1 //===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h" 10 11 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h" 12 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h" 13 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 14 #include "mlir/Dialect/StandardOps/IR/Ops.h" 15 #include "mlir/Dialect/Vector/VectorOps.h" 16 #include "mlir/IR/StandardTypes.h" 17 #include "mlir/Target/LLVMIR/TypeTranslation.h" 18 #include "mlir/Transforms/DialectConversion.h" 19 20 using namespace mlir; 21 using namespace mlir::vector; 22 23 // Helper to reduce vector type by one rank at front. 24 static VectorType reducedVectorTypeFront(VectorType tp) { 25 assert((tp.getRank() > 1) && "unlowerable vector type"); 26 return VectorType::get(tp.getShape().drop_front(), tp.getElementType()); 27 } 28 29 // Helper to reduce vector type by *all* but one rank at back. 30 static VectorType reducedVectorTypeBack(VectorType tp) { 31 assert((tp.getRank() > 1) && "unlowerable vector type"); 32 return VectorType::get(tp.getShape().take_back(), tp.getElementType()); 33 } 34 35 // Helper that picks the proper sequence for inserting. 36 static Value insertOne(ConversionPatternRewriter &rewriter, 37 LLVMTypeConverter &typeConverter, Location loc, 38 Value val1, Value val2, Type llvmType, int64_t rank, 39 int64_t pos) { 40 if (rank == 1) { 41 auto idxType = rewriter.getIndexType(); 42 auto constant = rewriter.create<LLVM::ConstantOp>( 43 loc, typeConverter.convertType(idxType), 44 rewriter.getIntegerAttr(idxType, pos)); 45 return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2, 46 constant); 47 } 48 return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2, 49 rewriter.getI64ArrayAttr(pos)); 50 } 51 52 // Helper that picks the proper sequence for inserting. 53 static Value insertOne(PatternRewriter &rewriter, Location loc, Value from, 54 Value into, int64_t offset) { 55 auto vectorType = into.getType().cast<VectorType>(); 56 if (vectorType.getRank() > 1) 57 return rewriter.create<InsertOp>(loc, from, into, offset); 58 return rewriter.create<vector::InsertElementOp>( 59 loc, vectorType, from, into, 60 rewriter.create<ConstantIndexOp>(loc, offset)); 61 } 62 63 // Helper that picks the proper sequence for extracting. 64 static Value extractOne(ConversionPatternRewriter &rewriter, 65 LLVMTypeConverter &typeConverter, Location loc, 66 Value val, Type llvmType, int64_t rank, int64_t pos) { 67 if (rank == 1) { 68 auto idxType = rewriter.getIndexType(); 69 auto constant = rewriter.create<LLVM::ConstantOp>( 70 loc, typeConverter.convertType(idxType), 71 rewriter.getIntegerAttr(idxType, pos)); 72 return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val, 73 constant); 74 } 75 return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val, 76 rewriter.getI64ArrayAttr(pos)); 77 } 78 79 // Helper that picks the proper sequence for extracting. 80 static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector, 81 int64_t offset) { 82 auto vectorType = vector.getType().cast<VectorType>(); 83 if (vectorType.getRank() > 1) 84 return rewriter.create<ExtractOp>(loc, vector, offset); 85 return rewriter.create<vector::ExtractElementOp>( 86 loc, vectorType.getElementType(), vector, 87 rewriter.create<ConstantIndexOp>(loc, offset)); 88 } 89 90 // Helper that returns a subset of `arrayAttr` as a vector of int64_t. 91 // TODO: Better support for attribute subtype forwarding + slicing. 92 static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr, 93 unsigned dropFront = 0, 94 unsigned dropBack = 0) { 95 assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds"); 96 auto range = arrayAttr.getAsRange<IntegerAttr>(); 97 SmallVector<int64_t, 4> res; 98 res.reserve(arrayAttr.size() - dropFront - dropBack); 99 for (auto it = range.begin() + dropFront, eit = range.end() - dropBack; 100 it != eit; ++it) 101 res.push_back((*it).getValue().getSExtValue()); 102 return res; 103 } 104 105 // Helper that returns a vector comparison that constructs a mask: 106 // mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b] 107 // 108 // NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative, 109 // much more compact, IR for this operation, but LLVM eventually 110 // generates more elaborate instructions for this intrinsic since it 111 // is very conservative on the boundary conditions. 112 static Value buildVectorComparison(ConversionPatternRewriter &rewriter, 113 Operation *op, bool enableIndexOptimizations, 114 int64_t dim, Value b, Value *off = nullptr) { 115 auto loc = op->getLoc(); 116 // If we can assume all indices fit in 32-bit, we perform the vector 117 // comparison in 32-bit to get a higher degree of SIMD parallelism. 118 // Otherwise we perform the vector comparison using 64-bit indices. 119 Value indices; 120 Type idxType; 121 if (enableIndexOptimizations) { 122 indices = rewriter.create<ConstantOp>( 123 loc, rewriter.getI32VectorAttr( 124 llvm::to_vector<4>(llvm::seq<int32_t>(0, dim)))); 125 idxType = rewriter.getI32Type(); 126 } else { 127 indices = rewriter.create<ConstantOp>( 128 loc, rewriter.getI64VectorAttr( 129 llvm::to_vector<4>(llvm::seq<int64_t>(0, dim)))); 130 idxType = rewriter.getI64Type(); 131 } 132 // Add in an offset if requested. 133 if (off) { 134 Value o = rewriter.create<IndexCastOp>(loc, idxType, *off); 135 Value ov = rewriter.create<SplatOp>(loc, indices.getType(), o); 136 indices = rewriter.create<AddIOp>(loc, ov, indices); 137 } 138 // Construct the vector comparison. 139 Value bound = rewriter.create<IndexCastOp>(loc, idxType, b); 140 Value bounds = rewriter.create<SplatOp>(loc, indices.getType(), bound); 141 return rewriter.create<CmpIOp>(loc, CmpIPredicate::slt, indices, bounds); 142 } 143 144 // Helper that returns data layout alignment of an operation with memref. 145 template <typename T> 146 LogicalResult getMemRefAlignment(LLVMTypeConverter &typeConverter, T op, 147 unsigned &align) { 148 Type elementTy = 149 typeConverter.convertType(op.getMemRefType().getElementType()); 150 if (!elementTy) 151 return failure(); 152 153 // TODO: this should use the MLIR data layout when it becomes available and 154 // stop depending on translation. 155 llvm::LLVMContext llvmContext; 156 align = LLVM::TypeToLLVMIRTranslator(llvmContext) 157 .getPreferredAlignment(elementTy.cast<LLVM::LLVMType>(), 158 typeConverter.getDataLayout()); 159 return success(); 160 } 161 162 // Helper that returns the base address of a memref. 163 static LogicalResult getBase(ConversionPatternRewriter &rewriter, Location loc, 164 Value memref, MemRefType memRefType, Value &base) { 165 // Inspect stride and offset structure. 166 // 167 // TODO: flat memory only for now, generalize 168 // 169 int64_t offset; 170 SmallVector<int64_t, 4> strides; 171 auto successStrides = getStridesAndOffset(memRefType, strides, offset); 172 if (failed(successStrides) || strides.size() != 1 || strides[0] != 1 || 173 offset != 0 || memRefType.getMemorySpace() != 0) 174 return failure(); 175 base = MemRefDescriptor(memref).alignedPtr(rewriter, loc); 176 return success(); 177 } 178 179 // Helper that returns a pointer given a memref base. 180 static LogicalResult getBasePtr(ConversionPatternRewriter &rewriter, 181 Location loc, Value memref, 182 MemRefType memRefType, Value &ptr) { 183 Value base; 184 if (failed(getBase(rewriter, loc, memref, memRefType, base))) 185 return failure(); 186 auto pType = MemRefDescriptor(memref).getElementPtrType(); 187 ptr = rewriter.create<LLVM::GEPOp>(loc, pType, base); 188 return success(); 189 } 190 191 // Helper that returns a bit-casted pointer given a memref base. 192 static LogicalResult getBasePtr(ConversionPatternRewriter &rewriter, 193 Location loc, Value memref, 194 MemRefType memRefType, Type type, Value &ptr) { 195 Value base; 196 if (failed(getBase(rewriter, loc, memref, memRefType, base))) 197 return failure(); 198 auto pType = type.template cast<LLVM::LLVMType>().getPointerTo(); 199 base = rewriter.create<LLVM::BitcastOp>(loc, pType, base); 200 ptr = rewriter.create<LLVM::GEPOp>(loc, pType, base); 201 return success(); 202 } 203 204 // Helper that returns vector of pointers given a memref base and an index 205 // vector. 206 static LogicalResult getIndexedPtrs(ConversionPatternRewriter &rewriter, 207 Location loc, Value memref, Value indices, 208 MemRefType memRefType, VectorType vType, 209 Type iType, Value &ptrs) { 210 Value base; 211 if (failed(getBase(rewriter, loc, memref, memRefType, base))) 212 return failure(); 213 auto pType = MemRefDescriptor(memref).getElementPtrType(); 214 auto ptrsType = LLVM::LLVMType::getVectorTy(pType, vType.getDimSize(0)); 215 ptrs = rewriter.create<LLVM::GEPOp>(loc, ptrsType, base, indices); 216 return success(); 217 } 218 219 static LogicalResult 220 replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter, 221 LLVMTypeConverter &typeConverter, Location loc, 222 TransferReadOp xferOp, 223 ArrayRef<Value> operands, Value dataPtr) { 224 unsigned align; 225 if (failed(getMemRefAlignment(typeConverter, xferOp, align))) 226 return failure(); 227 rewriter.replaceOpWithNewOp<LLVM::LoadOp>(xferOp, dataPtr, align); 228 return success(); 229 } 230 231 static LogicalResult 232 replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter, 233 LLVMTypeConverter &typeConverter, Location loc, 234 TransferReadOp xferOp, ArrayRef<Value> operands, 235 Value dataPtr, Value mask) { 236 auto toLLVMTy = [&](Type t) { return typeConverter.convertType(t); }; 237 VectorType fillType = xferOp.getVectorType(); 238 Value fill = rewriter.create<SplatOp>(loc, fillType, xferOp.padding()); 239 fill = rewriter.create<LLVM::DialectCastOp>(loc, toLLVMTy(fillType), fill); 240 241 Type vecTy = typeConverter.convertType(xferOp.getVectorType()); 242 if (!vecTy) 243 return failure(); 244 245 unsigned align; 246 if (failed(getMemRefAlignment(typeConverter, xferOp, align))) 247 return failure(); 248 249 rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>( 250 xferOp, vecTy, dataPtr, mask, ValueRange{fill}, 251 rewriter.getI32IntegerAttr(align)); 252 return success(); 253 } 254 255 static LogicalResult 256 replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter, 257 LLVMTypeConverter &typeConverter, Location loc, 258 TransferWriteOp xferOp, 259 ArrayRef<Value> operands, Value dataPtr) { 260 unsigned align; 261 if (failed(getMemRefAlignment(typeConverter, xferOp, align))) 262 return failure(); 263 auto adaptor = TransferWriteOpAdaptor(operands); 264 rewriter.replaceOpWithNewOp<LLVM::StoreOp>(xferOp, adaptor.vector(), dataPtr, 265 align); 266 return success(); 267 } 268 269 static LogicalResult 270 replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter, 271 LLVMTypeConverter &typeConverter, Location loc, 272 TransferWriteOp xferOp, ArrayRef<Value> operands, 273 Value dataPtr, Value mask) { 274 unsigned align; 275 if (failed(getMemRefAlignment(typeConverter, xferOp, align))) 276 return failure(); 277 278 auto adaptor = TransferWriteOpAdaptor(operands); 279 rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>( 280 xferOp, adaptor.vector(), dataPtr, mask, 281 rewriter.getI32IntegerAttr(align)); 282 return success(); 283 } 284 285 static TransferReadOpAdaptor getTransferOpAdapter(TransferReadOp xferOp, 286 ArrayRef<Value> operands) { 287 return TransferReadOpAdaptor(operands); 288 } 289 290 static TransferWriteOpAdaptor getTransferOpAdapter(TransferWriteOp xferOp, 291 ArrayRef<Value> operands) { 292 return TransferWriteOpAdaptor(operands); 293 } 294 295 namespace { 296 297 /// Conversion pattern for a vector.matrix_multiply. 298 /// This is lowered directly to the proper llvm.intr.matrix.multiply. 299 class VectorMatmulOpConversion : public ConvertToLLVMPattern { 300 public: 301 explicit VectorMatmulOpConversion(MLIRContext *context, 302 LLVMTypeConverter &typeConverter) 303 : ConvertToLLVMPattern(vector::MatmulOp::getOperationName(), context, 304 typeConverter) {} 305 306 LogicalResult 307 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 308 ConversionPatternRewriter &rewriter) const override { 309 auto matmulOp = cast<vector::MatmulOp>(op); 310 auto adaptor = vector::MatmulOpAdaptor(operands); 311 rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>( 312 op, typeConverter.convertType(matmulOp.res().getType()), adaptor.lhs(), 313 adaptor.rhs(), matmulOp.lhs_rows(), matmulOp.lhs_columns(), 314 matmulOp.rhs_columns()); 315 return success(); 316 } 317 }; 318 319 /// Conversion pattern for a vector.flat_transpose. 320 /// This is lowered directly to the proper llvm.intr.matrix.transpose. 321 class VectorFlatTransposeOpConversion : public ConvertToLLVMPattern { 322 public: 323 explicit VectorFlatTransposeOpConversion(MLIRContext *context, 324 LLVMTypeConverter &typeConverter) 325 : ConvertToLLVMPattern(vector::FlatTransposeOp::getOperationName(), 326 context, typeConverter) {} 327 328 LogicalResult 329 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 330 ConversionPatternRewriter &rewriter) const override { 331 auto transOp = cast<vector::FlatTransposeOp>(op); 332 auto adaptor = vector::FlatTransposeOpAdaptor(operands); 333 rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>( 334 transOp, typeConverter.convertType(transOp.res().getType()), 335 adaptor.matrix(), transOp.rows(), transOp.columns()); 336 return success(); 337 } 338 }; 339 340 /// Conversion pattern for a vector.maskedload. 341 class VectorMaskedLoadOpConversion : public ConvertToLLVMPattern { 342 public: 343 explicit VectorMaskedLoadOpConversion(MLIRContext *context, 344 LLVMTypeConverter &typeConverter) 345 : ConvertToLLVMPattern(vector::MaskedLoadOp::getOperationName(), context, 346 typeConverter) {} 347 348 LogicalResult 349 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 350 ConversionPatternRewriter &rewriter) const override { 351 auto loc = op->getLoc(); 352 auto load = cast<vector::MaskedLoadOp>(op); 353 auto adaptor = vector::MaskedLoadOpAdaptor(operands); 354 355 // Resolve alignment. 356 unsigned align; 357 if (failed(getMemRefAlignment(typeConverter, load, align))) 358 return failure(); 359 360 auto vtype = typeConverter.convertType(load.getResultVectorType()); 361 Value ptr; 362 if (failed(getBasePtr(rewriter, loc, adaptor.base(), load.getMemRefType(), 363 vtype, ptr))) 364 return failure(); 365 366 rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>( 367 load, vtype, ptr, adaptor.mask(), adaptor.pass_thru(), 368 rewriter.getI32IntegerAttr(align)); 369 return success(); 370 } 371 }; 372 373 /// Conversion pattern for a vector.maskedstore. 374 class VectorMaskedStoreOpConversion : public ConvertToLLVMPattern { 375 public: 376 explicit VectorMaskedStoreOpConversion(MLIRContext *context, 377 LLVMTypeConverter &typeConverter) 378 : ConvertToLLVMPattern(vector::MaskedStoreOp::getOperationName(), context, 379 typeConverter) {} 380 381 LogicalResult 382 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 383 ConversionPatternRewriter &rewriter) const override { 384 auto loc = op->getLoc(); 385 auto store = cast<vector::MaskedStoreOp>(op); 386 auto adaptor = vector::MaskedStoreOpAdaptor(operands); 387 388 // Resolve alignment. 389 unsigned align; 390 if (failed(getMemRefAlignment(typeConverter, store, align))) 391 return failure(); 392 393 auto vtype = typeConverter.convertType(store.getValueVectorType()); 394 Value ptr; 395 if (failed(getBasePtr(rewriter, loc, adaptor.base(), store.getMemRefType(), 396 vtype, ptr))) 397 return failure(); 398 399 rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>( 400 store, adaptor.value(), ptr, adaptor.mask(), 401 rewriter.getI32IntegerAttr(align)); 402 return success(); 403 } 404 }; 405 406 /// Conversion pattern for a vector.gather. 407 class VectorGatherOpConversion : public ConvertToLLVMPattern { 408 public: 409 explicit VectorGatherOpConversion(MLIRContext *context, 410 LLVMTypeConverter &typeConverter) 411 : ConvertToLLVMPattern(vector::GatherOp::getOperationName(), context, 412 typeConverter) {} 413 414 LogicalResult 415 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 416 ConversionPatternRewriter &rewriter) const override { 417 auto loc = op->getLoc(); 418 auto gather = cast<vector::GatherOp>(op); 419 auto adaptor = vector::GatherOpAdaptor(operands); 420 421 // Resolve alignment. 422 unsigned align; 423 if (failed(getMemRefAlignment(typeConverter, gather, align))) 424 return failure(); 425 426 // Get index ptrs. 427 VectorType vType = gather.getResultVectorType(); 428 Type iType = gather.getIndicesVectorType().getElementType(); 429 Value ptrs; 430 if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), adaptor.indices(), 431 gather.getMemRefType(), vType, iType, ptrs))) 432 return failure(); 433 434 // Replace with the gather intrinsic. 435 rewriter.replaceOpWithNewOp<LLVM::masked_gather>( 436 gather, typeConverter.convertType(vType), ptrs, adaptor.mask(), 437 adaptor.pass_thru(), rewriter.getI32IntegerAttr(align)); 438 return success(); 439 } 440 }; 441 442 /// Conversion pattern for a vector.scatter. 443 class VectorScatterOpConversion : public ConvertToLLVMPattern { 444 public: 445 explicit VectorScatterOpConversion(MLIRContext *context, 446 LLVMTypeConverter &typeConverter) 447 : ConvertToLLVMPattern(vector::ScatterOp::getOperationName(), context, 448 typeConverter) {} 449 450 LogicalResult 451 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 452 ConversionPatternRewriter &rewriter) const override { 453 auto loc = op->getLoc(); 454 auto scatter = cast<vector::ScatterOp>(op); 455 auto adaptor = vector::ScatterOpAdaptor(operands); 456 457 // Resolve alignment. 458 unsigned align; 459 if (failed(getMemRefAlignment(typeConverter, scatter, align))) 460 return failure(); 461 462 // Get index ptrs. 463 VectorType vType = scatter.getValueVectorType(); 464 Type iType = scatter.getIndicesVectorType().getElementType(); 465 Value ptrs; 466 if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), adaptor.indices(), 467 scatter.getMemRefType(), vType, iType, ptrs))) 468 return failure(); 469 470 // Replace with the scatter intrinsic. 471 rewriter.replaceOpWithNewOp<LLVM::masked_scatter>( 472 scatter, adaptor.value(), ptrs, adaptor.mask(), 473 rewriter.getI32IntegerAttr(align)); 474 return success(); 475 } 476 }; 477 478 /// Conversion pattern for a vector.expandload. 479 class VectorExpandLoadOpConversion : public ConvertToLLVMPattern { 480 public: 481 explicit VectorExpandLoadOpConversion(MLIRContext *context, 482 LLVMTypeConverter &typeConverter) 483 : ConvertToLLVMPattern(vector::ExpandLoadOp::getOperationName(), context, 484 typeConverter) {} 485 486 LogicalResult 487 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 488 ConversionPatternRewriter &rewriter) const override { 489 auto loc = op->getLoc(); 490 auto expand = cast<vector::ExpandLoadOp>(op); 491 auto adaptor = vector::ExpandLoadOpAdaptor(operands); 492 493 Value ptr; 494 if (failed(getBasePtr(rewriter, loc, adaptor.base(), expand.getMemRefType(), 495 ptr))) 496 return failure(); 497 498 auto vType = expand.getResultVectorType(); 499 rewriter.replaceOpWithNewOp<LLVM::masked_expandload>( 500 op, typeConverter.convertType(vType), ptr, adaptor.mask(), 501 adaptor.pass_thru()); 502 return success(); 503 } 504 }; 505 506 /// Conversion pattern for a vector.compressstore. 507 class VectorCompressStoreOpConversion : public ConvertToLLVMPattern { 508 public: 509 explicit VectorCompressStoreOpConversion(MLIRContext *context, 510 LLVMTypeConverter &typeConverter) 511 : ConvertToLLVMPattern(vector::CompressStoreOp::getOperationName(), 512 context, typeConverter) {} 513 514 LogicalResult 515 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 516 ConversionPatternRewriter &rewriter) const override { 517 auto loc = op->getLoc(); 518 auto compress = cast<vector::CompressStoreOp>(op); 519 auto adaptor = vector::CompressStoreOpAdaptor(operands); 520 521 Value ptr; 522 if (failed(getBasePtr(rewriter, loc, adaptor.base(), 523 compress.getMemRefType(), ptr))) 524 return failure(); 525 526 rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>( 527 op, adaptor.value(), ptr, adaptor.mask()); 528 return success(); 529 } 530 }; 531 532 /// Conversion pattern for all vector reductions. 533 class VectorReductionOpConversion : public ConvertToLLVMPattern { 534 public: 535 explicit VectorReductionOpConversion(MLIRContext *context, 536 LLVMTypeConverter &typeConverter, 537 bool reassociateFPRed) 538 : ConvertToLLVMPattern(vector::ReductionOp::getOperationName(), context, 539 typeConverter), 540 reassociateFPReductions(reassociateFPRed) {} 541 542 LogicalResult 543 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 544 ConversionPatternRewriter &rewriter) const override { 545 auto reductionOp = cast<vector::ReductionOp>(op); 546 auto kind = reductionOp.kind(); 547 Type eltType = reductionOp.dest().getType(); 548 Type llvmType = typeConverter.convertType(eltType); 549 if (eltType.isIntOrIndex()) { 550 // Integer reductions: add/mul/min/max/and/or/xor. 551 if (kind == "add") 552 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_add>( 553 op, llvmType, operands[0]); 554 else if (kind == "mul") 555 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_mul>( 556 op, llvmType, operands[0]); 557 else if (kind == "min" && 558 (eltType.isIndex() || eltType.isUnsignedInteger())) 559 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umin>( 560 op, llvmType, operands[0]); 561 else if (kind == "min") 562 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smin>( 563 op, llvmType, operands[0]); 564 else if (kind == "max" && 565 (eltType.isIndex() || eltType.isUnsignedInteger())) 566 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umax>( 567 op, llvmType, operands[0]); 568 else if (kind == "max") 569 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smax>( 570 op, llvmType, operands[0]); 571 else if (kind == "and") 572 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_and>( 573 op, llvmType, operands[0]); 574 else if (kind == "or") 575 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_or>( 576 op, llvmType, operands[0]); 577 else if (kind == "xor") 578 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_xor>( 579 op, llvmType, operands[0]); 580 else 581 return failure(); 582 return success(); 583 584 } else if (eltType.isa<FloatType>()) { 585 // Floating-point reductions: add/mul/min/max 586 if (kind == "add") { 587 // Optional accumulator (or zero). 588 Value acc = operands.size() > 1 ? operands[1] 589 : rewriter.create<LLVM::ConstantOp>( 590 op->getLoc(), llvmType, 591 rewriter.getZeroAttr(eltType)); 592 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fadd>( 593 op, llvmType, acc, operands[0], 594 rewriter.getBoolAttr(reassociateFPReductions)); 595 } else if (kind == "mul") { 596 // Optional accumulator (or one). 597 Value acc = operands.size() > 1 598 ? operands[1] 599 : rewriter.create<LLVM::ConstantOp>( 600 op->getLoc(), llvmType, 601 rewriter.getFloatAttr(eltType, 1.0)); 602 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmul>( 603 op, llvmType, acc, operands[0], 604 rewriter.getBoolAttr(reassociateFPReductions)); 605 } else if (kind == "min") 606 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmin>( 607 op, llvmType, operands[0]); 608 else if (kind == "max") 609 rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmax>( 610 op, llvmType, operands[0]); 611 else 612 return failure(); 613 return success(); 614 } 615 return failure(); 616 } 617 618 private: 619 const bool reassociateFPReductions; 620 }; 621 622 /// Conversion pattern for a vector.create_mask (1-D only). 623 class VectorCreateMaskOpConversion : public ConvertToLLVMPattern { 624 public: 625 explicit VectorCreateMaskOpConversion(MLIRContext *context, 626 LLVMTypeConverter &typeConverter, 627 bool enableIndexOpt) 628 : ConvertToLLVMPattern(vector::CreateMaskOp::getOperationName(), context, 629 typeConverter), 630 enableIndexOptimizations(enableIndexOpt) {} 631 632 LogicalResult 633 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 634 ConversionPatternRewriter &rewriter) const override { 635 auto dstType = op->getResult(0).getType().cast<VectorType>(); 636 int64_t rank = dstType.getRank(); 637 if (rank == 1) { 638 rewriter.replaceOp( 639 op, buildVectorComparison(rewriter, op, enableIndexOptimizations, 640 dstType.getDimSize(0), operands[0])); 641 return success(); 642 } 643 return failure(); 644 } 645 646 private: 647 const bool enableIndexOptimizations; 648 }; 649 650 class VectorShuffleOpConversion : public ConvertToLLVMPattern { 651 public: 652 explicit VectorShuffleOpConversion(MLIRContext *context, 653 LLVMTypeConverter &typeConverter) 654 : ConvertToLLVMPattern(vector::ShuffleOp::getOperationName(), context, 655 typeConverter) {} 656 657 LogicalResult 658 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 659 ConversionPatternRewriter &rewriter) const override { 660 auto loc = op->getLoc(); 661 auto adaptor = vector::ShuffleOpAdaptor(operands); 662 auto shuffleOp = cast<vector::ShuffleOp>(op); 663 auto v1Type = shuffleOp.getV1VectorType(); 664 auto v2Type = shuffleOp.getV2VectorType(); 665 auto vectorType = shuffleOp.getVectorType(); 666 Type llvmType = typeConverter.convertType(vectorType); 667 auto maskArrayAttr = shuffleOp.mask(); 668 669 // Bail if result type cannot be lowered. 670 if (!llvmType) 671 return failure(); 672 673 // Get rank and dimension sizes. 674 int64_t rank = vectorType.getRank(); 675 assert(v1Type.getRank() == rank); 676 assert(v2Type.getRank() == rank); 677 int64_t v1Dim = v1Type.getDimSize(0); 678 679 // For rank 1, where both operands have *exactly* the same vector type, 680 // there is direct shuffle support in LLVM. Use it! 681 if (rank == 1 && v1Type == v2Type) { 682 Value shuffle = rewriter.create<LLVM::ShuffleVectorOp>( 683 loc, adaptor.v1(), adaptor.v2(), maskArrayAttr); 684 rewriter.replaceOp(op, shuffle); 685 return success(); 686 } 687 688 // For all other cases, insert the individual values individually. 689 Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType); 690 int64_t insPos = 0; 691 for (auto en : llvm::enumerate(maskArrayAttr)) { 692 int64_t extPos = en.value().cast<IntegerAttr>().getInt(); 693 Value value = adaptor.v1(); 694 if (extPos >= v1Dim) { 695 extPos -= v1Dim; 696 value = adaptor.v2(); 697 } 698 Value extract = extractOne(rewriter, typeConverter, loc, value, llvmType, 699 rank, extPos); 700 insert = insertOne(rewriter, typeConverter, loc, insert, extract, 701 llvmType, rank, insPos++); 702 } 703 rewriter.replaceOp(op, insert); 704 return success(); 705 } 706 }; 707 708 class VectorExtractElementOpConversion : public ConvertToLLVMPattern { 709 public: 710 explicit VectorExtractElementOpConversion(MLIRContext *context, 711 LLVMTypeConverter &typeConverter) 712 : ConvertToLLVMPattern(vector::ExtractElementOp::getOperationName(), 713 context, typeConverter) {} 714 715 LogicalResult 716 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 717 ConversionPatternRewriter &rewriter) const override { 718 auto adaptor = vector::ExtractElementOpAdaptor(operands); 719 auto extractEltOp = cast<vector::ExtractElementOp>(op); 720 auto vectorType = extractEltOp.getVectorType(); 721 auto llvmType = typeConverter.convertType(vectorType.getElementType()); 722 723 // Bail if result type cannot be lowered. 724 if (!llvmType) 725 return failure(); 726 727 rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>( 728 op, llvmType, adaptor.vector(), adaptor.position()); 729 return success(); 730 } 731 }; 732 733 class VectorExtractOpConversion : public ConvertToLLVMPattern { 734 public: 735 explicit VectorExtractOpConversion(MLIRContext *context, 736 LLVMTypeConverter &typeConverter) 737 : ConvertToLLVMPattern(vector::ExtractOp::getOperationName(), context, 738 typeConverter) {} 739 740 LogicalResult 741 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 742 ConversionPatternRewriter &rewriter) const override { 743 auto loc = op->getLoc(); 744 auto adaptor = vector::ExtractOpAdaptor(operands); 745 auto extractOp = cast<vector::ExtractOp>(op); 746 auto vectorType = extractOp.getVectorType(); 747 auto resultType = extractOp.getResult().getType(); 748 auto llvmResultType = typeConverter.convertType(resultType); 749 auto positionArrayAttr = extractOp.position(); 750 751 // Bail if result type cannot be lowered. 752 if (!llvmResultType) 753 return failure(); 754 755 // One-shot extraction of vector from array (only requires extractvalue). 756 if (resultType.isa<VectorType>()) { 757 Value extracted = rewriter.create<LLVM::ExtractValueOp>( 758 loc, llvmResultType, adaptor.vector(), positionArrayAttr); 759 rewriter.replaceOp(op, extracted); 760 return success(); 761 } 762 763 // Potential extraction of 1-D vector from array. 764 auto *context = op->getContext(); 765 Value extracted = adaptor.vector(); 766 auto positionAttrs = positionArrayAttr.getValue(); 767 if (positionAttrs.size() > 1) { 768 auto oneDVectorType = reducedVectorTypeBack(vectorType); 769 auto nMinusOnePositionAttrs = 770 ArrayAttr::get(positionAttrs.drop_back(), context); 771 extracted = rewriter.create<LLVM::ExtractValueOp>( 772 loc, typeConverter.convertType(oneDVectorType), extracted, 773 nMinusOnePositionAttrs); 774 } 775 776 // Remaining extraction of element from 1-D LLVM vector 777 auto position = positionAttrs.back().cast<IntegerAttr>(); 778 auto i64Type = LLVM::LLVMType::getInt64Ty(rewriter.getContext()); 779 auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); 780 extracted = 781 rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant); 782 rewriter.replaceOp(op, extracted); 783 784 return success(); 785 } 786 }; 787 788 /// Conversion pattern that turns a vector.fma on a 1-D vector 789 /// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion. 790 /// This does not match vectors of n >= 2 rank. 791 /// 792 /// Example: 793 /// ``` 794 /// vector.fma %a, %a, %a : vector<8xf32> 795 /// ``` 796 /// is converted to: 797 /// ``` 798 /// llvm.intr.fmuladd %va, %va, %va: 799 /// (!llvm<"<8 x float>">, !llvm<"<8 x float>">, !llvm<"<8 x float>">) 800 /// -> !llvm<"<8 x float>"> 801 /// ``` 802 class VectorFMAOp1DConversion : public ConvertToLLVMPattern { 803 public: 804 explicit VectorFMAOp1DConversion(MLIRContext *context, 805 LLVMTypeConverter &typeConverter) 806 : ConvertToLLVMPattern(vector::FMAOp::getOperationName(), context, 807 typeConverter) {} 808 809 LogicalResult 810 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 811 ConversionPatternRewriter &rewriter) const override { 812 auto adaptor = vector::FMAOpAdaptor(operands); 813 vector::FMAOp fmaOp = cast<vector::FMAOp>(op); 814 VectorType vType = fmaOp.getVectorType(); 815 if (vType.getRank() != 1) 816 return failure(); 817 rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>(op, adaptor.lhs(), 818 adaptor.rhs(), adaptor.acc()); 819 return success(); 820 } 821 }; 822 823 class VectorInsertElementOpConversion : public ConvertToLLVMPattern { 824 public: 825 explicit VectorInsertElementOpConversion(MLIRContext *context, 826 LLVMTypeConverter &typeConverter) 827 : ConvertToLLVMPattern(vector::InsertElementOp::getOperationName(), 828 context, typeConverter) {} 829 830 LogicalResult 831 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 832 ConversionPatternRewriter &rewriter) const override { 833 auto adaptor = vector::InsertElementOpAdaptor(operands); 834 auto insertEltOp = cast<vector::InsertElementOp>(op); 835 auto vectorType = insertEltOp.getDestVectorType(); 836 auto llvmType = typeConverter.convertType(vectorType); 837 838 // Bail if result type cannot be lowered. 839 if (!llvmType) 840 return failure(); 841 842 rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( 843 op, llvmType, adaptor.dest(), adaptor.source(), adaptor.position()); 844 return success(); 845 } 846 }; 847 848 class VectorInsertOpConversion : public ConvertToLLVMPattern { 849 public: 850 explicit VectorInsertOpConversion(MLIRContext *context, 851 LLVMTypeConverter &typeConverter) 852 : ConvertToLLVMPattern(vector::InsertOp::getOperationName(), context, 853 typeConverter) {} 854 855 LogicalResult 856 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 857 ConversionPatternRewriter &rewriter) const override { 858 auto loc = op->getLoc(); 859 auto adaptor = vector::InsertOpAdaptor(operands); 860 auto insertOp = cast<vector::InsertOp>(op); 861 auto sourceType = insertOp.getSourceType(); 862 auto destVectorType = insertOp.getDestVectorType(); 863 auto llvmResultType = typeConverter.convertType(destVectorType); 864 auto positionArrayAttr = insertOp.position(); 865 866 // Bail if result type cannot be lowered. 867 if (!llvmResultType) 868 return failure(); 869 870 // One-shot insertion of a vector into an array (only requires insertvalue). 871 if (sourceType.isa<VectorType>()) { 872 Value inserted = rewriter.create<LLVM::InsertValueOp>( 873 loc, llvmResultType, adaptor.dest(), adaptor.source(), 874 positionArrayAttr); 875 rewriter.replaceOp(op, inserted); 876 return success(); 877 } 878 879 // Potential extraction of 1-D vector from array. 880 auto *context = op->getContext(); 881 Value extracted = adaptor.dest(); 882 auto positionAttrs = positionArrayAttr.getValue(); 883 auto position = positionAttrs.back().cast<IntegerAttr>(); 884 auto oneDVectorType = destVectorType; 885 if (positionAttrs.size() > 1) { 886 oneDVectorType = reducedVectorTypeBack(destVectorType); 887 auto nMinusOnePositionAttrs = 888 ArrayAttr::get(positionAttrs.drop_back(), context); 889 extracted = rewriter.create<LLVM::ExtractValueOp>( 890 loc, typeConverter.convertType(oneDVectorType), extracted, 891 nMinusOnePositionAttrs); 892 } 893 894 // Insertion of an element into a 1-D LLVM vector. 895 auto i64Type = LLVM::LLVMType::getInt64Ty(rewriter.getContext()); 896 auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); 897 Value inserted = rewriter.create<LLVM::InsertElementOp>( 898 loc, typeConverter.convertType(oneDVectorType), extracted, 899 adaptor.source(), constant); 900 901 // Potential insertion of resulting 1-D vector into array. 902 if (positionAttrs.size() > 1) { 903 auto nMinusOnePositionAttrs = 904 ArrayAttr::get(positionAttrs.drop_back(), context); 905 inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType, 906 adaptor.dest(), inserted, 907 nMinusOnePositionAttrs); 908 } 909 910 rewriter.replaceOp(op, inserted); 911 return success(); 912 } 913 }; 914 915 /// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1. 916 /// 917 /// Example: 918 /// ``` 919 /// %d = vector.fma %a, %b, %c : vector<2x4xf32> 920 /// ``` 921 /// is rewritten into: 922 /// ``` 923 /// %r = splat %f0: vector<2x4xf32> 924 /// %va = vector.extractvalue %a[0] : vector<2x4xf32> 925 /// %vb = vector.extractvalue %b[0] : vector<2x4xf32> 926 /// %vc = vector.extractvalue %c[0] : vector<2x4xf32> 927 /// %vd = vector.fma %va, %vb, %vc : vector<4xf32> 928 /// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32> 929 /// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32> 930 /// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32> 931 /// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32> 932 /// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32> 933 /// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32> 934 /// // %r3 holds the final value. 935 /// ``` 936 class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> { 937 public: 938 using OpRewritePattern<FMAOp>::OpRewritePattern; 939 940 LogicalResult matchAndRewrite(FMAOp op, 941 PatternRewriter &rewriter) const override { 942 auto vType = op.getVectorType(); 943 if (vType.getRank() < 2) 944 return failure(); 945 946 auto loc = op.getLoc(); 947 auto elemType = vType.getElementType(); 948 Value zero = rewriter.create<ConstantOp>(loc, elemType, 949 rewriter.getZeroAttr(elemType)); 950 Value desc = rewriter.create<SplatOp>(loc, vType, zero); 951 for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) { 952 Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i); 953 Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i); 954 Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i); 955 Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC); 956 desc = rewriter.create<InsertOp>(loc, fma, desc, i); 957 } 958 rewriter.replaceOp(op, desc); 959 return success(); 960 } 961 }; 962 963 // When ranks are different, InsertStridedSlice needs to extract a properly 964 // ranked vector from the destination vector into which to insert. This pattern 965 // only takes care of this part and forwards the rest of the conversion to 966 // another pattern that converts InsertStridedSlice for operands of the same 967 // rank. 968 // 969 // RewritePattern for InsertStridedSliceOp where source and destination vectors 970 // have different ranks. In this case: 971 // 1. the proper subvector is extracted from the destination vector 972 // 2. a new InsertStridedSlice op is created to insert the source in the 973 // destination subvector 974 // 3. the destination subvector is inserted back in the proper place 975 // 4. the op is replaced by the result of step 3. 976 // The new InsertStridedSlice from step 2. will be picked up by a 977 // `VectorInsertStridedSliceOpSameRankRewritePattern`. 978 class VectorInsertStridedSliceOpDifferentRankRewritePattern 979 : public OpRewritePattern<InsertStridedSliceOp> { 980 public: 981 using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; 982 983 LogicalResult matchAndRewrite(InsertStridedSliceOp op, 984 PatternRewriter &rewriter) const override { 985 auto srcType = op.getSourceVectorType(); 986 auto dstType = op.getDestVectorType(); 987 988 if (op.offsets().getValue().empty()) 989 return failure(); 990 991 auto loc = op.getLoc(); 992 int64_t rankDiff = dstType.getRank() - srcType.getRank(); 993 assert(rankDiff >= 0); 994 if (rankDiff == 0) 995 return failure(); 996 997 int64_t rankRest = dstType.getRank() - rankDiff; 998 // Extract / insert the subvector of matching rank and InsertStridedSlice 999 // on it. 1000 Value extracted = 1001 rewriter.create<ExtractOp>(loc, op.dest(), 1002 getI64SubArray(op.offsets(), /*dropFront=*/0, 1003 /*dropFront=*/rankRest)); 1004 // A different pattern will kick in for InsertStridedSlice with matching 1005 // ranks. 1006 auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>( 1007 loc, op.source(), extracted, 1008 getI64SubArray(op.offsets(), /*dropFront=*/rankDiff), 1009 getI64SubArray(op.strides(), /*dropFront=*/0)); 1010 rewriter.replaceOpWithNewOp<InsertOp>( 1011 op, stridedSliceInnerOp.getResult(), op.dest(), 1012 getI64SubArray(op.offsets(), /*dropFront=*/0, 1013 /*dropFront=*/rankRest)); 1014 return success(); 1015 } 1016 }; 1017 1018 // RewritePattern for InsertStridedSliceOp where source and destination vectors 1019 // have the same rank. In this case, we reduce 1020 // 1. the proper subvector is extracted from the destination vector 1021 // 2. a new InsertStridedSlice op is created to insert the source in the 1022 // destination subvector 1023 // 3. the destination subvector is inserted back in the proper place 1024 // 4. the op is replaced by the result of step 3. 1025 // The new InsertStridedSlice from step 2. will be picked up by a 1026 // `VectorInsertStridedSliceOpSameRankRewritePattern`. 1027 class VectorInsertStridedSliceOpSameRankRewritePattern 1028 : public OpRewritePattern<InsertStridedSliceOp> { 1029 public: 1030 VectorInsertStridedSliceOpSameRankRewritePattern(MLIRContext *ctx) 1031 : OpRewritePattern<InsertStridedSliceOp>(ctx) { 1032 // This pattern creates recursive InsertStridedSliceOp, but the recursion is 1033 // bounded as the rank is strictly decreasing. 1034 setHasBoundedRewriteRecursion(); 1035 } 1036 1037 LogicalResult matchAndRewrite(InsertStridedSliceOp op, 1038 PatternRewriter &rewriter) const override { 1039 auto srcType = op.getSourceVectorType(); 1040 auto dstType = op.getDestVectorType(); 1041 1042 if (op.offsets().getValue().empty()) 1043 return failure(); 1044 1045 int64_t rankDiff = dstType.getRank() - srcType.getRank(); 1046 assert(rankDiff >= 0); 1047 if (rankDiff != 0) 1048 return failure(); 1049 1050 if (srcType == dstType) { 1051 rewriter.replaceOp(op, op.source()); 1052 return success(); 1053 } 1054 1055 int64_t offset = 1056 op.offsets().getValue().front().cast<IntegerAttr>().getInt(); 1057 int64_t size = srcType.getShape().front(); 1058 int64_t stride = 1059 op.strides().getValue().front().cast<IntegerAttr>().getInt(); 1060 1061 auto loc = op.getLoc(); 1062 Value res = op.dest(); 1063 // For each slice of the source vector along the most major dimension. 1064 for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e; 1065 off += stride, ++idx) { 1066 // 1. extract the proper subvector (or element) from source 1067 Value extractedSource = extractOne(rewriter, loc, op.source(), idx); 1068 if (extractedSource.getType().isa<VectorType>()) { 1069 // 2. If we have a vector, extract the proper subvector from destination 1070 // Otherwise we are at the element level and no need to recurse. 1071 Value extractedDest = extractOne(rewriter, loc, op.dest(), off); 1072 // 3. Reduce the problem to lowering a new InsertStridedSlice op with 1073 // smaller rank. 1074 extractedSource = rewriter.create<InsertStridedSliceOp>( 1075 loc, extractedSource, extractedDest, 1076 getI64SubArray(op.offsets(), /* dropFront=*/1), 1077 getI64SubArray(op.strides(), /* dropFront=*/1)); 1078 } 1079 // 4. Insert the extractedSource into the res vector. 1080 res = insertOne(rewriter, loc, extractedSource, res, off); 1081 } 1082 1083 rewriter.replaceOp(op, res); 1084 return success(); 1085 } 1086 }; 1087 1088 /// Returns the strides if the memory underlying `memRefType` has a contiguous 1089 /// static layout. 1090 static llvm::Optional<SmallVector<int64_t, 4>> 1091 computeContiguousStrides(MemRefType memRefType) { 1092 int64_t offset; 1093 SmallVector<int64_t, 4> strides; 1094 if (failed(getStridesAndOffset(memRefType, strides, offset))) 1095 return None; 1096 if (!strides.empty() && strides.back() != 1) 1097 return None; 1098 // If no layout or identity layout, this is contiguous by definition. 1099 if (memRefType.getAffineMaps().empty() || 1100 memRefType.getAffineMaps().front().isIdentity()) 1101 return strides; 1102 1103 // Otherwise, we must determine contiguity form shapes. This can only ever 1104 // work in static cases because MemRefType is underspecified to represent 1105 // contiguous dynamic shapes in other ways than with just empty/identity 1106 // layout. 1107 auto sizes = memRefType.getShape(); 1108 for (int index = 0, e = strides.size() - 2; index < e; ++index) { 1109 if (ShapedType::isDynamic(sizes[index + 1]) || 1110 ShapedType::isDynamicStrideOrOffset(strides[index]) || 1111 ShapedType::isDynamicStrideOrOffset(strides[index + 1])) 1112 return None; 1113 if (strides[index] != strides[index + 1] * sizes[index + 1]) 1114 return None; 1115 } 1116 return strides; 1117 } 1118 1119 class VectorTypeCastOpConversion : public ConvertToLLVMPattern { 1120 public: 1121 explicit VectorTypeCastOpConversion(MLIRContext *context, 1122 LLVMTypeConverter &typeConverter) 1123 : ConvertToLLVMPattern(vector::TypeCastOp::getOperationName(), context, 1124 typeConverter) {} 1125 1126 LogicalResult 1127 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 1128 ConversionPatternRewriter &rewriter) const override { 1129 auto loc = op->getLoc(); 1130 vector::TypeCastOp castOp = cast<vector::TypeCastOp>(op); 1131 MemRefType sourceMemRefType = 1132 castOp.getOperand().getType().cast<MemRefType>(); 1133 MemRefType targetMemRefType = 1134 castOp.getResult().getType().cast<MemRefType>(); 1135 1136 // Only static shape casts supported atm. 1137 if (!sourceMemRefType.hasStaticShape() || 1138 !targetMemRefType.hasStaticShape()) 1139 return failure(); 1140 1141 auto llvmSourceDescriptorTy = 1142 operands[0].getType().dyn_cast<LLVM::LLVMType>(); 1143 if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy()) 1144 return failure(); 1145 MemRefDescriptor sourceMemRef(operands[0]); 1146 1147 auto llvmTargetDescriptorTy = typeConverter.convertType(targetMemRefType) 1148 .dyn_cast_or_null<LLVM::LLVMType>(); 1149 if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy()) 1150 return failure(); 1151 1152 // Only contiguous source buffers supported atm. 1153 auto sourceStrides = computeContiguousStrides(sourceMemRefType); 1154 if (!sourceStrides) 1155 return failure(); 1156 auto targetStrides = computeContiguousStrides(targetMemRefType); 1157 if (!targetStrides) 1158 return failure(); 1159 // Only support static strides for now, regardless of contiguity. 1160 if (llvm::any_of(*targetStrides, [](int64_t stride) { 1161 return ShapedType::isDynamicStrideOrOffset(stride); 1162 })) 1163 return failure(); 1164 1165 auto int64Ty = LLVM::LLVMType::getInt64Ty(rewriter.getContext()); 1166 1167 // Create descriptor. 1168 auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy); 1169 Type llvmTargetElementTy = desc.getElementPtrType(); 1170 // Set allocated ptr. 1171 Value allocated = sourceMemRef.allocatedPtr(rewriter, loc); 1172 allocated = 1173 rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated); 1174 desc.setAllocatedPtr(rewriter, loc, allocated); 1175 // Set aligned ptr. 1176 Value ptr = sourceMemRef.alignedPtr(rewriter, loc); 1177 ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr); 1178 desc.setAlignedPtr(rewriter, loc, ptr); 1179 // Fill offset 0. 1180 auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0); 1181 auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr); 1182 desc.setOffset(rewriter, loc, zero); 1183 1184 // Fill size and stride descriptors in memref. 1185 for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) { 1186 int64_t index = indexedSize.index(); 1187 auto sizeAttr = 1188 rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value()); 1189 auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr); 1190 desc.setSize(rewriter, loc, index, size); 1191 auto strideAttr = rewriter.getIntegerAttr(rewriter.getIndexType(), 1192 (*targetStrides)[index]); 1193 auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr); 1194 desc.setStride(rewriter, loc, index, stride); 1195 } 1196 1197 rewriter.replaceOp(op, {desc}); 1198 return success(); 1199 } 1200 }; 1201 1202 /// Conversion pattern that converts a 1-D vector transfer read/write op in a 1203 /// sequence of: 1204 /// 1. Get the source/dst address as an LLVM vector pointer. 1205 /// 2. Create a vector with linear indices [ 0 .. vector_length - 1 ]. 1206 /// 3. Create an offsetVector = [ offset + 0 .. offset + vector_length - 1 ]. 1207 /// 4. Create a mask where offsetVector is compared against memref upper bound. 1208 /// 5. Rewrite op as a masked read or write. 1209 template <typename ConcreteOp> 1210 class VectorTransferConversion : public ConvertToLLVMPattern { 1211 public: 1212 explicit VectorTransferConversion(MLIRContext *context, 1213 LLVMTypeConverter &typeConv, 1214 bool enableIndexOpt) 1215 : ConvertToLLVMPattern(ConcreteOp::getOperationName(), context, typeConv), 1216 enableIndexOptimizations(enableIndexOpt) {} 1217 1218 LogicalResult 1219 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 1220 ConversionPatternRewriter &rewriter) const override { 1221 auto xferOp = cast<ConcreteOp>(op); 1222 auto adaptor = getTransferOpAdapter(xferOp, operands); 1223 1224 if (xferOp.getVectorType().getRank() > 1 || 1225 llvm::size(xferOp.indices()) == 0) 1226 return failure(); 1227 if (xferOp.permutation_map() != 1228 AffineMap::getMinorIdentityMap(xferOp.permutation_map().getNumInputs(), 1229 xferOp.getVectorType().getRank(), 1230 op->getContext())) 1231 return failure(); 1232 // Only contiguous source tensors supported atm. 1233 auto strides = computeContiguousStrides(xferOp.getMemRefType()); 1234 if (!strides) 1235 return failure(); 1236 1237 auto toLLVMTy = [&](Type t) { return typeConverter.convertType(t); }; 1238 1239 Location loc = op->getLoc(); 1240 MemRefType memRefType = xferOp.getMemRefType(); 1241 1242 if (auto memrefVectorElementType = 1243 memRefType.getElementType().dyn_cast<VectorType>()) { 1244 // Memref has vector element type. 1245 if (memrefVectorElementType.getElementType() != 1246 xferOp.getVectorType().getElementType()) 1247 return failure(); 1248 #ifndef NDEBUG 1249 // Check that memref vector type is a suffix of 'vectorType. 1250 unsigned memrefVecEltRank = memrefVectorElementType.getRank(); 1251 unsigned resultVecRank = xferOp.getVectorType().getRank(); 1252 assert(memrefVecEltRank <= resultVecRank); 1253 // TODO: Move this to isSuffix in Vector/Utils.h. 1254 unsigned rankOffset = resultVecRank - memrefVecEltRank; 1255 auto memrefVecEltShape = memrefVectorElementType.getShape(); 1256 auto resultVecShape = xferOp.getVectorType().getShape(); 1257 for (unsigned i = 0; i < memrefVecEltRank; ++i) 1258 assert(memrefVecEltShape[i] != resultVecShape[rankOffset + i] && 1259 "memref vector element shape should match suffix of vector " 1260 "result shape."); 1261 #endif // ifndef NDEBUG 1262 } 1263 1264 // 1. Get the source/dst address as an LLVM vector pointer. 1265 // The vector pointer would always be on address space 0, therefore 1266 // addrspacecast shall be used when source/dst memrefs are not on 1267 // address space 0. 1268 // TODO: support alignment when possible. 1269 Value dataPtr = getStridedElementPtr(loc, memRefType, adaptor.memref(), 1270 adaptor.indices(), rewriter); 1271 auto vecTy = 1272 toLLVMTy(xferOp.getVectorType()).template cast<LLVM::LLVMType>(); 1273 Value vectorDataPtr; 1274 if (memRefType.getMemorySpace() == 0) 1275 vectorDataPtr = 1276 rewriter.create<LLVM::BitcastOp>(loc, vecTy.getPointerTo(), dataPtr); 1277 else 1278 vectorDataPtr = rewriter.create<LLVM::AddrSpaceCastOp>( 1279 loc, vecTy.getPointerTo(), dataPtr); 1280 1281 if (!xferOp.isMaskedDim(0)) 1282 return replaceTransferOpWithLoadOrStore(rewriter, typeConverter, loc, 1283 xferOp, operands, vectorDataPtr); 1284 1285 // 2. Create a vector with linear indices [ 0 .. vector_length - 1 ]. 1286 // 3. Create offsetVector = [ offset + 0 .. offset + vector_length - 1 ]. 1287 // 4. Let dim the memref dimension, compute the vector comparison mask: 1288 // [ offset + 0 .. offset + vector_length - 1 ] < [ dim .. dim ] 1289 // 1290 // TODO: when the leaf transfer rank is k > 1, we need the last `k` 1291 // dimensions here. 1292 unsigned vecWidth = vecTy.getVectorNumElements(); 1293 unsigned lastIndex = llvm::size(xferOp.indices()) - 1; 1294 Value off = xferOp.indices()[lastIndex]; 1295 Value dim = rewriter.create<DimOp>(loc, xferOp.memref(), lastIndex); 1296 Value mask = buildVectorComparison(rewriter, op, enableIndexOptimizations, 1297 vecWidth, dim, &off); 1298 1299 // 5. Rewrite as a masked read / write. 1300 return replaceTransferOpWithMasked(rewriter, typeConverter, loc, xferOp, 1301 operands, vectorDataPtr, mask); 1302 } 1303 1304 private: 1305 const bool enableIndexOptimizations; 1306 }; 1307 1308 class VectorPrintOpConversion : public ConvertToLLVMPattern { 1309 public: 1310 explicit VectorPrintOpConversion(MLIRContext *context, 1311 LLVMTypeConverter &typeConverter) 1312 : ConvertToLLVMPattern(vector::PrintOp::getOperationName(), context, 1313 typeConverter) {} 1314 1315 // Proof-of-concept lowering implementation that relies on a small 1316 // runtime support library, which only needs to provide a few 1317 // printing methods (single value for all data types, opening/closing 1318 // bracket, comma, newline). The lowering fully unrolls a vector 1319 // in terms of these elementary printing operations. The advantage 1320 // of this approach is that the library can remain unaware of all 1321 // low-level implementation details of vectors while still supporting 1322 // output of any shaped and dimensioned vector. Due to full unrolling, 1323 // this approach is less suited for very large vectors though. 1324 // 1325 // TODO: rely solely on libc in future? something else? 1326 // 1327 LogicalResult 1328 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 1329 ConversionPatternRewriter &rewriter) const override { 1330 auto printOp = cast<vector::PrintOp>(op); 1331 auto adaptor = vector::PrintOpAdaptor(operands); 1332 Type printType = printOp.getPrintType(); 1333 1334 if (typeConverter.convertType(printType) == nullptr) 1335 return failure(); 1336 1337 // Make sure element type has runtime support. 1338 PrintConversion conversion = PrintConversion::None; 1339 VectorType vectorType = printType.dyn_cast<VectorType>(); 1340 Type eltType = vectorType ? vectorType.getElementType() : printType; 1341 Operation *printer; 1342 if (eltType.isF32()) { 1343 printer = getPrintFloat(op); 1344 } else if (eltType.isF64()) { 1345 printer = getPrintDouble(op); 1346 } else if (eltType.isIndex()) { 1347 printer = getPrintU64(op); 1348 } else if (auto intTy = eltType.dyn_cast<IntegerType>()) { 1349 // Integers need a zero or sign extension on the operand 1350 // (depending on the source type) as well as a signed or 1351 // unsigned print method. Up to 64-bit is supported. 1352 unsigned width = intTy.getWidth(); 1353 if (intTy.isUnsigned()) { 1354 if (width <= 64) { 1355 if (width < 64) 1356 conversion = PrintConversion::ZeroExt64; 1357 printer = getPrintU64(op); 1358 } else { 1359 return failure(); 1360 } 1361 } else { 1362 assert(intTy.isSignless() || intTy.isSigned()); 1363 if (width <= 64) { 1364 // Note that we *always* zero extend booleans (1-bit integers), 1365 // so that true/false is printed as 1/0 rather than -1/0. 1366 if (width == 1) 1367 conversion = PrintConversion::ZeroExt64; 1368 else if (width < 64) 1369 conversion = PrintConversion::SignExt64; 1370 printer = getPrintI64(op); 1371 } else { 1372 return failure(); 1373 } 1374 } 1375 } else { 1376 return failure(); 1377 } 1378 1379 // Unroll vector into elementary print calls. 1380 int64_t rank = vectorType ? vectorType.getRank() : 0; 1381 emitRanks(rewriter, op, adaptor.source(), vectorType, printer, rank, 1382 conversion); 1383 emitCall(rewriter, op->getLoc(), getPrintNewline(op)); 1384 rewriter.eraseOp(op); 1385 return success(); 1386 } 1387 1388 private: 1389 enum class PrintConversion { 1390 // clang-format off 1391 None, 1392 ZeroExt64, 1393 SignExt64 1394 // clang-format on 1395 }; 1396 1397 void emitRanks(ConversionPatternRewriter &rewriter, Operation *op, 1398 Value value, VectorType vectorType, Operation *printer, 1399 int64_t rank, PrintConversion conversion) const { 1400 Location loc = op->getLoc(); 1401 if (rank == 0) { 1402 switch (conversion) { 1403 case PrintConversion::ZeroExt64: 1404 value = rewriter.create<ZeroExtendIOp>( 1405 loc, value, LLVM::LLVMType::getInt64Ty(rewriter.getContext())); 1406 break; 1407 case PrintConversion::SignExt64: 1408 value = rewriter.create<SignExtendIOp>( 1409 loc, value, LLVM::LLVMType::getInt64Ty(rewriter.getContext())); 1410 break; 1411 case PrintConversion::None: 1412 break; 1413 } 1414 emitCall(rewriter, loc, printer, value); 1415 return; 1416 } 1417 1418 emitCall(rewriter, loc, getPrintOpen(op)); 1419 Operation *printComma = getPrintComma(op); 1420 int64_t dim = vectorType.getDimSize(0); 1421 for (int64_t d = 0; d < dim; ++d) { 1422 auto reducedType = 1423 rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr; 1424 auto llvmType = typeConverter.convertType( 1425 rank > 1 ? reducedType : vectorType.getElementType()); 1426 Value nestedVal = 1427 extractOne(rewriter, typeConverter, loc, value, llvmType, rank, d); 1428 emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1, 1429 conversion); 1430 if (d != dim - 1) 1431 emitCall(rewriter, loc, printComma); 1432 } 1433 emitCall(rewriter, loc, getPrintClose(op)); 1434 } 1435 1436 // Helper to emit a call. 1437 static void emitCall(ConversionPatternRewriter &rewriter, Location loc, 1438 Operation *ref, ValueRange params = ValueRange()) { 1439 rewriter.create<LLVM::CallOp>(loc, TypeRange(), 1440 rewriter.getSymbolRefAttr(ref), params); 1441 } 1442 1443 // Helper for printer method declaration (first hit) and lookup. 1444 static Operation *getPrint(Operation *op, StringRef name, 1445 ArrayRef<LLVM::LLVMType> params) { 1446 auto module = op->getParentOfType<ModuleOp>(); 1447 auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name); 1448 if (func) 1449 return func; 1450 OpBuilder moduleBuilder(module.getBodyRegion()); 1451 return moduleBuilder.create<LLVM::LLVMFuncOp>( 1452 op->getLoc(), name, 1453 LLVM::LLVMType::getFunctionTy( 1454 LLVM::LLVMType::getVoidTy(op->getContext()), params, 1455 /*isVarArg=*/false)); 1456 } 1457 1458 // Helpers for method names. 1459 Operation *getPrintI64(Operation *op) const { 1460 return getPrint(op, "printI64", 1461 LLVM::LLVMType::getInt64Ty(op->getContext())); 1462 } 1463 Operation *getPrintU64(Operation *op) const { 1464 return getPrint(op, "printU64", 1465 LLVM::LLVMType::getInt64Ty(op->getContext())); 1466 } 1467 Operation *getPrintFloat(Operation *op) const { 1468 return getPrint(op, "printF32", 1469 LLVM::LLVMType::getFloatTy(op->getContext())); 1470 } 1471 Operation *getPrintDouble(Operation *op) const { 1472 return getPrint(op, "printF64", 1473 LLVM::LLVMType::getDoubleTy(op->getContext())); 1474 } 1475 Operation *getPrintOpen(Operation *op) const { 1476 return getPrint(op, "printOpen", {}); 1477 } 1478 Operation *getPrintClose(Operation *op) const { 1479 return getPrint(op, "printClose", {}); 1480 } 1481 Operation *getPrintComma(Operation *op) const { 1482 return getPrint(op, "printComma", {}); 1483 } 1484 Operation *getPrintNewline(Operation *op) const { 1485 return getPrint(op, "printNewline", {}); 1486 } 1487 }; 1488 1489 /// Progressive lowering of ExtractStridedSliceOp to either: 1490 /// 1. express single offset extract as a direct shuffle. 1491 /// 2. extract + lower rank strided_slice + insert for the n-D case. 1492 class VectorExtractStridedSliceOpConversion 1493 : public OpRewritePattern<ExtractStridedSliceOp> { 1494 public: 1495 VectorExtractStridedSliceOpConversion(MLIRContext *ctx) 1496 : OpRewritePattern<ExtractStridedSliceOp>(ctx) { 1497 // This pattern creates recursive ExtractStridedSliceOp, but the recursion 1498 // is bounded as the rank is strictly decreasing. 1499 setHasBoundedRewriteRecursion(); 1500 } 1501 1502 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 1503 PatternRewriter &rewriter) const override { 1504 auto dstType = op.getResult().getType().cast<VectorType>(); 1505 1506 assert(!op.offsets().getValue().empty() && "Unexpected empty offsets"); 1507 1508 int64_t offset = 1509 op.offsets().getValue().front().cast<IntegerAttr>().getInt(); 1510 int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt(); 1511 int64_t stride = 1512 op.strides().getValue().front().cast<IntegerAttr>().getInt(); 1513 1514 auto loc = op.getLoc(); 1515 auto elemType = dstType.getElementType(); 1516 assert(elemType.isSignlessIntOrIndexOrFloat()); 1517 1518 // Single offset can be more efficiently shuffled. 1519 if (op.offsets().getValue().size() == 1) { 1520 SmallVector<int64_t, 4> offsets; 1521 offsets.reserve(size); 1522 for (int64_t off = offset, e = offset + size * stride; off < e; 1523 off += stride) 1524 offsets.push_back(off); 1525 rewriter.replaceOpWithNewOp<ShuffleOp>(op, dstType, op.vector(), 1526 op.vector(), 1527 rewriter.getI64ArrayAttr(offsets)); 1528 return success(); 1529 } 1530 1531 // Extract/insert on a lower ranked extract strided slice op. 1532 Value zero = rewriter.create<ConstantOp>(loc, elemType, 1533 rewriter.getZeroAttr(elemType)); 1534 Value res = rewriter.create<SplatOp>(loc, dstType, zero); 1535 for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e; 1536 off += stride, ++idx) { 1537 Value one = extractOne(rewriter, loc, op.vector(), off); 1538 Value extracted = rewriter.create<ExtractStridedSliceOp>( 1539 loc, one, getI64SubArray(op.offsets(), /* dropFront=*/1), 1540 getI64SubArray(op.sizes(), /* dropFront=*/1), 1541 getI64SubArray(op.strides(), /* dropFront=*/1)); 1542 res = insertOne(rewriter, loc, extracted, res, idx); 1543 } 1544 rewriter.replaceOp(op, res); 1545 return success(); 1546 } 1547 }; 1548 1549 } // namespace 1550 1551 /// Populate the given list with patterns that convert from Vector to LLVM. 1552 void mlir::populateVectorToLLVMConversionPatterns( 1553 LLVMTypeConverter &converter, OwningRewritePatternList &patterns, 1554 bool reassociateFPReductions, bool enableIndexOptimizations) { 1555 MLIRContext *ctx = converter.getDialect()->getContext(); 1556 // clang-format off 1557 patterns.insert<VectorFMAOpNDRewritePattern, 1558 VectorInsertStridedSliceOpDifferentRankRewritePattern, 1559 VectorInsertStridedSliceOpSameRankRewritePattern, 1560 VectorExtractStridedSliceOpConversion>(ctx); 1561 patterns.insert<VectorReductionOpConversion>( 1562 ctx, converter, reassociateFPReductions); 1563 patterns.insert<VectorCreateMaskOpConversion, 1564 VectorTransferConversion<TransferReadOp>, 1565 VectorTransferConversion<TransferWriteOp>>( 1566 ctx, converter, enableIndexOptimizations); 1567 patterns 1568 .insert<VectorShuffleOpConversion, 1569 VectorExtractElementOpConversion, 1570 VectorExtractOpConversion, 1571 VectorFMAOp1DConversion, 1572 VectorInsertElementOpConversion, 1573 VectorInsertOpConversion, 1574 VectorPrintOpConversion, 1575 VectorTypeCastOpConversion, 1576 VectorMaskedLoadOpConversion, 1577 VectorMaskedStoreOpConversion, 1578 VectorGatherOpConversion, 1579 VectorScatterOpConversion, 1580 VectorExpandLoadOpConversion, 1581 VectorCompressStoreOpConversion>(ctx, converter); 1582 // clang-format on 1583 } 1584 1585 void mlir::populateVectorToLLVMMatrixConversionPatterns( 1586 LLVMTypeConverter &converter, OwningRewritePatternList &patterns) { 1587 MLIRContext *ctx = converter.getDialect()->getContext(); 1588 patterns.insert<VectorMatmulOpConversion>(ctx, converter); 1589 patterns.insert<VectorFlatTransposeOpConversion>(ctx, converter); 1590 } 1591