank, extPos);
326       insert = insertOne(rewriter, lowering, loc, insert, extract, llvmType,
327                          rank, insPos++);
328     }
329     rewriter.replaceOp(op, insert);
330     return matchSuccess();
331   }
332 };
333 
334 class VectorExtractElementOpConversion : public LLVMOpLowering {
335 public:
336   explicit VectorExtractElementOpConversion(MLIRContext *context,
337                                             LLVMTypeConverter &typeConverter)
338       : LLVMOpLowering(vector::ExtractElementOp::getOperationName(), context,
339                        typeConverter) {}
340 
341   PatternMatchResult
342   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
343                   ConversionPatternRewriter &rewriter) const override {
344     auto adaptor = vector::ExtractElementOpOperandAdaptor(operands);
345     auto extractEltOp = cast<vector::ExtractElementOp>(op);
346     auto vectorType = extractEltOp.getVectorType();
347     auto llvmType = lowering.convertType(vectorType.getElementType());
348 
349     // Bail if result type cannot be lowered.
350     if (!llvmType)
351       return matchFailure();
352 
353     rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
354         op, llvmType, adaptor.vector(), adaptor.position());
355     return matchSuccess();
356   }
357 };
358 
359 class VectorExtractOpConversion : public LLVMOpLowering {
360 public:
361   explicit VectorExtractOpConversion(MLIRContext *context,
362                                      LLVMTypeConverter &typeConverter)
363       : LLVMOpLowering(vector::ExtractOp::getOperationName(), context,
364                        typeConverter) {}
365 
366   PatternMatchResult
367   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
368                   ConversionPatternRewriter &rewriter) const override {
369     auto loc = op->getLoc();
370     auto adaptor = vector::ExtractOpOperandAdaptor(operands);
371     auto extractOp = cast<vector::ExtractOp>(op);
372     auto vectorType = extractOp.getVectorType();
373     auto resultType = extractOp.getResult().getType();
374     auto llvmResultType = lowering.convertType(resultType);
375     auto positionArrayAttr = extractOp.position();
376 
377     // Bail if result type cannot be lowered.
378     if (!llvmResultType)
379       return matchFailure();
380 
381     // One-shot extraction of vector from array (only requires extractvalue).
382     if (resultType.isa<VectorType>()) {
383       Value extracted = rewriter.create<LLVM::ExtractValueOp>(
384           loc, llvmResultType, adaptor.vector(), positionArrayAttr);
385       rewriter.replaceOp(op, extracted);
386       return matchSuccess();
387     }
388 
389     // Potential extraction of 1-D vector from array.
390     auto *context = op->getContext();
391     Value extracted = adaptor.vector();
392     auto positionAttrs = positionArrayAttr.getValue();
393     if (positionAttrs.size() > 1) {
394       auto oneDVectorType = reducedVectorTypeBack(vectorType);
395       auto nMinusOnePositionAttrs =
396           ArrayAttr::get(positionAttrs.drop_back(), context);
397       extracted = rewriter.create<LLVM::ExtractValueOp>(
398           loc, lowering.convertType(oneDVectorType), extracted,
399           nMinusOnePositionAttrs);
400     }
401 
402     // Remaining extraction of element from 1-D LLVM vector
403     auto position = positionAttrs.back().cast<IntegerAttr>();
404     auto i64Type = LLVM::LLVMType::getInt64Ty(lowering.getDialect());
405     auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
406     extracted =
407         rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
408     rewriter.replaceOp(op, extracted);
409 
410     return matchSuccess();
411   }
412 };
413 
414 class VectorInsertElementOpConversion : public LLVMOpLowering {
415 public:
416   explicit VectorInsertElementOpConversion(MLIRContext *context,
417                                            LLVMTypeConverter &typeConverter)
418       : LLVMOpLowering(vector::InsertElementOp::getOperationName(), context,
419                        typeConverter) {}
420 
421   PatternMatchResult
422   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
423                   ConversionPatternRewriter &rewriter) const override {
424     auto adaptor = vector::InsertElementOpOperandAdaptor(operands);
425     auto insertEltOp = cast<vector::InsertElementOp>(op);
426     auto vectorType = insertEltOp.getDestVectorType();
427     auto llvmType = lowering.convertType(vectorType);
428 
429     // Bail if result type cannot be lowered.
430     if (!llvmType)
431       return matchFailure();
432 
433     rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
434         op, llvmType, adaptor.dest(), adaptor.source(), adaptor.position());
435     return matchSuccess();
436   }
437 };
438 
439 class VectorInsertOpConversion : public LLVMOpLowering {
440 public:
441   explicit VectorInsertOpConversion(MLIRContext *context,
442                                     LLVMTypeConverter &typeConverter)
443       : LLVMOpLowering(vector::InsertOp::getOperationName(), context,
444                        typeConverter) {}
445 
446   PatternMatchResult
447   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
448                   ConversionPatternRewriter &rewriter) const override {
449     auto loc = op->getLoc();
450     auto adaptor = vector::InsertOpOperandAdaptor(operands);
451     auto insertOp = cast<vector::InsertOp>(op);
452     auto sourceType = insertOp.getSourceType();
453     auto destVectorType = insertOp.getDestVectorType();
454     auto llvmResultType = lowering.convertType(destVectorType);
455     auto positionArrayAttr = insertOp.position();
456 
457     // Bail if result type cannot be lowered.
458     if (!llvmResultType)
459       return matchFailure();
460 
461     // One-shot insertion of a vector into an array (only requires insertvalue).
462     if (sourceType.isa<VectorType>()) {
463       Value inserted = rewriter.create<LLVM::InsertValueOp>(
464           loc, llvmResultType, adaptor.dest(), adaptor.source(),
465           positionArrayAttr);
466       rewriter.replaceOp(op, inserted);
467       return matchSuccess();
468     }
469 
470     // Potential extraction of 1-D vector from array.
471     auto *context = op->getContext();
472     Value extracted = adaptor.dest();
473     auto positionAttrs = positionArrayAttr.getValue();
474     auto position = positionAttrs.back().cast<IntegerAttr>();
475     auto oneDVectorType = destVectorType;
476     if (positionAttrs.size() > 1) {
477       oneDVectorType = reducedVectorTypeBack(destVectorType);
478       auto nMinusOnePositionAttrs =
479           ArrayAttr::get(positionAttrs.drop_back(), context);
480       extracted = rewriter.create<LLVM::ExtractValueOp>(
481           loc, lowering.convertType(oneDVectorType), extracted,
482           nMinusOnePositionAttrs);
483     }
484 
485     // Insertion of an element into a 1-D LLVM vector.
486     auto i64Type = LLVM::LLVMType::getInt64Ty(lowering.getDialect());
487     auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
488     Value inserted = rewriter.create<LLVM::InsertElementOp>(
489         loc, lowering.convertType(oneDVectorType), extracted, adaptor.source(),
490         constant);
491 
492     // Potential insertion of resulting 1-D vector into array.
493     if (positionAttrs.size() > 1) {
494       auto nMinusOnePositionAttrs =
495           ArrayAttr::get(positionAttrs.drop_back(), context);
496       inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType,
497                                                       adaptor.dest(), inserted,
498                                                       nMinusOnePositionAttrs);
499     }
500 
501     rewriter.replaceOp(op, inserted);
502     return matchSuccess();
503   }
504 };
505 
506 // When ranks are different, InsertStridedSlice needs to extract a properly
507 // ranked vector from the destination vector into which to insert. This pattern
508 // only takes care of this part and forwards the rest of the conversion to
509 // another pattern that converts InsertStridedSlice for operands of the same
510 // rank.
511 //
512 // RewritePattern for InsertStridedSliceOp where source and destination vectors
513 // have different ranks. In this case:
514 //   1. the proper subvector is extracted from the destination vector
515 //   2. a new InsertStridedSlice op is created to insert the source in the
516 //   destination subvector
517 //   3. the destination subvector is inserted back in the proper place
518 //   4. the op is replaced by the result of step 3.
519 // The new InsertStridedSlice from step 2. will be picked up by a
520 // `VectorInsertStridedSliceOpSameRankRewritePattern`.
521 class VectorInsertStridedSliceOpDifferentRankRewritePattern
522     : public OpRewritePattern<InsertStridedSliceOp> {
523 public:
524   using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
525 
526   PatternMatchResult matchAndRewrite(InsertStridedSliceOp op,
527                                      PatternRewriter &rewriter) const override {
528     auto srcType = op.getSourceVectorType();
529     auto dstType = op.getDestVectorType();
530 
531     if (op.offsets().getValue().empty())
532       return matchFailure();
533 
534     auto loc = op.getLoc();
535     int64_t rankDiff = dstType.getRank() - srcType.getRank();
536     assert(rankDiff >= 0);
537     if (rankDiff == 0)
538       return matchFailure();
539 
540     int64_t rankRest = dstType.getRank() - rankDiff;
541     // Extract / insert the subvector of matching rank and InsertStridedSlice
542     // on it.
543     Value extracted =
544         rewriter.create<ExtractOp>(loc, op.dest(),
545                                    getI64SubArray(op.offsets(), /*dropFront=*/0,
546                                                   /*dropFront=*/rankRest));
547     // A different pattern will kick in for InsertStridedSlice with matching
548     // ranks.
549     auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>(
550         loc, op.source(), extracted,
551         getI64SubArray(op.offsets(), /*dropFront=*/rankDiff),
552         getI64SubArray(op.strides(), /*dropFront=*/rankDiff));
553     rewriter.replaceOpWithNewOp<InsertOp>(
554         op, stridedSliceInnerOp.getResult(), op.dest(),
555         getI64SubArray(op.offsets(), /*dropFront=*/0,
556                        /*dropFront=*/rankRest));
557     return matchSuccess();
558   }
559 };
560 
561 // RewritePattern for InsertStridedSliceOp where source and destination vectors
562 // have the same rank. In this case, we reduce
563 //   1. the proper subvector is extracted from the destination vector
564 //   2. a new InsertStridedSlice op is created to insert the source in the
565 //   destination subvector
566 //   3. the destination subvector is inserted back in the proper place
567 //   4. the op is replaced by the result of step 3.
568 // The new InsertStridedSlice from step 2. will be picked up by a
569 // `VectorInsertStridedSliceOpSameRankRewritePattern`.
570 class VectorInsertStridedSliceOpSameRankRewritePattern
571     : public OpRewritePattern<InsertStridedSliceOp> {
572 public:
573   using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
574 
575   PatternMatchResult matchAndRewrite(InsertStridedSliceOp op,
576                                      PatternRewriter &rewriter) const override {
577     auto srcType = op.getSourceVectorType();
578     auto dstType = op.getDestVectorType();
579 
580     if (op.offsets().getValue().empty())
581       return matchFailure();
582 
583     int64_t rankDiff = dstType.getRank() - srcType.getRank();
584     assert(rankDiff >= 0);
585     if (rankDiff != 0)
586       return matchFailure();
587 
588     if (srcType == dstType) {
589       rewriter.replaceOp(op, op.source());
590       return matchSuccess();
591     }
592 
593     int64_t offset =
594         op.offsets().getValue().front().cast<IntegerAttr>().getInt();
595     int64_t size = srcType.getShape().front();
596     int64_t stride =
597         op.strides().getValue().front().cast<IntegerAttr>().getInt();
598 
599     auto loc = op.getLoc();
600     Value res = op.dest();
601     // For each slice of the source vector along the most major dimension.
602     for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
603          off += stride, ++idx) {
604       // 1. extract the proper subvector (or element) from source
605       Value extractedSource = extractOne(rewriter, loc, op.source(), idx);
606       if (extractedSource.getType().isa<VectorType>()) {
607         // 2. If we have a vector, extract the proper subvector from destination
608         // Otherwise we are at the element level and no need to recurse.
609         Value extractedDest = extractOne(rewriter, loc, op.dest(), off);
610         // 3. Reduce the problem to lowering a new InsertStridedSlice op with
611         // smaller rank.
612         InsertStridedSliceOp insertStridedSliceOp =
613             rewriter.create<InsertStridedSliceOp>(
614                 loc, extractedSource, extractedDest,
615                 getI64SubArray(op.offsets(), /* dropFront=*/1),
616                 getI64SubArray(op.strides(), /* dropFront=*/1));
617         // Call matchAndRewrite recursively from within the pattern. This
618         // circumvents the current limitation that a given pattern cannot
619         // be called multiple times by the PatternRewrite infrastructure (to
620         // avoid infinite recursion, but in this case, infinite recursion
621         // cannot happen because the rank is strictly decreasing).
622         // TODO(rriddle, nicolasvasilache) Implement something like a hook for
623         // a potential function that must decrease and allow the same pattern
624         // multiple times.
625         auto success = matchAndRewrite(insertStridedSliceOp, rewriter);
626         (void)success;
627         assert(success && "Unexpected failure");
628         extractedSource = insertStridedSliceOp;
629       }
630       // 4. Insert the extractedSource into the res vector.
631       res = insertOne(rewriter, loc, extractedSource, res, off);
632     }
633 
634     rewriter.replaceOp(op, res);
635     return matchSuccess();
636   }
637 };
638 
639 class VectorOuterProductOpConversion : public LLVMOpLowering {
640 public:
641   explicit VectorOuterProductOpConversion(MLIRContext *context,
642                                           LLVMTypeConverter &typeConverter)
643       : LLVMOpLowering(vector::OuterProductOp::getOperationName(), context,
644                        typeConverter) {}
645 
646   PatternMatchResult
647   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
648                   ConversionPatternRewriter &rewriter) const override {
649     auto loc = op->getLoc();
650     auto adaptor = vector::OuterProductOpOperandAdaptor(operands);
651     auto *ctx = op->getContext();
652     auto vLHS = adaptor.lhs().getType().cast<LLVM::LLVMType>();
653     auto vRHS = adaptor.rhs().getType().cast<LLVM::LLVMType>();
654     auto rankLHS = vLHS.getUnderlyingType()->getVectorNumElements();
655     auto rankRHS = vRHS.getUnderlyingType()->getVectorNumElements();
656     auto llvmArrayOfVectType = lowering.convertType(
657         cast<vector::OuterProductOp>(op).getResult().getType());
658     Value desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayOfVectType);
659     Value a = adaptor.lhs(), b = adaptor.rhs();
660     Value acc = adaptor.acc().empty() ? nullptr : adaptor.acc().front();
661     SmallVector<Value, 8> lhs, accs;
662     lhs.reserve(rankLHS);
663     accs.reserve(rankLHS);
664     for (unsigned d = 0, e = rankLHS; d < e; ++d) {
665       // shufflevector explicitly requires i32.
666       auto attr = rewriter.getI32IntegerAttr(d);
667       SmallVector<Attribute, 4> bcastAttr(rankRHS, attr);
668       auto bcastArrayAttr = ArrayAttr::get(bcastAttr, ctx);
669       Value aD = nullptr, accD = nullptr;
670       // 1. Broadcast the element a[d] into vector aD.
671       aD = rewriter.create<LLVM::ShuffleVectorOp>(loc, a, a, bcastArrayAttr);
672       // 2. If acc is present, extract 1-d vector acc[d] into accD.
673       if (acc)
674         accD = rewriter.create<LLVM::ExtractValueOp>(
675             loc, vRHS, acc, rewriter.getI64ArrayAttr(d));
676       // 3. Compute aD outer b (plus accD, if relevant).
677       Value aOuterbD =
678           accD ? rewriter.create<LLVM::FMulAddOp>(loc, vRHS, aD, b, accD)
679                      .getResult()
680                : rewriter.create<LLVM::FMulOp>(loc, aD, b).getResult();
681       // 4. Insert as value `d` in the descriptor.
682       desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayOfVectType,
683                                                   desc, aOuterbD,
684                                                   rewriter.getI64ArrayAttr(d));
685     }
686     rewriter.replaceOp(op, desc);
687     return matchSuccess();
688   }
689 };
690 
691 class VectorTypeCastOpConversion : public LLVMOpLowering {
692 public:
693   explicit VectorTypeCastOpConversion(MLIRContext *context,
694                                       LLVMTypeConverter &typeConverter)
695       : LLVMOpLowering(vector::TypeCastOp::getOperationName(), context,
696                        typeConverter) {}
697 
698   PatternMatchResult
699   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
700                   ConversionPatternRewriter &rewriter) const override {
701     auto loc = op->getLoc();
702     vector::TypeCastOp castOp = cast<vector::TypeCastOp>(op);
703     MemRefType sourceMemRefType =
704         castOp.getOperand().getType().cast<MemRefType>();
705     MemRefType targetMemRefType =
706         castOp.getResult().getType().cast<MemRefType>();
707 
708     // Only static shape casts supported atm.
709     if (!sourceMemRefType.hasStaticShape() ||
710         !targetMemRefType.hasStaticShape())
711       return matchFailure();
712 
713     auto llvmSourceDescriptorTy =
714         operands[0].getType().dyn_cast<LLVM::LLVMType>();
715     if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy())
716       return matchFailure();
717     MemRefDescriptor sourceMemRef(operands[0]);
718 
719     auto llvmTargetDescriptorTy = lowering.convertType(targetMemRefType)
720                                       .dyn_cast_or_null<LLVM::LLVMType>();
721     if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy())
722       return matchFailure();
723 
724     int64_t offset;
725     SmallVector<int64_t, 4> strides;
726     auto successStrides =
727         getStridesAndOffset(sourceMemRefType, strides, offset);
728     bool isContiguous = (strides.back() == 1);
729     if (isContiguous) {
730       auto sizes = sourceMemRefType.getShape();
731       for (int index = 0, e = strides.size() - 2; index < e; ++index) {
732         if (strides[index] != strides[index + 1] * sizes[index + 1]) {
733           isContiguous = false;
734           break;
735         }
736       }
737     }
738     // Only contiguous source tensors supported atm.
739     if (failed(successStrides) || !isContiguous)
740       return matchFailure();
741 
742     auto int64Ty = LLVM::LLVMType::getInt64Ty(lowering.getDialect());
743 
744     // Create descriptor.
745     auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
746     Type llvmTargetElementTy = desc.getElementType();
747     // Set allocated ptr.
748     Value allocated = sourceMemRef.allocatedPtr(rewriter, loc);
749     allocated =
750         rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
751     desc.setAllocatedPtr(rewriter, loc, allocated);
752     // Set aligned ptr.
753     Value ptr = sourceMemRef.alignedPtr(rewriter, loc);
754     ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
755     desc.setAlignedPtr(rewriter, loc, ptr);
756     // Fill offset 0.
757     auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
758     auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
759     desc.setOffset(rewriter, loc, zero);
760 
761     // Fill size and stride descriptors in memref.
762     for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
763       int64_t index = indexedSize.index();
764       auto sizeAttr =
765           rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
766       auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
767       desc.setSize(rewriter, loc, index, size);
768       auto strideAttr =
769           rewriter.getIntegerAttr(rewriter.getIndexType(), strides[index]);
770       auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
771       desc.setStride(rewriter, loc, index, stride);
772     }
773 
774     rewriter.replaceOp(op, {desc});
775     return matchSuccess();
776   }
777 };
778 
779 class VectorPrintOpConversion : public LLVMOpLowering {
780 public:
781   explicit VectorPrintOpConversion(MLIRContext *context,
782                                    LLVMTypeConverter &typeConverter)
783       : LLVMOpLowering(vector::PrintOp::getOperationName(), context,
784                        typeConverter) {}
785 
786   // Proof-of-concept lowering implementation that relies on a small
787   // runtime support library, which only needs to provide a few
788   // printing methods (single value for all data types, opening/closing
789   // bracket, comma, newline). The lowering fully unrolls a vector
790   // in terms of these elementary printing operations. The advantage
791   // of this approach is that the library can remain unaware of all
792   // low-level implementation details of vectors while still supporting
793   // output of any shaped and dimensioned vector. Due to full unrolling,
794   // this approach is less suited for very large vectors though.
795   //
796   // TODO(ajcbik): rely solely on libc in future? something else?
797   //
798   PatternMatchResult
799   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
800                   ConversionPatternRewriter &rewriter) const override {
801     auto printOp = cast<vector::PrintOp>(op);
802     auto adaptor = vector::PrintOpOperandAdaptor(operands);
803     Type printType = printOp.getPrintType();
804 
805     if (lowering.convertType(printType) == nullptr)
806       return matchFailure();
807 
808     // Make sure element type has runtime support (currently just Float/Double).
809     VectorType vectorType = printType.dyn_cast<VectorType>();
810     Type eltType = vectorType ? vectorType.getElementType() : printType;
811     int64_t rank = vectorType ? vectorType.getRank() : 0;
812     Operation *printer;
813     if (eltType.isF32())
814       printer = getPrintFloat(op);
815     else if (eltType.isF64())
816       printer = getPrintDouble(op);
817     else
818       return matchFailure();
819 
820     // Unroll vector into elementary print calls.
821     emitRanks(rewriter, op, adaptor.source(), vectorType, printer, rank);
822     emitCall(rewriter, op->getLoc(), getPrintNewline(op));
823     rewriter.eraseOp(op);
824     return matchSuccess();
825   }
826 
827 private:
828   void emitRanks(ConversionPatternRewriter &rewriter, Operation *op,
829                  Value value, VectorType vectorType, Operation *printer,
830                  int64_t rank) const {
831     Location loc = op->getLoc();
832     if (rank == 0) {
833       emitCall(rewriter, loc, printer, value);
834       return;
835     }
836 
837     emitCall(rewriter, loc, getPrintOpen(op));
838     Operation *printComma = getPrintComma(op);
839     int64_t dim = vectorType.getDimSize(0);
840     for (int64_t d = 0; d < dim; ++d) {
841       auto reducedType =
842           rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr;
843       auto llvmType = lowering.convertType(
844           rank > 1 ? reducedType : vectorType.getElementType());
845       Value nestedVal =
846           extractOne(rewriter, lowering, loc, value, llvmType, rank, d);
847       emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1);
848       if (d != dim - 1)
849         emitCall(rewriter, loc, printComma);
850     }
851     emitCall(rewriter, loc, getPrintClose(op));
852   }
853 
854   // Helper to emit a call.
855   static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
856                        Operation *ref, ValueRange params = ValueRange()) {
857     rewriter.create<LLVM::CallOp>(loc, ArrayRef<Type>{},
858                                   rewriter.getSymbolRefAttr(ref), params);
859   }
860 
861   // Helper for printer method declaration (first hit) and lookup.
862   static Operation *getPrint(Operation *op, LLVM::LLVMDialect *dialect,
863                              StringRef name, ArrayRef<LLVM::LLVMType> params) {
864     auto module = op->getParentOfType<ModuleOp>();
865     auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name);
866     if (func)
867       return func;
868     OpBuilder moduleBuilder(module.getBodyRegion());
869     return moduleBuilder.create<LLVM::LLVMFuncOp>(
870         op->getLoc(), name,
871         LLVM::LLVMType::getFunctionTy(LLVM::LLVMType::getVoidTy(dialect),
872                                       params, /*isVarArg=*/false));
873   }
874 
875   // Helpers for method names.
876   Operation *getPrintFloat(Operation *op) const {
877     LLVM::LLVMDialect *dialect = lowering.getDialect();
878     return getPrint(op, dialect, "print_f32",
879                     LLVM::LLVMType::getFloatTy(dialect));
880   }
881   Operation *getPrintDouble(Operation *op) const {
882     LLVM::LLVMDialect *dialect = lowering.getDialect();
883     return getPrint(op, dialect, "print_f64",
884                     LLVM::LLVMType::getDoubleTy(dialect));
885   }
886   Operation *getPrintOpen(Operation *op) const {
887     return getPrint(op, lowering.getDialect(), "print_open", {});
888   }
889   Operation *getPrintClose(Operation *op) const {
890     return getPrint(op, lowering.getDialect(), "print_close", {});
891   }
892   Operation *getPrintComma(Operation *op) const {
893     return getPrint(op, lowering.getDialect(), "print_comma", {});
894   }
895   Operation *getPrintNewline(Operation *op) const {
896     return getPrint(op, lowering.getDialect(), "print_newline", {});
897   }
898 };
899 
900 /// Progressive lowering of StridedSliceOp to either:
901 ///   1. extractelement + insertelement for the 1-D case
902 ///   2. extract + optional strided_slice + insert for the n-D case.
903 class VectorStridedSliceOpConversion : public OpRewritePattern<StridedSliceOp> {
904 public:
905   using OpRewritePattern<StridedSliceOp>::OpRewritePattern;
906 
907   PatternMatchResult matchAndRewrite(StridedSliceOp op,
908                                      PatternRewriter &rewriter) const override {
909     auto dstType = op.getResult().getType().cast<VectorType>();
910 
911     assert(!op.offsets().getValue().empty() && "Unexpected empty offsets");
912 
913     int64_t offset =
914         op.offsets().getValue().front().cast<IntegerAttr>().getInt();
915     int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt();
916     int64_t stride =
917         op.strides().getValue().front().cast<IntegerAttr>().getInt();
918 
919     auto loc = op.getLoc();
920     auto elemType = dstType.getElementType();
921     assert(elemType.isIntOrIndexOrFloat());
922     Value zero = rewriter.create<ConstantOp>(loc, elemType,
923                                              rewriter.getZeroAttr(elemType));
924     Value res = rewriter.create<SplatOp>(loc, dstType, zero);
925     for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
926          off += stride, ++idx) {
927       Value extracted = extractOne(rewriter, loc, op.vector(), off);
928       if (op.offsets().getValue().size() > 1) {
929         StridedSliceOp stridedSliceOp = rewriter.create<StridedSliceOp>(
930             loc, extracted, getI64SubArray(op.offsets(), /* dropFront=*/1),
931             getI64SubArray(op.sizes(), /* dropFront=*/1),
932             getI64SubArray(op.strides(), /* dropFront=*/1));
933         // Call matchAndRewrite recursively from within the pattern. This
934         // circumvents the current limitation that a given pattern cannot
935         // be called multiple times by the PatternRewrite infrastructure (to
936         // avoid infinite recursion, but in this case, infinite recursion
937         // cannot happen because the rank is strictly decreasing).
938         // TODO(rriddle, nicolasvasilache) Implement something like a hook for
939         // a potential function that must decrease and allow the same pattern
940         // multiple times.
941         auto success = matchAndRewrite(stridedSliceOp, rewriter);
942         (void)success;
943         assert(success && "Unexpected failure");
944         extracted = stridedSliceOp;
945       }
946       res = insertOne(rewriter, loc, extracted, res, idx);
947     }
948     rewriter.replaceOp(op, {res});
949     return matchSuccess();
950   }
951 };
952 
953 } // namespace
954 
955 /// Populate the given list with patterns that convert from Vector to LLVM.
956 void mlir::populateVectorToLLVMConversionPatterns(
957     LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
958   MLIRContext *ctx = converter.getDialect()->getContext();
959   patterns.insert<VectorInsertStridedSliceOpDifferentRankRewritePattern,
960                   VectorInsertStridedSliceOpSameRankRewritePattern,
961                   VectorStridedSliceOpConversion>(ctx);
962   patterns.insert<VectorBroadcastOpConversion, VectorShuffleOpConversion,
963                   VectorExtractElementOpConversion, VectorExtractOpConversion,
964                   VectorInsertElementOpConversion, VectorInsertOpConversion,
965                   VectorOuterProductOpConversion, VectorTypeCastOpConversion,
966                   VectorPrintOpConversion>(ctx, converter);
967 }
968 
969 namespace {
970 struct LowerVectorToLLVMPass : public ModulePass<LowerVectorToLLVMPass> {
971   void runOnModule() override;
972 };
973 } // namespace
974 
975 void LowerVectorToLLVMPass::runOnModule() {
976   // Convert to the LLVM IR dialect using the converter defined above.
977   OwningRewritePatternList patterns;
978   LLVMTypeConverter converter(&getContext());
979   populateVectorToLLVMConversionPatterns(converter, patterns);
980   populateStdToLLVMConversionPatterns(converter, patterns);
981 
982   ConversionTarget target(getContext());
983   target.addLegalDialect<LLVM::LLVMDialect>();
984   target.addDynamicallyLegalOp<FuncOp>(
985       [&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
986   if (failed(
987           applyPartialConversion(getModule(), target, patterns, &converter))) {
988     signalPassFailure();
989   }
990 }
991 
992 OpPassBase<ModuleOp> *mlir::createLowerVectorToLLVMPass() {
993   return new LowerVectorToLLVMPass();
994 }
995 
996 static PassRegistration<LowerVectorToLLVMPass>
997     pass("convert-vector-to-llvm",
998          "Lower the operations from the vector dialect into the LLVM dialect");
999