1 //===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h" 10 11 #include "mlir/Conversion/LLVMCommon/VectorPattern.h" 12 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h" 13 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 14 #include "mlir/Dialect/MemRef/IR/MemRef.h" 15 #include "mlir/Dialect/StandardOps/IR/Ops.h" 16 #include "mlir/Dialect/Vector/VectorOps.h" 17 #include "mlir/IR/BuiltinTypes.h" 18 #include "mlir/Support/MathExtras.h" 19 #include "mlir/Target/LLVMIR/TypeToLLVM.h" 20 #include "mlir/Transforms/DialectConversion.h" 21 22 using namespace mlir; 23 using namespace mlir::vector; 24 25 // Helper to reduce vector type by one rank at front. 26 static VectorType reducedVectorTypeFront(VectorType tp) { 27 assert((tp.getRank() > 1) && "unlowerable vector type"); 28 return VectorType::get(tp.getShape().drop_front(), tp.getElementType()); 29 } 30 31 // Helper to reduce vector type by *all* but one rank at back. 32 static VectorType reducedVectorTypeBack(VectorType tp) { 33 assert((tp.getRank() > 1) && "unlowerable vector type"); 34 return VectorType::get(tp.getShape().take_back(), tp.getElementType()); 35 } 36 37 // Helper that picks the proper sequence for inserting. 38 static Value insertOne(ConversionPatternRewriter &rewriter, 39 LLVMTypeConverter &typeConverter, Location loc, 40 Value val1, Value val2, Type llvmType, int64_t rank, 41 int64_t pos) { 42 if (rank == 1) { 43 auto idxType = rewriter.getIndexType(); 44 auto constant = rewriter.create<LLVM::ConstantOp>( 45 loc, typeConverter.convertType(idxType), 46 rewriter.getIntegerAttr(idxType, pos)); 47 return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2, 48 constant); 49 } 50 return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2, 51 rewriter.getI64ArrayAttr(pos)); 52 } 53 54 // Helper that picks the proper sequence for inserting. 55 static Value insertOne(PatternRewriter &rewriter, Location loc, Value from, 56 Value into, int64_t offset) { 57 auto vectorType = into.getType().cast<VectorType>(); 58 if (vectorType.getRank() > 1) 59 return rewriter.create<InsertOp>(loc, from, into, offset); 60 return rewriter.create<vector::InsertElementOp>( 61 loc, vectorType, from, into, 62 rewriter.create<ConstantIndexOp>(loc, offset)); 63 } 64 65 // Helper that picks the proper sequence for extracting. 66 static Value extractOne(ConversionPatternRewriter &rewriter, 67 LLVMTypeConverter &typeConverter, Location loc, 68 Value val, Type llvmType, int64_t rank, int64_t pos) { 69 if (rank == 1) { 70 auto idxType = rewriter.getIndexType(); 71 auto constant = rewriter.create<LLVM::ConstantOp>( 72 loc, typeConverter.convertType(idxType), 73 rewriter.getIntegerAttr(idxType, pos)); 74 return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val, 75 constant); 76 } 77 return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val, 78 rewriter.getI64ArrayAttr(pos)); 79 } 80 81 // Helper that picks the proper sequence for extracting. 82 static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector, 83 int64_t offset) { 84 auto vectorType = vector.getType().cast<VectorType>(); 85 if (vectorType.getRank() > 1) 86 return rewriter.create<ExtractOp>(loc, vector, offset); 87 return rewriter.create<vector::ExtractElementOp>( 88 loc, vectorType.getElementType(), vector, 89 rewriter.create<ConstantIndexOp>(loc, offset)); 90 } 91 92 // Helper that returns a subset of `arrayAttr` as a vector of int64_t. 93 // TODO: Better support for attribute subtype forwarding + slicing. 94 static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr, 95 unsigned dropFront = 0, 96 unsigned dropBack = 0) { 97 assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds"); 98 auto range = arrayAttr.getAsRange<IntegerAttr>(); 99 SmallVector<int64_t, 4> res; 100 res.reserve(arrayAttr.size() - dropFront - dropBack); 101 for (auto it = range.begin() + dropFront, eit = range.end() - dropBack; 102 it != eit; ++it) 103 res.push_back((*it).getValue().getSExtValue()); 104 return res; 105 } 106 107 // Helper that returns data layout alignment of a memref. 108 LogicalResult getMemRefAlignment(LLVMTypeConverter &typeConverter, 109 MemRefType memrefType, unsigned &align) { 110 Type elementTy = typeConverter.convertType(memrefType.getElementType()); 111 if (!elementTy) 112 return failure(); 113 114 // TODO: this should use the MLIR data layout when it becomes available and 115 // stop depending on translation. 116 llvm::LLVMContext llvmContext; 117 align = LLVM::TypeToLLVMIRTranslator(llvmContext) 118 .getPreferredAlignment(elementTy, typeConverter.getDataLayout()); 119 return success(); 120 } 121 122 // Return the minimal alignment value that satisfies all the AssumeAlignment 123 // uses of `value`. If no such uses exist, return 1. 124 static unsigned getAssumedAlignment(Value value) { 125 unsigned align = 1; 126 for (auto &u : value.getUses()) { 127 Operation *owner = u.getOwner(); 128 if (auto op = dyn_cast<memref::AssumeAlignmentOp>(owner)) 129 align = mlir::lcm(align, op.alignment()); 130 } 131 return align; 132 } 133 134 // Helper that returns data layout alignment of a memref associated with a 135 // load, store, scatter, or gather op, including additional information from 136 // assume_alignment calls on the source of the transfer 137 template <class OpAdaptor> 138 LogicalResult getMemRefOpAlignment(LLVMTypeConverter &typeConverter, 139 OpAdaptor op, unsigned &align) { 140 if (failed(getMemRefAlignment(typeConverter, op.getMemRefType(), align))) 141 return failure(); 142 align = std::max(align, getAssumedAlignment(op.base())); 143 return success(); 144 } 145 146 // Add an index vector component to a base pointer. This almost always succeeds 147 // unless the last stride is non-unit or the memory space is not zero. 148 static LogicalResult getIndexedPtrs(ConversionPatternRewriter &rewriter, 149 Location loc, Value memref, Value base, 150 Value index, MemRefType memRefType, 151 VectorType vType, Value &ptrs) { 152 int64_t offset; 153 SmallVector<int64_t, 4> strides; 154 auto successStrides = getStridesAndOffset(memRefType, strides, offset); 155 if (failed(successStrides) || strides.back() != 1 || 156 memRefType.getMemorySpaceAsInt() != 0) 157 return failure(); 158 auto pType = MemRefDescriptor(memref).getElementPtrType(); 159 auto ptrsType = LLVM::getFixedVectorType(pType, vType.getDimSize(0)); 160 ptrs = rewriter.create<LLVM::GEPOp>(loc, ptrsType, base, index); 161 return success(); 162 } 163 164 // Casts a strided element pointer to a vector pointer. The vector pointer 165 // will be in the same address space as the incoming memref type. 166 static Value castDataPtr(ConversionPatternRewriter &rewriter, Location loc, 167 Value ptr, MemRefType memRefType, Type vt) { 168 auto pType = LLVM::LLVMPointerType::get(vt, memRefType.getMemorySpaceAsInt()); 169 return rewriter.create<LLVM::BitcastOp>(loc, pType, ptr); 170 } 171 172 namespace { 173 174 /// Conversion pattern for a vector.bitcast. 175 class VectorBitCastOpConversion 176 : public ConvertOpToLLVMPattern<vector::BitCastOp> { 177 public: 178 using ConvertOpToLLVMPattern<vector::BitCastOp>::ConvertOpToLLVMPattern; 179 180 LogicalResult 181 matchAndRewrite(vector::BitCastOp bitCastOp, ArrayRef<Value> operands, 182 ConversionPatternRewriter &rewriter) const override { 183 // Only 1-D vectors can be lowered to LLVM. 184 VectorType resultTy = bitCastOp.getType(); 185 if (resultTy.getRank() != 1) 186 return failure(); 187 Type newResultTy = typeConverter->convertType(resultTy); 188 rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(bitCastOp, newResultTy, 189 operands[0]); 190 return success(); 191 } 192 }; 193 194 /// Conversion pattern for a vector.matrix_multiply. 195 /// This is lowered directly to the proper llvm.intr.matrix.multiply. 196 class VectorMatmulOpConversion 197 : public ConvertOpToLLVMPattern<vector::MatmulOp> { 198 public: 199 using ConvertOpToLLVMPattern<vector::MatmulOp>::ConvertOpToLLVMPattern; 200 201 LogicalResult 202 matchAndRewrite(vector::MatmulOp matmulOp, ArrayRef<Value> operands, 203 ConversionPatternRewriter &rewriter) const override { 204 auto adaptor = vector::MatmulOpAdaptor(operands); 205 rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>( 206 matmulOp, typeConverter->convertType(matmulOp.res().getType()), 207 adaptor.lhs(), adaptor.rhs(), matmulOp.lhs_rows(), 208 matmulOp.lhs_columns(), matmulOp.rhs_columns()); 209 return success(); 210 } 211 }; 212 213 /// Conversion pattern for a vector.flat_transpose. 214 /// This is lowered directly to the proper llvm.intr.matrix.transpose. 215 class VectorFlatTransposeOpConversion 216 : public ConvertOpToLLVMPattern<vector::FlatTransposeOp> { 217 public: 218 using ConvertOpToLLVMPattern<vector::FlatTransposeOp>::ConvertOpToLLVMPattern; 219 220 LogicalResult 221 matchAndRewrite(vector::FlatTransposeOp transOp, ArrayRef<Value> operands, 222 ConversionPatternRewriter &rewriter) const override { 223 auto adaptor = vector::FlatTransposeOpAdaptor(operands); 224 rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>( 225 transOp, typeConverter->convertType(transOp.res().getType()), 226 adaptor.matrix(), transOp.rows(), transOp.columns()); 227 return success(); 228 } 229 }; 230 231 /// Overloaded utility that replaces a vector.load, vector.store, 232 /// vector.maskedload and vector.maskedstore with their respective LLVM 233 /// couterparts. 234 static void replaceLoadOrStoreOp(vector::LoadOp loadOp, 235 vector::LoadOpAdaptor adaptor, 236 VectorType vectorTy, Value ptr, unsigned align, 237 ConversionPatternRewriter &rewriter) { 238 rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, ptr, align); 239 } 240 241 static void replaceLoadOrStoreOp(vector::MaskedLoadOp loadOp, 242 vector::MaskedLoadOpAdaptor adaptor, 243 VectorType vectorTy, Value ptr, unsigned align, 244 ConversionPatternRewriter &rewriter) { 245 rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>( 246 loadOp, vectorTy, ptr, adaptor.mask(), adaptor.pass_thru(), align); 247 } 248 249 static void replaceLoadOrStoreOp(vector::StoreOp storeOp, 250 vector::StoreOpAdaptor adaptor, 251 VectorType vectorTy, Value ptr, unsigned align, 252 ConversionPatternRewriter &rewriter) { 253 rewriter.replaceOpWithNewOp<LLVM::StoreOp>(storeOp, adaptor.valueToStore(), 254 ptr, align); 255 } 256 257 static void replaceLoadOrStoreOp(vector::MaskedStoreOp storeOp, 258 vector::MaskedStoreOpAdaptor adaptor, 259 VectorType vectorTy, Value ptr, unsigned align, 260 ConversionPatternRewriter &rewriter) { 261 rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>( 262 storeOp, adaptor.valueToStore(), ptr, adaptor.mask(), align); 263 } 264 265 /// Conversion pattern for a vector.load, vector.store, vector.maskedload, and 266 /// vector.maskedstore. 267 template <class LoadOrStoreOp, class LoadOrStoreOpAdaptor> 268 class VectorLoadStoreConversion : public ConvertOpToLLVMPattern<LoadOrStoreOp> { 269 public: 270 using ConvertOpToLLVMPattern<LoadOrStoreOp>::ConvertOpToLLVMPattern; 271 272 LogicalResult 273 matchAndRewrite(LoadOrStoreOp loadOrStoreOp, ArrayRef<Value> operands, 274 ConversionPatternRewriter &rewriter) const override { 275 // Only 1-D vectors can be lowered to LLVM. 276 VectorType vectorTy = loadOrStoreOp.getVectorType(); 277 if (vectorTy.getRank() > 1) 278 return failure(); 279 280 auto loc = loadOrStoreOp->getLoc(); 281 auto adaptor = LoadOrStoreOpAdaptor(operands); 282 MemRefType memRefTy = loadOrStoreOp.getMemRefType(); 283 284 // Resolve alignment. 285 unsigned align; 286 if (failed(getMemRefOpAlignment(*this->getTypeConverter(), loadOrStoreOp, 287 align))) 288 return failure(); 289 290 // Resolve address. 291 auto vtype = this->typeConverter->convertType(loadOrStoreOp.getVectorType()) 292 .template cast<VectorType>(); 293 Value dataPtr = this->getStridedElementPtr(loc, memRefTy, adaptor.base(), 294 adaptor.indices(), rewriter); 295 Value ptr = castDataPtr(rewriter, loc, dataPtr, memRefTy, vtype); 296 297 replaceLoadOrStoreOp(loadOrStoreOp, adaptor, vtype, ptr, align, rewriter); 298 return success(); 299 } 300 }; 301 302 /// Conversion pattern for a vector.gather. 303 class VectorGatherOpConversion 304 : public ConvertOpToLLVMPattern<vector::GatherOp> { 305 public: 306 using ConvertOpToLLVMPattern<vector::GatherOp>::ConvertOpToLLVMPattern; 307 308 LogicalResult 309 matchAndRewrite(vector::GatherOp gather, ArrayRef<Value> operands, 310 ConversionPatternRewriter &rewriter) const override { 311 auto loc = gather->getLoc(); 312 auto adaptor = vector::GatherOpAdaptor(operands); 313 MemRefType memRefType = gather.getMemRefType(); 314 315 // Resolve alignment. 316 unsigned align; 317 if (failed(getMemRefOpAlignment(*getTypeConverter(), gather, align))) 318 return failure(); 319 320 // Resolve address. 321 Value ptrs; 322 VectorType vType = gather.getVectorType(); 323 Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(), 324 adaptor.indices(), rewriter); 325 if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), ptr, 326 adaptor.index_vec(), memRefType, vType, ptrs))) 327 return failure(); 328 329 // Replace with the gather intrinsic. 330 rewriter.replaceOpWithNewOp<LLVM::masked_gather>( 331 gather, typeConverter->convertType(vType), ptrs, adaptor.mask(), 332 adaptor.pass_thru(), rewriter.getI32IntegerAttr(align)); 333 return success(); 334 } 335 }; 336 337 /// Conversion pattern for a vector.scatter. 338 class VectorScatterOpConversion 339 : public ConvertOpToLLVMPattern<vector::ScatterOp> { 340 public: 341 using ConvertOpToLLVMPattern<vector::ScatterOp>::ConvertOpToLLVMPattern; 342 343 LogicalResult 344 matchAndRewrite(vector::ScatterOp scatter, ArrayRef<Value> operands, 345 ConversionPatternRewriter &rewriter) const override { 346 auto loc = scatter->getLoc(); 347 auto adaptor = vector::ScatterOpAdaptor(operands); 348 MemRefType memRefType = scatter.getMemRefType(); 349 350 // Resolve alignment. 351 unsigned align; 352 if (failed(getMemRefOpAlignment(*getTypeConverter(), scatter, align))) 353 return failure(); 354 355 // Resolve address. 356 Value ptrs; 357 VectorType vType = scatter.getVectorType(); 358 Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(), 359 adaptor.indices(), rewriter); 360 if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), ptr, 361 adaptor.index_vec(), memRefType, vType, ptrs))) 362 return failure(); 363 364 // Replace with the scatter intrinsic. 365 rewriter.replaceOpWithNewOp<LLVM::masked_scatter>( 366 scatter, adaptor.valueToStore(), ptrs, adaptor.mask(), 367 rewriter.getI32IntegerAttr(align)); 368 return success(); 369 } 370 }; 371 372 /// Conversion pattern for a vector.expandload. 373 class VectorExpandLoadOpConversion 374 : public ConvertOpToLLVMPattern<vector::ExpandLoadOp> { 375 public: 376 using ConvertOpToLLVMPattern<vector::ExpandLoadOp>::ConvertOpToLLVMPattern; 377 378 LogicalResult 379 matchAndRewrite(vector::ExpandLoadOp expand, ArrayRef<Value> operands, 380 ConversionPatternRewriter &rewriter) const override { 381 auto loc = expand->getLoc(); 382 auto adaptor = vector::ExpandLoadOpAdaptor(operands); 383 MemRefType memRefType = expand.getMemRefType(); 384 385 // Resolve address. 386 auto vtype = typeConverter->convertType(expand.getVectorType()); 387 Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(), 388 adaptor.indices(), rewriter); 389 390 rewriter.replaceOpWithNewOp<LLVM::masked_expandload>( 391 expand, vtype, ptr, adaptor.mask(), adaptor.pass_thru()); 392 return success(); 393 } 394 }; 395 396 /// Conversion pattern for a vector.compressstore. 397 class VectorCompressStoreOpConversion 398 : public ConvertOpToLLVMPattern<vector::CompressStoreOp> { 399 public: 400 using ConvertOpToLLVMPattern<vector::CompressStoreOp>::ConvertOpToLLVMPattern; 401 402 LogicalResult 403 matchAndRewrite(vector::CompressStoreOp compress, ArrayRef<Value> operands, 404 ConversionPatternRewriter &rewriter) const override { 405 auto loc = compress->getLoc(); 406 auto adaptor = vector::CompressStoreOpAdaptor(operands); 407 MemRefType memRefType = compress.getMemRefType(); 408 409 // Resolve address. 410 Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(), 411 adaptor.indices(), rewriter); 412 413 rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>( 414 compress, adaptor.valueToStore(), ptr, adaptor.mask()); 415 return success(); 416 } 417 }; 418 419 /// Conversion pattern for all vector reductions. 420 class VectorReductionOpConversion 421 : public ConvertOpToLLVMPattern<vector::ReductionOp> { 422 public: 423 explicit VectorReductionOpConversion(LLVMTypeConverter &typeConv, 424 bool reassociateFPRed) 425 : ConvertOpToLLVMPattern<vector::ReductionOp>(typeConv), 426 reassociateFPReductions(reassociateFPRed) {} 427 428 LogicalResult 429 matchAndRewrite(vector::ReductionOp reductionOp, ArrayRef<Value> operands, 430 ConversionPatternRewriter &rewriter) const override { 431 auto kind = reductionOp.kind(); 432 Type eltType = reductionOp.dest().getType(); 433 Type llvmType = typeConverter->convertType(eltType); 434 if (eltType.isIntOrIndex()) { 435 // Integer reductions: add/mul/min/max/and/or/xor. 436 if (kind == "add") 437 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_add>( 438 reductionOp, llvmType, operands[0]); 439 else if (kind == "mul") 440 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_mul>( 441 reductionOp, llvmType, operands[0]); 442 else if (kind == "min" && 443 (eltType.isIndex() || eltType.isUnsignedInteger())) 444 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umin>( 445 reductionOp, llvmType, operands[0]); 446 else if (kind == "min") 447 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smin>( 448 reductionOp, llvmType, operands[0]); 449 else if (kind == "max" && 450 (eltType.isIndex() || eltType.isUnsignedInteger())) 451 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umax>( 452 reductionOp, llvmType, operands[0]); 453 else if (kind == "max") 454 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smax>( 455 reductionOp, llvmType, operands[0]); 456 else if (kind == "and") 457 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_and>( 458 reductionOp, llvmType, operands[0]); 459 else if (kind == "or") 460 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_or>( 461 reductionOp, llvmType, operands[0]); 462 else if (kind == "xor") 463 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_xor>( 464 reductionOp, llvmType, operands[0]); 465 else 466 return failure(); 467 return success(); 468 } 469 470 if (!eltType.isa<FloatType>()) 471 return failure(); 472 473 // Floating-point reductions: add/mul/min/max 474 if (kind == "add") { 475 // Optional accumulator (or zero). 476 Value acc = operands.size() > 1 ? operands[1] 477 : rewriter.create<LLVM::ConstantOp>( 478 reductionOp->getLoc(), llvmType, 479 rewriter.getZeroAttr(eltType)); 480 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fadd>( 481 reductionOp, llvmType, acc, operands[0], 482 rewriter.getBoolAttr(reassociateFPReductions)); 483 } else if (kind == "mul") { 484 // Optional accumulator (or one). 485 Value acc = operands.size() > 1 486 ? operands[1] 487 : rewriter.create<LLVM::ConstantOp>( 488 reductionOp->getLoc(), llvmType, 489 rewriter.getFloatAttr(eltType, 1.0)); 490 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmul>( 491 reductionOp, llvmType, acc, operands[0], 492 rewriter.getBoolAttr(reassociateFPReductions)); 493 } else if (kind == "min") 494 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmin>( 495 reductionOp, llvmType, operands[0]); 496 else if (kind == "max") 497 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmax>( 498 reductionOp, llvmType, operands[0]); 499 else 500 return failure(); 501 return success(); 502 } 503 504 private: 505 const bool reassociateFPReductions; 506 }; 507 508 class VectorShuffleOpConversion 509 : public ConvertOpToLLVMPattern<vector::ShuffleOp> { 510 public: 511 using ConvertOpToLLVMPattern<vector::ShuffleOp>::ConvertOpToLLVMPattern; 512 513 LogicalResult 514 matchAndRewrite(vector::ShuffleOp shuffleOp, ArrayRef<Value> operands, 515 ConversionPatternRewriter &rewriter) const override { 516 auto loc = shuffleOp->getLoc(); 517 auto adaptor = vector::ShuffleOpAdaptor(operands); 518 auto v1Type = shuffleOp.getV1VectorType(); 519 auto v2Type = shuffleOp.getV2VectorType(); 520 auto vectorType = shuffleOp.getVectorType(); 521 Type llvmType = typeConverter->convertType(vectorType); 522 auto maskArrayAttr = shuffleOp.mask(); 523 524 // Bail if result type cannot be lowered. 525 if (!llvmType) 526 return failure(); 527 528 // Get rank and dimension sizes. 529 int64_t rank = vectorType.getRank(); 530 assert(v1Type.getRank() == rank); 531 assert(v2Type.getRank() == rank); 532 int64_t v1Dim = v1Type.getDimSize(0); 533 534 // For rank 1, where both operands have *exactly* the same vector type, 535 // there is direct shuffle support in LLVM. Use it! 536 if (rank == 1 && v1Type == v2Type) { 537 Value llvmShuffleOp = rewriter.create<LLVM::ShuffleVectorOp>( 538 loc, adaptor.v1(), adaptor.v2(), maskArrayAttr); 539 rewriter.replaceOp(shuffleOp, llvmShuffleOp); 540 return success(); 541 } 542 543 // For all other cases, insert the individual values individually. 544 Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType); 545 int64_t insPos = 0; 546 for (auto en : llvm::enumerate(maskArrayAttr)) { 547 int64_t extPos = en.value().cast<IntegerAttr>().getInt(); 548 Value value = adaptor.v1(); 549 if (extPos >= v1Dim) { 550 extPos -= v1Dim; 551 value = adaptor.v2(); 552 } 553 Value extract = extractOne(rewriter, *getTypeConverter(), loc, value, 554 llvmType, rank, extPos); 555 insert = insertOne(rewriter, *getTypeConverter(), loc, insert, extract, 556 llvmType, rank, insPos++); 557 } 558 rewriter.replaceOp(shuffleOp, insert); 559 return success(); 560 } 561 }; 562 563 class VectorExtractElementOpConversion 564 : public ConvertOpToLLVMPattern<vector::ExtractElementOp> { 565 public: 566 using ConvertOpToLLVMPattern< 567 vector::ExtractElementOp>::ConvertOpToLLVMPattern; 568 569 LogicalResult 570 matchAndRewrite(vector::ExtractElementOp extractEltOp, 571 ArrayRef<Value> operands, 572 ConversionPatternRewriter &rewriter) const override { 573 auto adaptor = vector::ExtractElementOpAdaptor(operands); 574 auto vectorType = extractEltOp.getVectorType(); 575 auto llvmType = typeConverter->convertType(vectorType.getElementType()); 576 577 // Bail if result type cannot be lowered. 578 if (!llvmType) 579 return failure(); 580 581 rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>( 582 extractEltOp, llvmType, adaptor.vector(), adaptor.position()); 583 return success(); 584 } 585 }; 586 587 class VectorExtractOpConversion 588 : public ConvertOpToLLVMPattern<vector::ExtractOp> { 589 public: 590 using ConvertOpToLLVMPattern<vector::ExtractOp>::ConvertOpToLLVMPattern; 591 592 LogicalResult 593 matchAndRewrite(vector::ExtractOp extractOp, ArrayRef<Value> operands, 594 ConversionPatternRewriter &rewriter) const override { 595 auto loc = extractOp->getLoc(); 596 auto adaptor = vector::ExtractOpAdaptor(operands); 597 auto vectorType = extractOp.getVectorType(); 598 auto resultType = extractOp.getResult().getType(); 599 auto llvmResultType = typeConverter->convertType(resultType); 600 auto positionArrayAttr = extractOp.position(); 601 602 // Bail if result type cannot be lowered. 603 if (!llvmResultType) 604 return failure(); 605 606 // Extract entire vector. Should be handled by folder, but just to be safe. 607 if (positionArrayAttr.empty()) { 608 rewriter.replaceOp(extractOp, adaptor.vector()); 609 return success(); 610 } 611 612 // One-shot extraction of vector from array (only requires extractvalue). 613 if (resultType.isa<VectorType>()) { 614 Value extracted = rewriter.create<LLVM::ExtractValueOp>( 615 loc, llvmResultType, adaptor.vector(), positionArrayAttr); 616 rewriter.replaceOp(extractOp, extracted); 617 return success(); 618 } 619 620 // Potential extraction of 1-D vector from array. 621 auto *context = extractOp->getContext(); 622 Value extracted = adaptor.vector(); 623 auto positionAttrs = positionArrayAttr.getValue(); 624 if (positionAttrs.size() > 1) { 625 auto oneDVectorType = reducedVectorTypeBack(vectorType); 626 auto nMinusOnePositionAttrs = 627 ArrayAttr::get(context, positionAttrs.drop_back()); 628 extracted = rewriter.create<LLVM::ExtractValueOp>( 629 loc, typeConverter->convertType(oneDVectorType), extracted, 630 nMinusOnePositionAttrs); 631 } 632 633 // Remaining extraction of element from 1-D LLVM vector 634 auto position = positionAttrs.back().cast<IntegerAttr>(); 635 auto i64Type = IntegerType::get(rewriter.getContext(), 64); 636 auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); 637 extracted = 638 rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant); 639 rewriter.replaceOp(extractOp, extracted); 640 641 return success(); 642 } 643 }; 644 645 /// Conversion pattern that turns a vector.fma on a 1-D vector 646 /// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion. 647 /// This does not match vectors of n >= 2 rank. 648 /// 649 /// Example: 650 /// ``` 651 /// vector.fma %a, %a, %a : vector<8xf32> 652 /// ``` 653 /// is converted to: 654 /// ``` 655 /// llvm.intr.fmuladd %va, %va, %va: 656 /// (!llvm."<8 x f32>">, !llvm<"<8 x f32>">, !llvm<"<8 x f32>">) 657 /// -> !llvm."<8 x f32>"> 658 /// ``` 659 class VectorFMAOp1DConversion : public ConvertOpToLLVMPattern<vector::FMAOp> { 660 public: 661 using ConvertOpToLLVMPattern<vector::FMAOp>::ConvertOpToLLVMPattern; 662 663 LogicalResult 664 matchAndRewrite(vector::FMAOp fmaOp, ArrayRef<Value> operands, 665 ConversionPatternRewriter &rewriter) const override { 666 auto adaptor = vector::FMAOpAdaptor(operands); 667 VectorType vType = fmaOp.getVectorType(); 668 if (vType.getRank() != 1) 669 return failure(); 670 rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>(fmaOp, adaptor.lhs(), 671 adaptor.rhs(), adaptor.acc()); 672 return success(); 673 } 674 }; 675 676 class VectorInsertElementOpConversion 677 : public ConvertOpToLLVMPattern<vector::InsertElementOp> { 678 public: 679 using ConvertOpToLLVMPattern<vector::InsertElementOp>::ConvertOpToLLVMPattern; 680 681 LogicalResult 682 matchAndRewrite(vector::InsertElementOp insertEltOp, ArrayRef<Value> operands, 683 ConversionPatternRewriter &rewriter) const override { 684 auto adaptor = vector::InsertElementOpAdaptor(operands); 685 auto vectorType = insertEltOp.getDestVectorType(); 686 auto llvmType = typeConverter->convertType(vectorType); 687 688 // Bail if result type cannot be lowered. 689 if (!llvmType) 690 return failure(); 691 692 rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( 693 insertEltOp, llvmType, adaptor.dest(), adaptor.source(), 694 adaptor.position()); 695 return success(); 696 } 697 }; 698 699 class VectorInsertOpConversion 700 : public ConvertOpToLLVMPattern<vector::InsertOp> { 701 public: 702 using ConvertOpToLLVMPattern<vector::InsertOp>::ConvertOpToLLVMPattern; 703 704 LogicalResult 705 matchAndRewrite(vector::InsertOp insertOp, ArrayRef<Value> operands, 706 ConversionPatternRewriter &rewriter) const override { 707 auto loc = insertOp->getLoc(); 708 auto adaptor = vector::InsertOpAdaptor(operands); 709 auto sourceType = insertOp.getSourceType(); 710 auto destVectorType = insertOp.getDestVectorType(); 711 auto llvmResultType = typeConverter->convertType(destVectorType); 712 auto positionArrayAttr = insertOp.position(); 713 714 // Bail if result type cannot be lowered. 715 if (!llvmResultType) 716 return failure(); 717 718 // Overwrite entire vector with value. Should be handled by folder, but 719 // just to be safe. 720 if (positionArrayAttr.empty()) { 721 rewriter.replaceOp(insertOp, adaptor.source()); 722 return success(); 723 } 724 725 // One-shot insertion of a vector into an array (only requires insertvalue). 726 if (sourceType.isa<VectorType>()) { 727 Value inserted = rewriter.create<LLVM::InsertValueOp>( 728 loc, llvmResultType, adaptor.dest(), adaptor.source(), 729 positionArrayAttr); 730 rewriter.replaceOp(insertOp, inserted); 731 return success(); 732 } 733 734 // Potential extraction of 1-D vector from array. 735 auto *context = insertOp->getContext(); 736 Value extracted = adaptor.dest(); 737 auto positionAttrs = positionArrayAttr.getValue(); 738 auto position = positionAttrs.back().cast<IntegerAttr>(); 739 auto oneDVectorType = destVectorType; 740 if (positionAttrs.size() > 1) { 741 oneDVectorType = reducedVectorTypeBack(destVectorType); 742 auto nMinusOnePositionAttrs = 743 ArrayAttr::get(context, positionAttrs.drop_back()); 744 extracted = rewriter.create<LLVM::ExtractValueOp>( 745 loc, typeConverter->convertType(oneDVectorType), extracted, 746 nMinusOnePositionAttrs); 747 } 748 749 // Insertion of an element into a 1-D LLVM vector. 750 auto i64Type = IntegerType::get(rewriter.getContext(), 64); 751 auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); 752 Value inserted = rewriter.create<LLVM::InsertElementOp>( 753 loc, typeConverter->convertType(oneDVectorType), extracted, 754 adaptor.source(), constant); 755 756 // Potential insertion of resulting 1-D vector into array. 757 if (positionAttrs.size() > 1) { 758 auto nMinusOnePositionAttrs = 759 ArrayAttr::get(context, positionAttrs.drop_back()); 760 inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType, 761 adaptor.dest(), inserted, 762 nMinusOnePositionAttrs); 763 } 764 765 rewriter.replaceOp(insertOp, inserted); 766 return success(); 767 } 768 }; 769 770 /// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1. 771 /// 772 /// Example: 773 /// ``` 774 /// %d = vector.fma %a, %b, %c : vector<2x4xf32> 775 /// ``` 776 /// is rewritten into: 777 /// ``` 778 /// %r = splat %f0: vector<2x4xf32> 779 /// %va = vector.extractvalue %a[0] : vector<2x4xf32> 780 /// %vb = vector.extractvalue %b[0] : vector<2x4xf32> 781 /// %vc = vector.extractvalue %c[0] : vector<2x4xf32> 782 /// %vd = vector.fma %va, %vb, %vc : vector<4xf32> 783 /// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32> 784 /// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32> 785 /// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32> 786 /// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32> 787 /// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32> 788 /// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32> 789 /// // %r3 holds the final value. 790 /// ``` 791 class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> { 792 public: 793 using OpRewritePattern<FMAOp>::OpRewritePattern; 794 795 LogicalResult matchAndRewrite(FMAOp op, 796 PatternRewriter &rewriter) const override { 797 auto vType = op.getVectorType(); 798 if (vType.getRank() < 2) 799 return failure(); 800 801 auto loc = op.getLoc(); 802 auto elemType = vType.getElementType(); 803 Value zero = rewriter.create<ConstantOp>(loc, elemType, 804 rewriter.getZeroAttr(elemType)); 805 Value desc = rewriter.create<SplatOp>(loc, vType, zero); 806 for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) { 807 Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i); 808 Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i); 809 Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i); 810 Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC); 811 desc = rewriter.create<InsertOp>(loc, fma, desc, i); 812 } 813 rewriter.replaceOp(op, desc); 814 return success(); 815 } 816 }; 817 818 // When ranks are different, InsertStridedSlice needs to extract a properly 819 // ranked vector from the destination vector into which to insert. This pattern 820 // only takes care of this part and forwards the rest of the conversion to 821 // another pattern that converts InsertStridedSlice for operands of the same 822 // rank. 823 // 824 // RewritePattern for InsertStridedSliceOp where source and destination vectors 825 // have different ranks. In this case: 826 // 1. the proper subvector is extracted from the destination vector 827 // 2. a new InsertStridedSlice op is created to insert the source in the 828 // destination subvector 829 // 3. the destination subvector is inserted back in the proper place 830 // 4. the op is replaced by the result of step 3. 831 // The new InsertStridedSlice from step 2. will be picked up by a 832 // `VectorInsertStridedSliceOpSameRankRewritePattern`. 833 class VectorInsertStridedSliceOpDifferentRankRewritePattern 834 : public OpRewritePattern<InsertStridedSliceOp> { 835 public: 836 using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; 837 838 LogicalResult matchAndRewrite(InsertStridedSliceOp op, 839 PatternRewriter &rewriter) const override { 840 auto srcType = op.getSourceVectorType(); 841 auto dstType = op.getDestVectorType(); 842 843 if (op.offsets().getValue().empty()) 844 return failure(); 845 846 auto loc = op.getLoc(); 847 int64_t rankDiff = dstType.getRank() - srcType.getRank(); 848 assert(rankDiff >= 0); 849 if (rankDiff == 0) 850 return failure(); 851 852 int64_t rankRest = dstType.getRank() - rankDiff; 853 // Extract / insert the subvector of matching rank and InsertStridedSlice 854 // on it. 855 Value extracted = 856 rewriter.create<ExtractOp>(loc, op.dest(), 857 getI64SubArray(op.offsets(), /*dropFront=*/0, 858 /*dropBack=*/rankRest)); 859 // A different pattern will kick in for InsertStridedSlice with matching 860 // ranks. 861 auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>( 862 loc, op.source(), extracted, 863 getI64SubArray(op.offsets(), /*dropFront=*/rankDiff), 864 getI64SubArray(op.strides(), /*dropFront=*/0)); 865 rewriter.replaceOpWithNewOp<InsertOp>( 866 op, stridedSliceInnerOp.getResult(), op.dest(), 867 getI64SubArray(op.offsets(), /*dropFront=*/0, 868 /*dropBack=*/rankRest)); 869 return success(); 870 } 871 }; 872 873 // RewritePattern for InsertStridedSliceOp where source and destination vectors 874 // have the same rank. In this case, we reduce 875 // 1. the proper subvector is extracted from the destination vector 876 // 2. a new InsertStridedSlice op is created to insert the source in the 877 // destination subvector 878 // 3. the destination subvector is inserted back in the proper place 879 // 4. the op is replaced by the result of step 3. 880 // The new InsertStridedSlice from step 2. will be picked up by a 881 // `VectorInsertStridedSliceOpSameRankRewritePattern`. 882 class VectorInsertStridedSliceOpSameRankRewritePattern 883 : public OpRewritePattern<InsertStridedSliceOp> { 884 public: 885 using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; 886 887 void initialize() { 888 // This pattern creates recursive InsertStridedSliceOp, but the recursion is 889 // bounded as the rank is strictly decreasing. 890 setHasBoundedRewriteRecursion(); 891 } 892 893 LogicalResult matchAndRewrite(InsertStridedSliceOp op, 894 PatternRewriter &rewriter) const override { 895 auto srcType = op.getSourceVectorType(); 896 auto dstType = op.getDestVectorType(); 897 898 if (op.offsets().getValue().empty()) 899 return failure(); 900 901 int64_t rankDiff = dstType.getRank() - srcType.getRank(); 902 assert(rankDiff >= 0); 903 if (rankDiff != 0) 904 return failure(); 905 906 if (srcType == dstType) { 907 rewriter.replaceOp(op, op.source()); 908 return success(); 909 } 910 911 int64_t offset = 912 op.offsets().getValue().front().cast<IntegerAttr>().getInt(); 913 int64_t size = srcType.getShape().front(); 914 int64_t stride = 915 op.strides().getValue().front().cast<IntegerAttr>().getInt(); 916 917 auto loc = op.getLoc(); 918 Value res = op.dest(); 919 // For each slice of the source vector along the most major dimension. 920 for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e; 921 off += stride, ++idx) { 922 // 1. extract the proper subvector (or element) from source 923 Value extractedSource = extractOne(rewriter, loc, op.source(), idx); 924 if (extractedSource.getType().isa<VectorType>()) { 925 // 2. If we have a vector, extract the proper subvector from destination 926 // Otherwise we are at the element level and no need to recurse. 927 Value extractedDest = extractOne(rewriter, loc, op.dest(), off); 928 // 3. Reduce the problem to lowering a new InsertStridedSlice op with 929 // smaller rank. 930 extractedSource = rewriter.create<InsertStridedSliceOp>( 931 loc, extractedSource, extractedDest, 932 getI64SubArray(op.offsets(), /* dropFront=*/1), 933 getI64SubArray(op.strides(), /* dropFront=*/1)); 934 } 935 // 4. Insert the extractedSource into the res vector. 936 res = insertOne(rewriter, loc, extractedSource, res, off); 937 } 938 939 rewriter.replaceOp(op, res); 940 return success(); 941 } 942 }; 943 944 /// Returns the strides if the memory underlying `memRefType` has a contiguous 945 /// static layout. 946 static llvm::Optional<SmallVector<int64_t, 4>> 947 computeContiguousStrides(MemRefType memRefType) { 948 int64_t offset; 949 SmallVector<int64_t, 4> strides; 950 if (failed(getStridesAndOffset(memRefType, strides, offset))) 951 return None; 952 if (!strides.empty() && strides.back() != 1) 953 return None; 954 // If no layout or identity layout, this is contiguous by definition. 955 if (memRefType.getAffineMaps().empty() || 956 memRefType.getAffineMaps().front().isIdentity()) 957 return strides; 958 959 // Otherwise, we must determine contiguity form shapes. This can only ever 960 // work in static cases because MemRefType is underspecified to represent 961 // contiguous dynamic shapes in other ways than with just empty/identity 962 // layout. 963 auto sizes = memRefType.getShape(); 964 for (int index = 0, e = strides.size() - 1; index < e; ++index) { 965 if (ShapedType::isDynamic(sizes[index + 1]) || 966 ShapedType::isDynamicStrideOrOffset(strides[index]) || 967 ShapedType::isDynamicStrideOrOffset(strides[index + 1])) 968 return None; 969 if (strides[index] != strides[index + 1] * sizes[index + 1]) 970 return None; 971 } 972 return strides; 973 } 974 975 class VectorTypeCastOpConversion 976 : public ConvertOpToLLVMPattern<vector::TypeCastOp> { 977 public: 978 using ConvertOpToLLVMPattern<vector::TypeCastOp>::ConvertOpToLLVMPattern; 979 980 LogicalResult 981 matchAndRewrite(vector::TypeCastOp castOp, ArrayRef<Value> operands, 982 ConversionPatternRewriter &rewriter) const override { 983 auto loc = castOp->getLoc(); 984 MemRefType sourceMemRefType = 985 castOp.getOperand().getType().cast<MemRefType>(); 986 MemRefType targetMemRefType = castOp.getType(); 987 988 // Only static shape casts supported atm. 989 if (!sourceMemRefType.hasStaticShape() || 990 !targetMemRefType.hasStaticShape()) 991 return failure(); 992 993 auto llvmSourceDescriptorTy = 994 operands[0].getType().dyn_cast<LLVM::LLVMStructType>(); 995 if (!llvmSourceDescriptorTy) 996 return failure(); 997 MemRefDescriptor sourceMemRef(operands[0]); 998 999 auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType) 1000 .dyn_cast_or_null<LLVM::LLVMStructType>(); 1001 if (!llvmTargetDescriptorTy) 1002 return failure(); 1003 1004 // Only contiguous source buffers supported atm. 1005 auto sourceStrides = computeContiguousStrides(sourceMemRefType); 1006 if (!sourceStrides) 1007 return failure(); 1008 auto targetStrides = computeContiguousStrides(targetMemRefType); 1009 if (!targetStrides) 1010 return failure(); 1011 // Only support static strides for now, regardless of contiguity. 1012 if (llvm::any_of(*targetStrides, [](int64_t stride) { 1013 return ShapedType::isDynamicStrideOrOffset(stride); 1014 })) 1015 return failure(); 1016 1017 auto int64Ty = IntegerType::get(rewriter.getContext(), 64); 1018 1019 // Create descriptor. 1020 auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy); 1021 Type llvmTargetElementTy = desc.getElementPtrType(); 1022 // Set allocated ptr. 1023 Value allocated = sourceMemRef.allocatedPtr(rewriter, loc); 1024 allocated = 1025 rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated); 1026 desc.setAllocatedPtr(rewriter, loc, allocated); 1027 // Set aligned ptr. 1028 Value ptr = sourceMemRef.alignedPtr(rewriter, loc); 1029 ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr); 1030 desc.setAlignedPtr(rewriter, loc, ptr); 1031 // Fill offset 0. 1032 auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0); 1033 auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr); 1034 desc.setOffset(rewriter, loc, zero); 1035 1036 // Fill size and stride descriptors in memref. 1037 for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) { 1038 int64_t index = indexedSize.index(); 1039 auto sizeAttr = 1040 rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value()); 1041 auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr); 1042 desc.setSize(rewriter, loc, index, size); 1043 auto strideAttr = rewriter.getIntegerAttr(rewriter.getIndexType(), 1044 (*targetStrides)[index]); 1045 auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr); 1046 desc.setStride(rewriter, loc, index, stride); 1047 } 1048 1049 rewriter.replaceOp(castOp, {desc}); 1050 return success(); 1051 } 1052 }; 1053 1054 class VectorPrintOpConversion : public ConvertOpToLLVMPattern<vector::PrintOp> { 1055 public: 1056 using ConvertOpToLLVMPattern<vector::PrintOp>::ConvertOpToLLVMPattern; 1057 1058 // Proof-of-concept lowering implementation that relies on a small 1059 // runtime support library, which only needs to provide a few 1060 // printing methods (single value for all data types, opening/closing 1061 // bracket, comma, newline). The lowering fully unrolls a vector 1062 // in terms of these elementary printing operations. The advantage 1063 // of this approach is that the library can remain unaware of all 1064 // low-level implementation details of vectors while still supporting 1065 // output of any shaped and dimensioned vector. Due to full unrolling, 1066 // this approach is less suited for very large vectors though. 1067 // 1068 // TODO: rely solely on libc in future? something else? 1069 // 1070 LogicalResult 1071 matchAndRewrite(vector::PrintOp printOp, ArrayRef<Value> operands, 1072 ConversionPatternRewriter &rewriter) const override { 1073 auto adaptor = vector::PrintOpAdaptor(operands); 1074 Type printType = printOp.getPrintType(); 1075 1076 if (typeConverter->convertType(printType) == nullptr) 1077 return failure(); 1078 1079 // Make sure element type has runtime support. 1080 PrintConversion conversion = PrintConversion::None; 1081 VectorType vectorType = printType.dyn_cast<VectorType>(); 1082 Type eltType = vectorType ? vectorType.getElementType() : printType; 1083 Operation *printer; 1084 if (eltType.isF32()) { 1085 printer = 1086 LLVM::lookupOrCreatePrintF32Fn(printOp->getParentOfType<ModuleOp>()); 1087 } else if (eltType.isF64()) { 1088 printer = 1089 LLVM::lookupOrCreatePrintF64Fn(printOp->getParentOfType<ModuleOp>()); 1090 } else if (eltType.isIndex()) { 1091 printer = 1092 LLVM::lookupOrCreatePrintU64Fn(printOp->getParentOfType<ModuleOp>()); 1093 } else if (auto intTy = eltType.dyn_cast<IntegerType>()) { 1094 // Integers need a zero or sign extension on the operand 1095 // (depending on the source type) as well as a signed or 1096 // unsigned print method. Up to 64-bit is supported. 1097 unsigned width = intTy.getWidth(); 1098 if (intTy.isUnsigned()) { 1099 if (width <= 64) { 1100 if (width < 64) 1101 conversion = PrintConversion::ZeroExt64; 1102 printer = LLVM::lookupOrCreatePrintU64Fn( 1103 printOp->getParentOfType<ModuleOp>()); 1104 } else { 1105 return failure(); 1106 } 1107 } else { 1108 assert(intTy.isSignless() || intTy.isSigned()); 1109 if (width <= 64) { 1110 // Note that we *always* zero extend booleans (1-bit integers), 1111 // so that true/false is printed as 1/0 rather than -1/0. 1112 if (width == 1) 1113 conversion = PrintConversion::ZeroExt64; 1114 else if (width < 64) 1115 conversion = PrintConversion::SignExt64; 1116 printer = LLVM::lookupOrCreatePrintI64Fn( 1117 printOp->getParentOfType<ModuleOp>()); 1118 } else { 1119 return failure(); 1120 } 1121 } 1122 } else { 1123 return failure(); 1124 } 1125 1126 // Unroll vector into elementary print calls. 1127 int64_t rank = vectorType ? vectorType.getRank() : 0; 1128 emitRanks(rewriter, printOp, adaptor.source(), vectorType, printer, rank, 1129 conversion); 1130 emitCall(rewriter, printOp->getLoc(), 1131 LLVM::lookupOrCreatePrintNewlineFn( 1132 printOp->getParentOfType<ModuleOp>())); 1133 rewriter.eraseOp(printOp); 1134 return success(); 1135 } 1136 1137 private: 1138 enum class PrintConversion { 1139 // clang-format off 1140 None, 1141 ZeroExt64, 1142 SignExt64 1143 // clang-format on 1144 }; 1145 1146 void emitRanks(ConversionPatternRewriter &rewriter, Operation *op, 1147 Value value, VectorType vectorType, Operation *printer, 1148 int64_t rank, PrintConversion conversion) const { 1149 Location loc = op->getLoc(); 1150 if (rank == 0) { 1151 switch (conversion) { 1152 case PrintConversion::ZeroExt64: 1153 value = rewriter.create<ZeroExtendIOp>( 1154 loc, value, IntegerType::get(rewriter.getContext(), 64)); 1155 break; 1156 case PrintConversion::SignExt64: 1157 value = rewriter.create<SignExtendIOp>( 1158 loc, value, IntegerType::get(rewriter.getContext(), 64)); 1159 break; 1160 case PrintConversion::None: 1161 break; 1162 } 1163 emitCall(rewriter, loc, printer, value); 1164 return; 1165 } 1166 1167 emitCall(rewriter, loc, 1168 LLVM::lookupOrCreatePrintOpenFn(op->getParentOfType<ModuleOp>())); 1169 Operation *printComma = 1170 LLVM::lookupOrCreatePrintCommaFn(op->getParentOfType<ModuleOp>()); 1171 int64_t dim = vectorType.getDimSize(0); 1172 for (int64_t d = 0; d < dim; ++d) { 1173 auto reducedType = 1174 rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr; 1175 auto llvmType = typeConverter->convertType( 1176 rank > 1 ? reducedType : vectorType.getElementType()); 1177 Value nestedVal = extractOne(rewriter, *getTypeConverter(), loc, value, 1178 llvmType, rank, d); 1179 emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1, 1180 conversion); 1181 if (d != dim - 1) 1182 emitCall(rewriter, loc, printComma); 1183 } 1184 emitCall(rewriter, loc, 1185 LLVM::lookupOrCreatePrintCloseFn(op->getParentOfType<ModuleOp>())); 1186 } 1187 1188 // Helper to emit a call. 1189 static void emitCall(ConversionPatternRewriter &rewriter, Location loc, 1190 Operation *ref, ValueRange params = ValueRange()) { 1191 rewriter.create<LLVM::CallOp>(loc, TypeRange(), 1192 rewriter.getSymbolRefAttr(ref), params); 1193 } 1194 }; 1195 1196 /// Progressive lowering of ExtractStridedSliceOp to either: 1197 /// 1. express single offset extract as a direct shuffle. 1198 /// 2. extract + lower rank strided_slice + insert for the n-D case. 1199 class VectorExtractStridedSliceOpConversion 1200 : public OpRewritePattern<ExtractStridedSliceOp> { 1201 public: 1202 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 1203 1204 void initialize() { 1205 // This pattern creates recursive ExtractStridedSliceOp, but the recursion 1206 // is bounded as the rank is strictly decreasing. 1207 setHasBoundedRewriteRecursion(); 1208 } 1209 1210 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 1211 PatternRewriter &rewriter) const override { 1212 auto dstType = op.getType(); 1213 1214 assert(!op.offsets().getValue().empty() && "Unexpected empty offsets"); 1215 1216 int64_t offset = 1217 op.offsets().getValue().front().cast<IntegerAttr>().getInt(); 1218 int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt(); 1219 int64_t stride = 1220 op.strides().getValue().front().cast<IntegerAttr>().getInt(); 1221 1222 auto loc = op.getLoc(); 1223 auto elemType = dstType.getElementType(); 1224 assert(elemType.isSignlessIntOrIndexOrFloat()); 1225 1226 // Single offset can be more efficiently shuffled. 1227 if (op.offsets().getValue().size() == 1) { 1228 SmallVector<int64_t, 4> offsets; 1229 offsets.reserve(size); 1230 for (int64_t off = offset, e = offset + size * stride; off < e; 1231 off += stride) 1232 offsets.push_back(off); 1233 rewriter.replaceOpWithNewOp<ShuffleOp>(op, dstType, op.vector(), 1234 op.vector(), 1235 rewriter.getI64ArrayAttr(offsets)); 1236 return success(); 1237 } 1238 1239 // Extract/insert on a lower ranked extract strided slice op. 1240 Value zero = rewriter.create<ConstantOp>(loc, elemType, 1241 rewriter.getZeroAttr(elemType)); 1242 Value res = rewriter.create<SplatOp>(loc, dstType, zero); 1243 for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e; 1244 off += stride, ++idx) { 1245 Value one = extractOne(rewriter, loc, op.vector(), off); 1246 Value extracted = rewriter.create<ExtractStridedSliceOp>( 1247 loc, one, getI64SubArray(op.offsets(), /* dropFront=*/1), 1248 getI64SubArray(op.sizes(), /* dropFront=*/1), 1249 getI64SubArray(op.strides(), /* dropFront=*/1)); 1250 res = insertOne(rewriter, loc, extracted, res, idx); 1251 } 1252 rewriter.replaceOp(op, res); 1253 return success(); 1254 } 1255 }; 1256 1257 } // namespace 1258 1259 /// Populate the given list with patterns that convert from Vector to LLVM. 1260 void mlir::populateVectorToLLVMConversionPatterns( 1261 LLVMTypeConverter &converter, RewritePatternSet &patterns, 1262 bool reassociateFPReductions) { 1263 MLIRContext *ctx = converter.getDialect()->getContext(); 1264 patterns.add<VectorFMAOpNDRewritePattern, 1265 VectorInsertStridedSliceOpDifferentRankRewritePattern, 1266 VectorInsertStridedSliceOpSameRankRewritePattern, 1267 VectorExtractStridedSliceOpConversion>(ctx); 1268 patterns.add<VectorReductionOpConversion>(converter, reassociateFPReductions); 1269 patterns 1270 .add<VectorBitCastOpConversion, VectorShuffleOpConversion, 1271 VectorExtractElementOpConversion, VectorExtractOpConversion, 1272 VectorFMAOp1DConversion, VectorInsertElementOpConversion, 1273 VectorInsertOpConversion, VectorPrintOpConversion, 1274 VectorTypeCastOpConversion, 1275 VectorLoadStoreConversion<vector::LoadOp, vector::LoadOpAdaptor>, 1276 VectorLoadStoreConversion<vector::MaskedLoadOp, 1277 vector::MaskedLoadOpAdaptor>, 1278 VectorLoadStoreConversion<vector::StoreOp, vector::StoreOpAdaptor>, 1279 VectorLoadStoreConversion<vector::MaskedStoreOp, 1280 vector::MaskedStoreOpAdaptor>, 1281 VectorGatherOpConversion, VectorScatterOpConversion, 1282 VectorExpandLoadOpConversion, VectorCompressStoreOpConversion>( 1283 converter); 1284 // Transfer ops with rank > 1 are handled by VectorToSCF. 1285 populateVectorTransferLoweringPatterns(patterns, /*maxTransferRank=*/1); 1286 } 1287 1288 void mlir::populateVectorToLLVMMatrixConversionPatterns( 1289 LLVMTypeConverter &converter, RewritePatternSet &patterns) { 1290 patterns.add<VectorMatmulOpConversion>(converter); 1291 patterns.add<VectorFlatTransposeOpConversion>(converter); 1292 } 1293