1 //===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h" 10 11 #include "mlir/Conversion/LLVMCommon/TypeConverter.h" 12 #include "mlir/Conversion/LLVMCommon/VectorPattern.h" 13 #include "mlir/Dialect/Arith/IR/Arith.h" 14 #include "mlir/Dialect/Arith/Utils/Utils.h" 15 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h" 16 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 17 #include "mlir/Dialect/MemRef/IR/MemRef.h" 18 #include "mlir/Dialect/Vector/Interfaces/MaskableOpInterface.h" 19 #include "mlir/Dialect/Vector/Transforms/VectorTransforms.h" 20 #include "mlir/IR/BuiltinTypes.h" 21 #include "mlir/IR/TypeUtilities.h" 22 #include "mlir/Target/LLVMIR/TypeToLLVM.h" 23 #include "mlir/Transforms/DialectConversion.h" 24 #include <optional> 25 26 using namespace mlir; 27 using namespace mlir::vector; 28 29 // Helper to reduce vector type by one rank at front. 30 static VectorType reducedVectorTypeFront(VectorType tp) { 31 assert((tp.getRank() > 1) && "unlowerable vector type"); 32 unsigned numScalableDims = tp.getNumScalableDims(); 33 if (tp.getShape().size() == numScalableDims) 34 --numScalableDims; 35 return VectorType::get(tp.getShape().drop_front(), tp.getElementType(), 36 numScalableDims); 37 } 38 39 // Helper to reduce vector type by *all* but one rank at back. 40 static VectorType reducedVectorTypeBack(VectorType tp) { 41 assert((tp.getRank() > 1) && "unlowerable vector type"); 42 unsigned numScalableDims = tp.getNumScalableDims(); 43 if (numScalableDims > 0) 44 --numScalableDims; 45 return VectorType::get(tp.getShape().take_back(), tp.getElementType(), 46 numScalableDims); 47 } 48 49 // Helper that picks the proper sequence for inserting. 50 static Value insertOne(ConversionPatternRewriter &rewriter, 51 LLVMTypeConverter &typeConverter, Location loc, 52 Value val1, Value val2, Type llvmType, int64_t rank, 53 int64_t pos) { 54 assert(rank > 0 && "0-D vector corner case should have been handled already"); 55 if (rank == 1) { 56 auto idxType = rewriter.getIndexType(); 57 auto constant = rewriter.create<LLVM::ConstantOp>( 58 loc, typeConverter.convertType(idxType), 59 rewriter.getIntegerAttr(idxType, pos)); 60 return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2, 61 constant); 62 } 63 return rewriter.create<LLVM::InsertValueOp>(loc, val1, val2, pos); 64 } 65 66 // Helper that picks the proper sequence for extracting. 67 static Value extractOne(ConversionPatternRewriter &rewriter, 68 LLVMTypeConverter &typeConverter, Location loc, 69 Value val, Type llvmType, int64_t rank, int64_t pos) { 70 if (rank <= 1) { 71 auto idxType = rewriter.getIndexType(); 72 auto constant = rewriter.create<LLVM::ConstantOp>( 73 loc, typeConverter.convertType(idxType), 74 rewriter.getIntegerAttr(idxType, pos)); 75 return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val, 76 constant); 77 } 78 return rewriter.create<LLVM::ExtractValueOp>(loc, val, pos); 79 } 80 81 // Helper that returns data layout alignment of a memref. 82 LogicalResult getMemRefAlignment(LLVMTypeConverter &typeConverter, 83 MemRefType memrefType, unsigned &align) { 84 Type elementTy = typeConverter.convertType(memrefType.getElementType()); 85 if (!elementTy) 86 return failure(); 87 88 // TODO: this should use the MLIR data layout when it becomes available and 89 // stop depending on translation. 90 llvm::LLVMContext llvmContext; 91 align = LLVM::TypeToLLVMIRTranslator(llvmContext) 92 .getPreferredAlignment(elementTy, typeConverter.getDataLayout()); 93 return success(); 94 } 95 96 // Check if the last stride is non-unit or the memory space is not zero. 97 static LogicalResult isMemRefTypeSupported(MemRefType memRefType, 98 LLVMTypeConverter &converter) { 99 int64_t offset; 100 SmallVector<int64_t, 4> strides; 101 auto successStrides = getStridesAndOffset(memRefType, strides, offset); 102 FailureOr<unsigned> addressSpace = 103 converter.getMemRefAddressSpace(memRefType); 104 if (failed(successStrides) || strides.back() != 1 || failed(addressSpace) || 105 *addressSpace != 0) 106 return failure(); 107 return success(); 108 } 109 110 // Add an index vector component to a base pointer. 111 static Value getIndexedPtrs(ConversionPatternRewriter &rewriter, Location loc, 112 LLVMTypeConverter &typeConverter, 113 MemRefType memRefType, Value llvmMemref, Value base, 114 Value index, uint64_t vLen) { 115 assert(succeeded(isMemRefTypeSupported(memRefType, typeConverter)) && 116 "unsupported memref type"); 117 auto pType = MemRefDescriptor(llvmMemref).getElementPtrType(); 118 auto ptrsType = LLVM::getFixedVectorType(pType, vLen); 119 return rewriter.create<LLVM::GEPOp>( 120 loc, ptrsType, typeConverter.convertType(memRefType.getElementType()), 121 base, index); 122 } 123 124 // Casts a strided element pointer to a vector pointer. The vector pointer 125 // will be in the same address space as the incoming memref type. 126 static Value castDataPtr(ConversionPatternRewriter &rewriter, Location loc, 127 Value ptr, MemRefType memRefType, Type vt, 128 LLVMTypeConverter &converter) { 129 if (converter.useOpaquePointers()) 130 return ptr; 131 132 unsigned addressSpace = *converter.getMemRefAddressSpace(memRefType); 133 auto pType = LLVM::LLVMPointerType::get(vt, addressSpace); 134 return rewriter.create<LLVM::BitcastOp>(loc, pType, ptr); 135 } 136 137 namespace { 138 139 /// Trivial Vector to LLVM conversions 140 using VectorScaleOpConversion = 141 OneToOneConvertToLLVMPattern<vector::VectorScaleOp, LLVM::vscale>; 142 143 /// Conversion pattern for a vector.bitcast. 144 class VectorBitCastOpConversion 145 : public ConvertOpToLLVMPattern<vector::BitCastOp> { 146 public: 147 using ConvertOpToLLVMPattern<vector::BitCastOp>::ConvertOpToLLVMPattern; 148 149 LogicalResult 150 matchAndRewrite(vector::BitCastOp bitCastOp, OpAdaptor adaptor, 151 ConversionPatternRewriter &rewriter) const override { 152 // Only 0-D and 1-D vectors can be lowered to LLVM. 153 VectorType resultTy = bitCastOp.getResultVectorType(); 154 if (resultTy.getRank() > 1) 155 return failure(); 156 Type newResultTy = typeConverter->convertType(resultTy); 157 rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(bitCastOp, newResultTy, 158 adaptor.getOperands()[0]); 159 return success(); 160 } 161 }; 162 163 /// Conversion pattern for a vector.matrix_multiply. 164 /// This is lowered directly to the proper llvm.intr.matrix.multiply. 165 class VectorMatmulOpConversion 166 : public ConvertOpToLLVMPattern<vector::MatmulOp> { 167 public: 168 using ConvertOpToLLVMPattern<vector::MatmulOp>::ConvertOpToLLVMPattern; 169 170 LogicalResult 171 matchAndRewrite(vector::MatmulOp matmulOp, OpAdaptor adaptor, 172 ConversionPatternRewriter &rewriter) const override { 173 rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>( 174 matmulOp, typeConverter->convertType(matmulOp.getRes().getType()), 175 adaptor.getLhs(), adaptor.getRhs(), matmulOp.getLhsRows(), 176 matmulOp.getLhsColumns(), matmulOp.getRhsColumns()); 177 return success(); 178 } 179 }; 180 181 /// Conversion pattern for a vector.flat_transpose. 182 /// This is lowered directly to the proper llvm.intr.matrix.transpose. 183 class VectorFlatTransposeOpConversion 184 : public ConvertOpToLLVMPattern<vector::FlatTransposeOp> { 185 public: 186 using ConvertOpToLLVMPattern<vector::FlatTransposeOp>::ConvertOpToLLVMPattern; 187 188 LogicalResult 189 matchAndRewrite(vector::FlatTransposeOp transOp, OpAdaptor adaptor, 190 ConversionPatternRewriter &rewriter) const override { 191 rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>( 192 transOp, typeConverter->convertType(transOp.getRes().getType()), 193 adaptor.getMatrix(), transOp.getRows(), transOp.getColumns()); 194 return success(); 195 } 196 }; 197 198 /// Overloaded utility that replaces a vector.load, vector.store, 199 /// vector.maskedload and vector.maskedstore with their respective LLVM 200 /// couterparts. 201 static void replaceLoadOrStoreOp(vector::LoadOp loadOp, 202 vector::LoadOpAdaptor adaptor, 203 VectorType vectorTy, Value ptr, unsigned align, 204 ConversionPatternRewriter &rewriter) { 205 rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, vectorTy, ptr, align); 206 } 207 208 static void replaceLoadOrStoreOp(vector::MaskedLoadOp loadOp, 209 vector::MaskedLoadOpAdaptor adaptor, 210 VectorType vectorTy, Value ptr, unsigned align, 211 ConversionPatternRewriter &rewriter) { 212 rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>( 213 loadOp, vectorTy, ptr, adaptor.getMask(), adaptor.getPassThru(), align); 214 } 215 216 static void replaceLoadOrStoreOp(vector::StoreOp storeOp, 217 vector::StoreOpAdaptor adaptor, 218 VectorType vectorTy, Value ptr, unsigned align, 219 ConversionPatternRewriter &rewriter) { 220 rewriter.replaceOpWithNewOp<LLVM::StoreOp>(storeOp, adaptor.getValueToStore(), 221 ptr, align); 222 } 223 224 static void replaceLoadOrStoreOp(vector::MaskedStoreOp storeOp, 225 vector::MaskedStoreOpAdaptor adaptor, 226 VectorType vectorTy, Value ptr, unsigned align, 227 ConversionPatternRewriter &rewriter) { 228 rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>( 229 storeOp, adaptor.getValueToStore(), ptr, adaptor.getMask(), align); 230 } 231 232 /// Conversion pattern for a vector.load, vector.store, vector.maskedload, and 233 /// vector.maskedstore. 234 template <class LoadOrStoreOp, class LoadOrStoreOpAdaptor> 235 class VectorLoadStoreConversion : public ConvertOpToLLVMPattern<LoadOrStoreOp> { 236 public: 237 using ConvertOpToLLVMPattern<LoadOrStoreOp>::ConvertOpToLLVMPattern; 238 239 LogicalResult 240 matchAndRewrite(LoadOrStoreOp loadOrStoreOp, 241 typename LoadOrStoreOp::Adaptor adaptor, 242 ConversionPatternRewriter &rewriter) const override { 243 // Only 1-D vectors can be lowered to LLVM. 244 VectorType vectorTy = loadOrStoreOp.getVectorType(); 245 if (vectorTy.getRank() > 1) 246 return failure(); 247 248 auto loc = loadOrStoreOp->getLoc(); 249 MemRefType memRefTy = loadOrStoreOp.getMemRefType(); 250 251 // Resolve alignment. 252 unsigned align; 253 if (failed(getMemRefAlignment(*this->getTypeConverter(), memRefTy, align))) 254 return failure(); 255 256 // Resolve address. 257 auto vtype = this->typeConverter->convertType(loadOrStoreOp.getVectorType()) 258 .template cast<VectorType>(); 259 Value dataPtr = this->getStridedElementPtr(loc, memRefTy, adaptor.getBase(), 260 adaptor.getIndices(), rewriter); 261 Value ptr = castDataPtr(rewriter, loc, dataPtr, memRefTy, vtype, 262 *this->getTypeConverter()); 263 264 replaceLoadOrStoreOp(loadOrStoreOp, adaptor, vtype, ptr, align, rewriter); 265 return success(); 266 } 267 }; 268 269 /// Conversion pattern for a vector.gather. 270 class VectorGatherOpConversion 271 : public ConvertOpToLLVMPattern<vector::GatherOp> { 272 public: 273 using ConvertOpToLLVMPattern<vector::GatherOp>::ConvertOpToLLVMPattern; 274 275 LogicalResult 276 matchAndRewrite(vector::GatherOp gather, OpAdaptor adaptor, 277 ConversionPatternRewriter &rewriter) const override { 278 MemRefType memRefType = gather.getBaseType().dyn_cast<MemRefType>(); 279 assert(memRefType && "The base should be bufferized"); 280 281 if (failed(isMemRefTypeSupported(memRefType, *this->getTypeConverter()))) 282 return failure(); 283 284 auto loc = gather->getLoc(); 285 286 // Resolve alignment. 287 unsigned align; 288 if (failed(getMemRefAlignment(*getTypeConverter(), memRefType, align))) 289 return failure(); 290 291 Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(), 292 adaptor.getIndices(), rewriter); 293 Value base = adaptor.getBase(); 294 295 auto llvmNDVectorTy = adaptor.getIndexVec().getType(); 296 // Handle the simple case of 1-D vector. 297 if (!llvmNDVectorTy.isa<LLVM::LLVMArrayType>()) { 298 auto vType = gather.getVectorType(); 299 // Resolve address. 300 Value ptrs = getIndexedPtrs(rewriter, loc, *this->getTypeConverter(), 301 memRefType, base, ptr, adaptor.getIndexVec(), 302 /*vLen=*/vType.getDimSize(0)); 303 // Replace with the gather intrinsic. 304 rewriter.replaceOpWithNewOp<LLVM::masked_gather>( 305 gather, typeConverter->convertType(vType), ptrs, adaptor.getMask(), 306 adaptor.getPassThru(), rewriter.getI32IntegerAttr(align)); 307 return success(); 308 } 309 310 LLVMTypeConverter &typeConverter = *this->getTypeConverter(); 311 auto callback = [align, memRefType, base, ptr, loc, &rewriter, 312 &typeConverter](Type llvm1DVectorTy, 313 ValueRange vectorOperands) { 314 // Resolve address. 315 Value ptrs = getIndexedPtrs( 316 rewriter, loc, typeConverter, memRefType, base, ptr, 317 /*index=*/vectorOperands[0], 318 LLVM::getVectorNumElements(llvm1DVectorTy).getFixedValue()); 319 // Create the gather intrinsic. 320 return rewriter.create<LLVM::masked_gather>( 321 loc, llvm1DVectorTy, ptrs, /*mask=*/vectorOperands[1], 322 /*passThru=*/vectorOperands[2], rewriter.getI32IntegerAttr(align)); 323 }; 324 SmallVector<Value> vectorOperands = { 325 adaptor.getIndexVec(), adaptor.getMask(), adaptor.getPassThru()}; 326 return LLVM::detail::handleMultidimensionalVectors( 327 gather, vectorOperands, *getTypeConverter(), callback, rewriter); 328 } 329 }; 330 331 /// Conversion pattern for a vector.scatter. 332 class VectorScatterOpConversion 333 : public ConvertOpToLLVMPattern<vector::ScatterOp> { 334 public: 335 using ConvertOpToLLVMPattern<vector::ScatterOp>::ConvertOpToLLVMPattern; 336 337 LogicalResult 338 matchAndRewrite(vector::ScatterOp scatter, OpAdaptor adaptor, 339 ConversionPatternRewriter &rewriter) const override { 340 auto loc = scatter->getLoc(); 341 MemRefType memRefType = scatter.getMemRefType(); 342 343 if (failed(isMemRefTypeSupported(memRefType, *this->getTypeConverter()))) 344 return failure(); 345 346 // Resolve alignment. 347 unsigned align; 348 if (failed(getMemRefAlignment(*getTypeConverter(), memRefType, align))) 349 return failure(); 350 351 // Resolve address. 352 VectorType vType = scatter.getVectorType(); 353 Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(), 354 adaptor.getIndices(), rewriter); 355 Value ptrs = getIndexedPtrs( 356 rewriter, loc, *this->getTypeConverter(), memRefType, adaptor.getBase(), 357 ptr, adaptor.getIndexVec(), /*vLen=*/vType.getDimSize(0)); 358 359 // Replace with the scatter intrinsic. 360 rewriter.replaceOpWithNewOp<LLVM::masked_scatter>( 361 scatter, adaptor.getValueToStore(), ptrs, adaptor.getMask(), 362 rewriter.getI32IntegerAttr(align)); 363 return success(); 364 } 365 }; 366 367 /// Conversion pattern for a vector.expandload. 368 class VectorExpandLoadOpConversion 369 : public ConvertOpToLLVMPattern<vector::ExpandLoadOp> { 370 public: 371 using ConvertOpToLLVMPattern<vector::ExpandLoadOp>::ConvertOpToLLVMPattern; 372 373 LogicalResult 374 matchAndRewrite(vector::ExpandLoadOp expand, OpAdaptor adaptor, 375 ConversionPatternRewriter &rewriter) const override { 376 auto loc = expand->getLoc(); 377 MemRefType memRefType = expand.getMemRefType(); 378 379 // Resolve address. 380 auto vtype = typeConverter->convertType(expand.getVectorType()); 381 Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(), 382 adaptor.getIndices(), rewriter); 383 384 rewriter.replaceOpWithNewOp<LLVM::masked_expandload>( 385 expand, vtype, ptr, adaptor.getMask(), adaptor.getPassThru()); 386 return success(); 387 } 388 }; 389 390 /// Conversion pattern for a vector.compressstore. 391 class VectorCompressStoreOpConversion 392 : public ConvertOpToLLVMPattern<vector::CompressStoreOp> { 393 public: 394 using ConvertOpToLLVMPattern<vector::CompressStoreOp>::ConvertOpToLLVMPattern; 395 396 LogicalResult 397 matchAndRewrite(vector::CompressStoreOp compress, OpAdaptor adaptor, 398 ConversionPatternRewriter &rewriter) const override { 399 auto loc = compress->getLoc(); 400 MemRefType memRefType = compress.getMemRefType(); 401 402 // Resolve address. 403 Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(), 404 adaptor.getIndices(), rewriter); 405 406 rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>( 407 compress, adaptor.getValueToStore(), ptr, adaptor.getMask()); 408 return success(); 409 } 410 }; 411 412 /// Reduction neutral classes for overloading. 413 class ReductionNeutralZero {}; 414 class ReductionNeutralIntOne {}; 415 class ReductionNeutralFPOne {}; 416 class ReductionNeutralAllOnes {}; 417 class ReductionNeutralSIntMin {}; 418 class ReductionNeutralUIntMin {}; 419 class ReductionNeutralSIntMax {}; 420 class ReductionNeutralUIntMax {}; 421 class ReductionNeutralFPMin {}; 422 class ReductionNeutralFPMax {}; 423 424 /// Create the reduction neutral zero value. 425 static Value createReductionNeutralValue(ReductionNeutralZero neutral, 426 ConversionPatternRewriter &rewriter, 427 Location loc, Type llvmType) { 428 return rewriter.create<LLVM::ConstantOp>(loc, llvmType, 429 rewriter.getZeroAttr(llvmType)); 430 } 431 432 /// Create the reduction neutral integer one value. 433 static Value createReductionNeutralValue(ReductionNeutralIntOne neutral, 434 ConversionPatternRewriter &rewriter, 435 Location loc, Type llvmType) { 436 return rewriter.create<LLVM::ConstantOp>( 437 loc, llvmType, rewriter.getIntegerAttr(llvmType, 1)); 438 } 439 440 /// Create the reduction neutral fp one value. 441 static Value createReductionNeutralValue(ReductionNeutralFPOne neutral, 442 ConversionPatternRewriter &rewriter, 443 Location loc, Type llvmType) { 444 return rewriter.create<LLVM::ConstantOp>( 445 loc, llvmType, rewriter.getFloatAttr(llvmType, 1.0)); 446 } 447 448 /// Create the reduction neutral all-ones value. 449 static Value createReductionNeutralValue(ReductionNeutralAllOnes neutral, 450 ConversionPatternRewriter &rewriter, 451 Location loc, Type llvmType) { 452 return rewriter.create<LLVM::ConstantOp>( 453 loc, llvmType, 454 rewriter.getIntegerAttr( 455 llvmType, llvm::APInt::getAllOnes(llvmType.getIntOrFloatBitWidth()))); 456 } 457 458 /// Create the reduction neutral signed int minimum value. 459 static Value createReductionNeutralValue(ReductionNeutralSIntMin neutral, 460 ConversionPatternRewriter &rewriter, 461 Location loc, Type llvmType) { 462 return rewriter.create<LLVM::ConstantOp>( 463 loc, llvmType, 464 rewriter.getIntegerAttr(llvmType, llvm::APInt::getSignedMinValue( 465 llvmType.getIntOrFloatBitWidth()))); 466 } 467 468 /// Create the reduction neutral unsigned int minimum value. 469 static Value createReductionNeutralValue(ReductionNeutralUIntMin neutral, 470 ConversionPatternRewriter &rewriter, 471 Location loc, Type llvmType) { 472 return rewriter.create<LLVM::ConstantOp>( 473 loc, llvmType, 474 rewriter.getIntegerAttr(llvmType, llvm::APInt::getMinValue( 475 llvmType.getIntOrFloatBitWidth()))); 476 } 477 478 /// Create the reduction neutral signed int maximum value. 479 static Value createReductionNeutralValue(ReductionNeutralSIntMax neutral, 480 ConversionPatternRewriter &rewriter, 481 Location loc, Type llvmType) { 482 return rewriter.create<LLVM::ConstantOp>( 483 loc, llvmType, 484 rewriter.getIntegerAttr(llvmType, llvm::APInt::getSignedMaxValue( 485 llvmType.getIntOrFloatBitWidth()))); 486 } 487 488 /// Create the reduction neutral unsigned int maximum value. 489 static Value createReductionNeutralValue(ReductionNeutralUIntMax neutral, 490 ConversionPatternRewriter &rewriter, 491 Location loc, Type llvmType) { 492 return rewriter.create<LLVM::ConstantOp>( 493 loc, llvmType, 494 rewriter.getIntegerAttr(llvmType, llvm::APInt::getMaxValue( 495 llvmType.getIntOrFloatBitWidth()))); 496 } 497 498 /// Create the reduction neutral fp minimum value. 499 static Value createReductionNeutralValue(ReductionNeutralFPMin neutral, 500 ConversionPatternRewriter &rewriter, 501 Location loc, Type llvmType) { 502 auto floatType = llvmType.cast<FloatType>(); 503 return rewriter.create<LLVM::ConstantOp>( 504 loc, llvmType, 505 rewriter.getFloatAttr( 506 llvmType, llvm::APFloat::getQNaN(floatType.getFloatSemantics(), 507 /*Negative=*/false))); 508 } 509 510 /// Create the reduction neutral fp maximum value. 511 static Value createReductionNeutralValue(ReductionNeutralFPMax neutral, 512 ConversionPatternRewriter &rewriter, 513 Location loc, Type llvmType) { 514 auto floatType = llvmType.cast<FloatType>(); 515 return rewriter.create<LLVM::ConstantOp>( 516 loc, llvmType, 517 rewriter.getFloatAttr( 518 llvmType, llvm::APFloat::getQNaN(floatType.getFloatSemantics(), 519 /*Negative=*/true))); 520 } 521 522 /// Returns `accumulator` if it has a valid value. Otherwise, creates and 523 /// returns a new accumulator value using `ReductionNeutral`. 524 template <class ReductionNeutral> 525 static Value getOrCreateAccumulator(ConversionPatternRewriter &rewriter, 526 Location loc, Type llvmType, 527 Value accumulator) { 528 if (accumulator) 529 return accumulator; 530 531 return createReductionNeutralValue(ReductionNeutral(), rewriter, loc, 532 llvmType); 533 } 534 535 /// Creates a constant value with the 1-D vector shape provided in `llvmType`. 536 /// This is used as effective vector length by some intrinsics supporting 537 /// dynamic vector lengths at runtime. 538 static Value createVectorLengthValue(ConversionPatternRewriter &rewriter, 539 Location loc, Type llvmType) { 540 VectorType vType = cast<VectorType>(llvmType); 541 auto vShape = vType.getShape(); 542 assert(vShape.size() == 1 && "Unexpected multi-dim vector type"); 543 544 return rewriter.create<LLVM::ConstantOp>( 545 loc, rewriter.getI32Type(), 546 rewriter.getIntegerAttr(rewriter.getI32Type(), vShape[0])); 547 } 548 549 /// Helper method to lower a `vector.reduction` op that performs an arithmetic 550 /// operation like add,mul, etc.. `VectorOp` is the LLVM vector intrinsic to use 551 /// and `ScalarOp` is the scalar operation used to add the accumulation value if 552 /// non-null. 553 template <class LLVMRedIntrinOp, class ScalarOp> 554 static Value createIntegerReductionArithmeticOpLowering( 555 ConversionPatternRewriter &rewriter, Location loc, Type llvmType, 556 Value vectorOperand, Value accumulator) { 557 558 Value result = rewriter.create<LLVMRedIntrinOp>(loc, llvmType, vectorOperand); 559 560 if (accumulator) 561 result = rewriter.create<ScalarOp>(loc, accumulator, result); 562 return result; 563 } 564 565 /// Helper method to lower a `vector.reduction` operation that performs 566 /// a comparison operation like `min`/`max`. `VectorOp` is the LLVM vector 567 /// intrinsic to use and `predicate` is the predicate to use to compare+combine 568 /// the accumulator value if non-null. 569 template <class LLVMRedIntrinOp> 570 static Value createIntegerReductionComparisonOpLowering( 571 ConversionPatternRewriter &rewriter, Location loc, Type llvmType, 572 Value vectorOperand, Value accumulator, LLVM::ICmpPredicate predicate) { 573 Value result = rewriter.create<LLVMRedIntrinOp>(loc, llvmType, vectorOperand); 574 if (accumulator) { 575 Value cmp = 576 rewriter.create<LLVM::ICmpOp>(loc, predicate, accumulator, result); 577 result = rewriter.create<LLVM::SelectOp>(loc, cmp, accumulator, result); 578 } 579 return result; 580 } 581 582 /// Create lowering of minf/maxf op. We cannot use llvm.maximum/llvm.minimum 583 /// with vector types. 584 static Value createMinMaxF(OpBuilder &builder, Location loc, Value lhs, 585 Value rhs, bool isMin) { 586 auto floatType = getElementTypeOrSelf(lhs.getType()).cast<FloatType>(); 587 Type i1Type = builder.getI1Type(); 588 if (auto vecType = lhs.getType().dyn_cast<VectorType>()) 589 i1Type = VectorType::get(vecType.getShape(), i1Type); 590 Value cmp = builder.create<LLVM::FCmpOp>( 591 loc, i1Type, isMin ? LLVM::FCmpPredicate::olt : LLVM::FCmpPredicate::ogt, 592 lhs, rhs); 593 Value sel = builder.create<LLVM::SelectOp>(loc, cmp, lhs, rhs); 594 Value isNan = builder.create<LLVM::FCmpOp>( 595 loc, i1Type, LLVM::FCmpPredicate::uno, lhs, rhs); 596 Value nan = builder.create<LLVM::ConstantOp>( 597 loc, lhs.getType(), 598 builder.getFloatAttr(floatType, 599 APFloat::getQNaN(floatType.getFloatSemantics()))); 600 return builder.create<LLVM::SelectOp>(loc, isNan, nan, sel); 601 } 602 603 template <class LLVMRedIntrinOp> 604 static Value createFPReductionComparisonOpLowering( 605 ConversionPatternRewriter &rewriter, Location loc, Type llvmType, 606 Value vectorOperand, Value accumulator, bool isMin) { 607 Value result = rewriter.create<LLVMRedIntrinOp>(loc, llvmType, vectorOperand); 608 609 if (accumulator) 610 result = createMinMaxF(rewriter, loc, result, accumulator, /*isMin=*/isMin); 611 612 return result; 613 } 614 615 /// Overloaded methods to lower a reduction to an llvm instrinsic that requires 616 /// a start value. This start value format spans across fp reductions without 617 /// mask and all the masked reduction intrinsics. 618 template <class LLVMVPRedIntrinOp, class ReductionNeutral> 619 static Value lowerReductionWithStartValue(ConversionPatternRewriter &rewriter, 620 Location loc, Type llvmType, 621 Value vectorOperand, 622 Value accumulator) { 623 accumulator = getOrCreateAccumulator<ReductionNeutral>(rewriter, loc, 624 llvmType, accumulator); 625 return rewriter.create<LLVMVPRedIntrinOp>(loc, llvmType, 626 /*startValue=*/accumulator, 627 vectorOperand); 628 } 629 630 template <class LLVMVPRedIntrinOp, class ReductionNeutral> 631 static Value 632 lowerReductionWithStartValue(ConversionPatternRewriter &rewriter, Location loc, 633 Type llvmType, Value vectorOperand, 634 Value accumulator, bool reassociateFPReds) { 635 accumulator = getOrCreateAccumulator<ReductionNeutral>(rewriter, loc, 636 llvmType, accumulator); 637 return rewriter.create<LLVMVPRedIntrinOp>(loc, llvmType, 638 /*startValue=*/accumulator, 639 vectorOperand, reassociateFPReds); 640 } 641 642 template <class LLVMVPRedIntrinOp, class ReductionNeutral> 643 static Value lowerReductionWithStartValue(ConversionPatternRewriter &rewriter, 644 Location loc, Type llvmType, 645 Value vectorOperand, 646 Value accumulator, Value mask) { 647 accumulator = getOrCreateAccumulator<ReductionNeutral>(rewriter, loc, 648 llvmType, accumulator); 649 Value vectorLength = 650 createVectorLengthValue(rewriter, loc, vectorOperand.getType()); 651 return rewriter.create<LLVMVPRedIntrinOp>(loc, llvmType, 652 /*startValue=*/accumulator, 653 vectorOperand, mask, vectorLength); 654 } 655 656 template <class LLVMVPRedIntrinOp, class ReductionNeutral> 657 static Value lowerReductionWithStartValue(ConversionPatternRewriter &rewriter, 658 Location loc, Type llvmType, 659 Value vectorOperand, 660 Value accumulator, Value mask, 661 bool reassociateFPReds) { 662 accumulator = getOrCreateAccumulator<ReductionNeutral>(rewriter, loc, 663 llvmType, accumulator); 664 Value vectorLength = 665 createVectorLengthValue(rewriter, loc, vectorOperand.getType()); 666 return rewriter.create<LLVMVPRedIntrinOp>(loc, llvmType, 667 /*startValue=*/accumulator, 668 vectorOperand, mask, vectorLength, 669 reassociateFPReds); 670 } 671 672 template <class LLVMIntVPRedIntrinOp, class IntReductionNeutral, 673 class LLVMFPVPRedIntrinOp, class FPReductionNeutral> 674 static Value lowerReductionWithStartValue(ConversionPatternRewriter &rewriter, 675 Location loc, Type llvmType, 676 Value vectorOperand, 677 Value accumulator, Value mask) { 678 if (llvmType.isIntOrIndex()) 679 return lowerReductionWithStartValue<LLVMIntVPRedIntrinOp, 680 IntReductionNeutral>( 681 rewriter, loc, llvmType, vectorOperand, accumulator, mask); 682 683 // FP dispatch. 684 return lowerReductionWithStartValue<LLVMFPVPRedIntrinOp, FPReductionNeutral>( 685 rewriter, loc, llvmType, vectorOperand, accumulator, mask); 686 } 687 688 /// Conversion pattern for all vector reductions. 689 class VectorReductionOpConversion 690 : public ConvertOpToLLVMPattern<vector::ReductionOp> { 691 public: 692 explicit VectorReductionOpConversion(LLVMTypeConverter &typeConv, 693 bool reassociateFPRed) 694 : ConvertOpToLLVMPattern<vector::ReductionOp>(typeConv), 695 reassociateFPReductions(reassociateFPRed) {} 696 697 LogicalResult 698 matchAndRewrite(vector::ReductionOp reductionOp, OpAdaptor adaptor, 699 ConversionPatternRewriter &rewriter) const override { 700 auto kind = reductionOp.getKind(); 701 Type eltType = reductionOp.getDest().getType(); 702 Type llvmType = typeConverter->convertType(eltType); 703 Value operand = adaptor.getVector(); 704 Value acc = adaptor.getAcc(); 705 Location loc = reductionOp.getLoc(); 706 707 if (eltType.isIntOrIndex()) { 708 // Integer reductions: add/mul/min/max/and/or/xor. 709 Value result; 710 switch (kind) { 711 case vector::CombiningKind::ADD: 712 result = 713 createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_add, 714 LLVM::AddOp>( 715 rewriter, loc, llvmType, operand, acc); 716 break; 717 case vector::CombiningKind::MUL: 718 result = 719 createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_mul, 720 LLVM::MulOp>( 721 rewriter, loc, llvmType, operand, acc); 722 break; 723 case vector::CombiningKind::MINUI: 724 result = createIntegerReductionComparisonOpLowering< 725 LLVM::vector_reduce_umin>(rewriter, loc, llvmType, operand, acc, 726 LLVM::ICmpPredicate::ule); 727 break; 728 case vector::CombiningKind::MINSI: 729 result = createIntegerReductionComparisonOpLowering< 730 LLVM::vector_reduce_smin>(rewriter, loc, llvmType, operand, acc, 731 LLVM::ICmpPredicate::sle); 732 break; 733 case vector::CombiningKind::MAXUI: 734 result = createIntegerReductionComparisonOpLowering< 735 LLVM::vector_reduce_umax>(rewriter, loc, llvmType, operand, acc, 736 LLVM::ICmpPredicate::uge); 737 break; 738 case vector::CombiningKind::MAXSI: 739 result = createIntegerReductionComparisonOpLowering< 740 LLVM::vector_reduce_smax>(rewriter, loc, llvmType, operand, acc, 741 LLVM::ICmpPredicate::sge); 742 break; 743 case vector::CombiningKind::AND: 744 result = 745 createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_and, 746 LLVM::AndOp>( 747 rewriter, loc, llvmType, operand, acc); 748 break; 749 case vector::CombiningKind::OR: 750 result = 751 createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_or, 752 LLVM::OrOp>( 753 rewriter, loc, llvmType, operand, acc); 754 break; 755 case vector::CombiningKind::XOR: 756 result = 757 createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_xor, 758 LLVM::XOrOp>( 759 rewriter, loc, llvmType, operand, acc); 760 break; 761 default: 762 return failure(); 763 } 764 rewriter.replaceOp(reductionOp, result); 765 766 return success(); 767 } 768 769 if (!eltType.isa<FloatType>()) 770 return failure(); 771 772 // Floating-point reductions: add/mul/min/max 773 Value result; 774 if (kind == vector::CombiningKind::ADD) { 775 result = lowerReductionWithStartValue<LLVM::vector_reduce_fadd, 776 ReductionNeutralZero>( 777 rewriter, loc, llvmType, operand, acc, reassociateFPReductions); 778 } else if (kind == vector::CombiningKind::MUL) { 779 result = lowerReductionWithStartValue<LLVM::vector_reduce_fmul, 780 ReductionNeutralFPOne>( 781 rewriter, loc, llvmType, operand, acc, reassociateFPReductions); 782 } else if (kind == vector::CombiningKind::MINF) { 783 // FIXME: MLIR's 'minf' and LLVM's 'vector_reduce_fmin' do not handle 784 // NaNs/-0.0/+0.0 in the same way. 785 result = createFPReductionComparisonOpLowering<LLVM::vector_reduce_fmin>( 786 rewriter, loc, llvmType, operand, acc, 787 /*isMin=*/true); 788 } else if (kind == vector::CombiningKind::MAXF) { 789 // FIXME: MLIR's 'maxf' and LLVM's 'vector_reduce_fmax' do not handle 790 // NaNs/-0.0/+0.0 in the same way. 791 result = createFPReductionComparisonOpLowering<LLVM::vector_reduce_fmax>( 792 rewriter, loc, llvmType, operand, acc, 793 /*isMin=*/false); 794 } else 795 return failure(); 796 797 rewriter.replaceOp(reductionOp, result); 798 return success(); 799 } 800 801 private: 802 const bool reassociateFPReductions; 803 }; 804 805 /// Base class to convert a `vector.mask` operation while matching traits 806 /// of the maskable operation nested inside. A `VectorMaskOpConversionBase` 807 /// instance matches against a `vector.mask` operation. The `matchAndRewrite` 808 /// method performs a second match against the maskable operation `MaskedOp`. 809 /// Finally, it invokes the virtual method `matchAndRewriteMaskableOp` to be 810 /// implemented by the concrete conversion classes. This method can match 811 /// against specific traits of the `vector.mask` and the maskable operation. It 812 /// must replace the `vector.mask` operation. 813 template <class MaskedOp> 814 class VectorMaskOpConversionBase 815 : public ConvertOpToLLVMPattern<vector::MaskOp> { 816 public: 817 using ConvertOpToLLVMPattern<vector::MaskOp>::ConvertOpToLLVMPattern; 818 819 LogicalResult 820 matchAndRewrite(vector::MaskOp maskOp, OpAdaptor adaptor, 821 ConversionPatternRewriter &rewriter) const override final { 822 // Match against the maskable operation kind. 823 Operation *maskableOp = maskOp.getMaskableOp(); 824 if (!isa<MaskedOp>(maskableOp)) 825 return failure(); 826 return matchAndRewriteMaskableOp( 827 maskOp, cast<MaskedOp>(maskOp.getMaskableOp()), rewriter); 828 } 829 830 protected: 831 virtual LogicalResult 832 matchAndRewriteMaskableOp(vector::MaskOp maskOp, 833 vector::MaskableOpInterface maskableOp, 834 ConversionPatternRewriter &rewriter) const = 0; 835 }; 836 837 class MaskedReductionOpConversion 838 : public VectorMaskOpConversionBase<vector::ReductionOp> { 839 840 public: 841 using VectorMaskOpConversionBase< 842 vector::ReductionOp>::VectorMaskOpConversionBase; 843 844 virtual LogicalResult matchAndRewriteMaskableOp( 845 vector::MaskOp maskOp, MaskableOpInterface maskableOp, 846 ConversionPatternRewriter &rewriter) const override { 847 auto reductionOp = cast<ReductionOp>(maskableOp.getOperation()); 848 auto kind = reductionOp.getKind(); 849 Type eltType = reductionOp.getDest().getType(); 850 Type llvmType = typeConverter->convertType(eltType); 851 Value operand = reductionOp.getVector(); 852 Value acc = reductionOp.getAcc(); 853 Location loc = reductionOp.getLoc(); 854 855 Value result; 856 switch (kind) { 857 case vector::CombiningKind::ADD: 858 result = lowerReductionWithStartValue< 859 LLVM::VPReduceAddOp, ReductionNeutralZero, LLVM::VPReduceFAddOp, 860 ReductionNeutralZero>(rewriter, loc, llvmType, operand, acc, 861 maskOp.getMask()); 862 break; 863 case vector::CombiningKind::MUL: 864 result = lowerReductionWithStartValue< 865 LLVM::VPReduceMulOp, ReductionNeutralIntOne, LLVM::VPReduceFMulOp, 866 ReductionNeutralFPOne>(rewriter, loc, llvmType, operand, acc, 867 maskOp.getMask()); 868 break; 869 case vector::CombiningKind::MINUI: 870 result = lowerReductionWithStartValue<LLVM::VPReduceUMinOp, 871 ReductionNeutralUIntMax>( 872 rewriter, loc, llvmType, operand, acc, maskOp.getMask()); 873 break; 874 case vector::CombiningKind::MINSI: 875 result = lowerReductionWithStartValue<LLVM::VPReduceSMinOp, 876 ReductionNeutralSIntMax>( 877 rewriter, loc, llvmType, operand, acc, maskOp.getMask()); 878 break; 879 case vector::CombiningKind::MAXUI: 880 result = lowerReductionWithStartValue<LLVM::VPReduceUMaxOp, 881 ReductionNeutralUIntMin>( 882 rewriter, loc, llvmType, operand, acc, maskOp.getMask()); 883 break; 884 case vector::CombiningKind::MAXSI: 885 result = lowerReductionWithStartValue<LLVM::VPReduceSMaxOp, 886 ReductionNeutralSIntMin>( 887 rewriter, loc, llvmType, operand, acc, maskOp.getMask()); 888 break; 889 case vector::CombiningKind::AND: 890 result = lowerReductionWithStartValue<LLVM::VPReduceAndOp, 891 ReductionNeutralAllOnes>( 892 rewriter, loc, llvmType, operand, acc, maskOp.getMask()); 893 break; 894 case vector::CombiningKind::OR: 895 result = lowerReductionWithStartValue<LLVM::VPReduceOrOp, 896 ReductionNeutralZero>( 897 rewriter, loc, llvmType, operand, acc, maskOp.getMask()); 898 break; 899 case vector::CombiningKind::XOR: 900 result = lowerReductionWithStartValue<LLVM::VPReduceXorOp, 901 ReductionNeutralZero>( 902 rewriter, loc, llvmType, operand, acc, maskOp.getMask()); 903 break; 904 case vector::CombiningKind::MINF: 905 // FIXME: MLIR's 'minf' and LLVM's 'vector_reduce_fmin' do not handle 906 // NaNs/-0.0/+0.0 in the same way. 907 result = lowerReductionWithStartValue<LLVM::VPReduceFMinOp, 908 ReductionNeutralFPMax>( 909 rewriter, loc, llvmType, operand, acc, maskOp.getMask()); 910 break; 911 case vector::CombiningKind::MAXF: 912 // FIXME: MLIR's 'minf' and LLVM's 'vector_reduce_fmin' do not handle 913 // NaNs/-0.0/+0.0 in the same way. 914 result = lowerReductionWithStartValue<LLVM::VPReduceFMaxOp, 915 ReductionNeutralFPMin>( 916 rewriter, loc, llvmType, operand, acc, maskOp.getMask()); 917 break; 918 } 919 920 // Replace `vector.mask` operation altogether. 921 rewriter.replaceOp(maskOp, result); 922 return success(); 923 } 924 }; 925 926 class VectorShuffleOpConversion 927 : public ConvertOpToLLVMPattern<vector::ShuffleOp> { 928 public: 929 using ConvertOpToLLVMPattern<vector::ShuffleOp>::ConvertOpToLLVMPattern; 930 931 LogicalResult 932 matchAndRewrite(vector::ShuffleOp shuffleOp, OpAdaptor adaptor, 933 ConversionPatternRewriter &rewriter) const override { 934 auto loc = shuffleOp->getLoc(); 935 auto v1Type = shuffleOp.getV1VectorType(); 936 auto v2Type = shuffleOp.getV2VectorType(); 937 auto vectorType = shuffleOp.getResultVectorType(); 938 Type llvmType = typeConverter->convertType(vectorType); 939 auto maskArrayAttr = shuffleOp.getMask(); 940 941 // Bail if result type cannot be lowered. 942 if (!llvmType) 943 return failure(); 944 945 // Get rank and dimension sizes. 946 int64_t rank = vectorType.getRank(); 947 #ifndef NDEBUG 948 bool wellFormed0DCase = 949 v1Type.getRank() == 0 && v2Type.getRank() == 0 && rank == 1; 950 bool wellFormedNDCase = 951 v1Type.getRank() == rank && v2Type.getRank() == rank; 952 assert((wellFormed0DCase || wellFormedNDCase) && "op is not well-formed"); 953 #endif 954 955 // For rank 0 and 1, where both operands have *exactly* the same vector 956 // type, there is direct shuffle support in LLVM. Use it! 957 if (rank <= 1 && v1Type == v2Type) { 958 Value llvmShuffleOp = rewriter.create<LLVM::ShuffleVectorOp>( 959 loc, adaptor.getV1(), adaptor.getV2(), 960 LLVM::convertArrayToIndices<int32_t>(maskArrayAttr)); 961 rewriter.replaceOp(shuffleOp, llvmShuffleOp); 962 return success(); 963 } 964 965 // For all other cases, insert the individual values individually. 966 int64_t v1Dim = v1Type.getDimSize(0); 967 Type eltType; 968 if (auto arrayType = llvmType.dyn_cast<LLVM::LLVMArrayType>()) 969 eltType = arrayType.getElementType(); 970 else 971 eltType = llvmType.cast<VectorType>().getElementType(); 972 Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType); 973 int64_t insPos = 0; 974 for (const auto &en : llvm::enumerate(maskArrayAttr)) { 975 int64_t extPos = en.value().cast<IntegerAttr>().getInt(); 976 Value value = adaptor.getV1(); 977 if (extPos >= v1Dim) { 978 extPos -= v1Dim; 979 value = adaptor.getV2(); 980 } 981 Value extract = extractOne(rewriter, *getTypeConverter(), loc, value, 982 eltType, rank, extPos); 983 insert = insertOne(rewriter, *getTypeConverter(), loc, insert, extract, 984 llvmType, rank, insPos++); 985 } 986 rewriter.replaceOp(shuffleOp, insert); 987 return success(); 988 } 989 }; 990 991 class VectorExtractElementOpConversion 992 : public ConvertOpToLLVMPattern<vector::ExtractElementOp> { 993 public: 994 using ConvertOpToLLVMPattern< 995 vector::ExtractElementOp>::ConvertOpToLLVMPattern; 996 997 LogicalResult 998 matchAndRewrite(vector::ExtractElementOp extractEltOp, OpAdaptor adaptor, 999 ConversionPatternRewriter &rewriter) const override { 1000 auto vectorType = extractEltOp.getSourceVectorType(); 1001 auto llvmType = typeConverter->convertType(vectorType.getElementType()); 1002 1003 // Bail if result type cannot be lowered. 1004 if (!llvmType) 1005 return failure(); 1006 1007 if (vectorType.getRank() == 0) { 1008 Location loc = extractEltOp.getLoc(); 1009 auto idxType = rewriter.getIndexType(); 1010 auto zero = rewriter.create<LLVM::ConstantOp>( 1011 loc, typeConverter->convertType(idxType), 1012 rewriter.getIntegerAttr(idxType, 0)); 1013 rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>( 1014 extractEltOp, llvmType, adaptor.getVector(), zero); 1015 return success(); 1016 } 1017 1018 rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>( 1019 extractEltOp, llvmType, adaptor.getVector(), adaptor.getPosition()); 1020 return success(); 1021 } 1022 }; 1023 1024 class VectorExtractOpConversion 1025 : public ConvertOpToLLVMPattern<vector::ExtractOp> { 1026 public: 1027 using ConvertOpToLLVMPattern<vector::ExtractOp>::ConvertOpToLLVMPattern; 1028 1029 LogicalResult 1030 matchAndRewrite(vector::ExtractOp extractOp, OpAdaptor adaptor, 1031 ConversionPatternRewriter &rewriter) const override { 1032 auto loc = extractOp->getLoc(); 1033 auto resultType = extractOp.getResult().getType(); 1034 auto llvmResultType = typeConverter->convertType(resultType); 1035 auto positionArrayAttr = extractOp.getPosition(); 1036 1037 // Bail if result type cannot be lowered. 1038 if (!llvmResultType) 1039 return failure(); 1040 1041 // Extract entire vector. Should be handled by folder, but just to be safe. 1042 if (positionArrayAttr.empty()) { 1043 rewriter.replaceOp(extractOp, adaptor.getVector()); 1044 return success(); 1045 } 1046 1047 // One-shot extraction of vector from array (only requires extractvalue). 1048 if (resultType.isa<VectorType>()) { 1049 SmallVector<int64_t> indices; 1050 for (auto idx : positionArrayAttr.getAsRange<IntegerAttr>()) 1051 indices.push_back(idx.getInt()); 1052 Value extracted = rewriter.create<LLVM::ExtractValueOp>( 1053 loc, adaptor.getVector(), indices); 1054 rewriter.replaceOp(extractOp, extracted); 1055 return success(); 1056 } 1057 1058 // Potential extraction of 1-D vector from array. 1059 Value extracted = adaptor.getVector(); 1060 auto positionAttrs = positionArrayAttr.getValue(); 1061 if (positionAttrs.size() > 1) { 1062 SmallVector<int64_t> nMinusOnePosition; 1063 for (auto idx : positionAttrs.drop_back()) 1064 nMinusOnePosition.push_back(idx.cast<IntegerAttr>().getInt()); 1065 extracted = rewriter.create<LLVM::ExtractValueOp>(loc, extracted, 1066 nMinusOnePosition); 1067 } 1068 1069 // Remaining extraction of element from 1-D LLVM vector 1070 auto position = positionAttrs.back().cast<IntegerAttr>(); 1071 auto i64Type = IntegerType::get(rewriter.getContext(), 64); 1072 auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); 1073 extracted = 1074 rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant); 1075 rewriter.replaceOp(extractOp, extracted); 1076 1077 return success(); 1078 } 1079 }; 1080 1081 /// Conversion pattern that turns a vector.fma on a 1-D vector 1082 /// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion. 1083 /// This does not match vectors of n >= 2 rank. 1084 /// 1085 /// Example: 1086 /// ``` 1087 /// vector.fma %a, %a, %a : vector<8xf32> 1088 /// ``` 1089 /// is converted to: 1090 /// ``` 1091 /// llvm.intr.fmuladd %va, %va, %va: 1092 /// (!llvm."<8 x f32>">, !llvm<"<8 x f32>">, !llvm<"<8 x f32>">) 1093 /// -> !llvm."<8 x f32>"> 1094 /// ``` 1095 class VectorFMAOp1DConversion : public ConvertOpToLLVMPattern<vector::FMAOp> { 1096 public: 1097 using ConvertOpToLLVMPattern<vector::FMAOp>::ConvertOpToLLVMPattern; 1098 1099 LogicalResult 1100 matchAndRewrite(vector::FMAOp fmaOp, OpAdaptor adaptor, 1101 ConversionPatternRewriter &rewriter) const override { 1102 VectorType vType = fmaOp.getVectorType(); 1103 if (vType.getRank() > 1) 1104 return failure(); 1105 1106 rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>( 1107 fmaOp, adaptor.getLhs(), adaptor.getRhs(), adaptor.getAcc()); 1108 return success(); 1109 } 1110 }; 1111 1112 class VectorInsertElementOpConversion 1113 : public ConvertOpToLLVMPattern<vector::InsertElementOp> { 1114 public: 1115 using ConvertOpToLLVMPattern<vector::InsertElementOp>::ConvertOpToLLVMPattern; 1116 1117 LogicalResult 1118 matchAndRewrite(vector::InsertElementOp insertEltOp, OpAdaptor adaptor, 1119 ConversionPatternRewriter &rewriter) const override { 1120 auto vectorType = insertEltOp.getDestVectorType(); 1121 auto llvmType = typeConverter->convertType(vectorType); 1122 1123 // Bail if result type cannot be lowered. 1124 if (!llvmType) 1125 return failure(); 1126 1127 if (vectorType.getRank() == 0) { 1128 Location loc = insertEltOp.getLoc(); 1129 auto idxType = rewriter.getIndexType(); 1130 auto zero = rewriter.create<LLVM::ConstantOp>( 1131 loc, typeConverter->convertType(idxType), 1132 rewriter.getIntegerAttr(idxType, 0)); 1133 rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( 1134 insertEltOp, llvmType, adaptor.getDest(), adaptor.getSource(), zero); 1135 return success(); 1136 } 1137 1138 rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( 1139 insertEltOp, llvmType, adaptor.getDest(), adaptor.getSource(), 1140 adaptor.getPosition()); 1141 return success(); 1142 } 1143 }; 1144 1145 class VectorInsertOpConversion 1146 : public ConvertOpToLLVMPattern<vector::InsertOp> { 1147 public: 1148 using ConvertOpToLLVMPattern<vector::InsertOp>::ConvertOpToLLVMPattern; 1149 1150 LogicalResult 1151 matchAndRewrite(vector::InsertOp insertOp, OpAdaptor adaptor, 1152 ConversionPatternRewriter &rewriter) const override { 1153 auto loc = insertOp->getLoc(); 1154 auto sourceType = insertOp.getSourceType(); 1155 auto destVectorType = insertOp.getDestVectorType(); 1156 auto llvmResultType = typeConverter->convertType(destVectorType); 1157 auto positionArrayAttr = insertOp.getPosition(); 1158 1159 // Bail if result type cannot be lowered. 1160 if (!llvmResultType) 1161 return failure(); 1162 1163 // Overwrite entire vector with value. Should be handled by folder, but 1164 // just to be safe. 1165 if (positionArrayAttr.empty()) { 1166 rewriter.replaceOp(insertOp, adaptor.getSource()); 1167 return success(); 1168 } 1169 1170 // One-shot insertion of a vector into an array (only requires insertvalue). 1171 if (sourceType.isa<VectorType>()) { 1172 Value inserted = rewriter.create<LLVM::InsertValueOp>( 1173 loc, adaptor.getDest(), adaptor.getSource(), 1174 LLVM::convertArrayToIndices(positionArrayAttr)); 1175 rewriter.replaceOp(insertOp, inserted); 1176 return success(); 1177 } 1178 1179 // Potential extraction of 1-D vector from array. 1180 Value extracted = adaptor.getDest(); 1181 auto positionAttrs = positionArrayAttr.getValue(); 1182 auto position = positionAttrs.back().cast<IntegerAttr>(); 1183 auto oneDVectorType = destVectorType; 1184 if (positionAttrs.size() > 1) { 1185 oneDVectorType = reducedVectorTypeBack(destVectorType); 1186 extracted = rewriter.create<LLVM::ExtractValueOp>( 1187 loc, extracted, 1188 LLVM::convertArrayToIndices(positionAttrs.drop_back())); 1189 } 1190 1191 // Insertion of an element into a 1-D LLVM vector. 1192 auto i64Type = IntegerType::get(rewriter.getContext(), 64); 1193 auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); 1194 Value inserted = rewriter.create<LLVM::InsertElementOp>( 1195 loc, typeConverter->convertType(oneDVectorType), extracted, 1196 adaptor.getSource(), constant); 1197 1198 // Potential insertion of resulting 1-D vector into array. 1199 if (positionAttrs.size() > 1) { 1200 inserted = rewriter.create<LLVM::InsertValueOp>( 1201 loc, adaptor.getDest(), inserted, 1202 LLVM::convertArrayToIndices(positionAttrs.drop_back())); 1203 } 1204 1205 rewriter.replaceOp(insertOp, inserted); 1206 return success(); 1207 } 1208 }; 1209 1210 /// Lower vector.scalable.insert ops to LLVM vector.insert 1211 struct VectorScalableInsertOpLowering 1212 : public ConvertOpToLLVMPattern<vector::ScalableInsertOp> { 1213 using ConvertOpToLLVMPattern< 1214 vector::ScalableInsertOp>::ConvertOpToLLVMPattern; 1215 1216 LogicalResult 1217 matchAndRewrite(vector::ScalableInsertOp insOp, OpAdaptor adaptor, 1218 ConversionPatternRewriter &rewriter) const override { 1219 rewriter.replaceOpWithNewOp<LLVM::vector_insert>( 1220 insOp, adaptor.getSource(), adaptor.getDest(), adaptor.getPos()); 1221 return success(); 1222 } 1223 }; 1224 1225 /// Lower vector.scalable.extract ops to LLVM vector.extract 1226 struct VectorScalableExtractOpLowering 1227 : public ConvertOpToLLVMPattern<vector::ScalableExtractOp> { 1228 using ConvertOpToLLVMPattern< 1229 vector::ScalableExtractOp>::ConvertOpToLLVMPattern; 1230 1231 LogicalResult 1232 matchAndRewrite(vector::ScalableExtractOp extOp, OpAdaptor adaptor, 1233 ConversionPatternRewriter &rewriter) const override { 1234 rewriter.replaceOpWithNewOp<LLVM::vector_extract>( 1235 extOp, typeConverter->convertType(extOp.getResultVectorType()), 1236 adaptor.getSource(), adaptor.getPos()); 1237 return success(); 1238 } 1239 }; 1240 1241 /// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1. 1242 /// 1243 /// Example: 1244 /// ``` 1245 /// %d = vector.fma %a, %b, %c : vector<2x4xf32> 1246 /// ``` 1247 /// is rewritten into: 1248 /// ``` 1249 /// %r = splat %f0: vector<2x4xf32> 1250 /// %va = vector.extractvalue %a[0] : vector<2x4xf32> 1251 /// %vb = vector.extractvalue %b[0] : vector<2x4xf32> 1252 /// %vc = vector.extractvalue %c[0] : vector<2x4xf32> 1253 /// %vd = vector.fma %va, %vb, %vc : vector<4xf32> 1254 /// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32> 1255 /// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32> 1256 /// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32> 1257 /// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32> 1258 /// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32> 1259 /// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32> 1260 /// // %r3 holds the final value. 1261 /// ``` 1262 class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> { 1263 public: 1264 using OpRewritePattern<FMAOp>::OpRewritePattern; 1265 1266 void initialize() { 1267 // This pattern recursively unpacks one dimension at a time. The recursion 1268 // bounded as the rank is strictly decreasing. 1269 setHasBoundedRewriteRecursion(); 1270 } 1271 1272 LogicalResult matchAndRewrite(FMAOp op, 1273 PatternRewriter &rewriter) const override { 1274 auto vType = op.getVectorType(); 1275 if (vType.getRank() < 2) 1276 return failure(); 1277 1278 auto loc = op.getLoc(); 1279 auto elemType = vType.getElementType(); 1280 Value zero = rewriter.create<arith::ConstantOp>( 1281 loc, elemType, rewriter.getZeroAttr(elemType)); 1282 Value desc = rewriter.create<vector::SplatOp>(loc, vType, zero); 1283 for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) { 1284 Value extrLHS = rewriter.create<ExtractOp>(loc, op.getLhs(), i); 1285 Value extrRHS = rewriter.create<ExtractOp>(loc, op.getRhs(), i); 1286 Value extrACC = rewriter.create<ExtractOp>(loc, op.getAcc(), i); 1287 Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC); 1288 desc = rewriter.create<InsertOp>(loc, fma, desc, i); 1289 } 1290 rewriter.replaceOp(op, desc); 1291 return success(); 1292 } 1293 }; 1294 1295 /// Returns the strides if the memory underlying `memRefType` has a contiguous 1296 /// static layout. 1297 static std::optional<SmallVector<int64_t, 4>> 1298 computeContiguousStrides(MemRefType memRefType) { 1299 int64_t offset; 1300 SmallVector<int64_t, 4> strides; 1301 if (failed(getStridesAndOffset(memRefType, strides, offset))) 1302 return std::nullopt; 1303 if (!strides.empty() && strides.back() != 1) 1304 return std::nullopt; 1305 // If no layout or identity layout, this is contiguous by definition. 1306 if (memRefType.getLayout().isIdentity()) 1307 return strides; 1308 1309 // Otherwise, we must determine contiguity form shapes. This can only ever 1310 // work in static cases because MemRefType is underspecified to represent 1311 // contiguous dynamic shapes in other ways than with just empty/identity 1312 // layout. 1313 auto sizes = memRefType.getShape(); 1314 for (int index = 0, e = strides.size() - 1; index < e; ++index) { 1315 if (ShapedType::isDynamic(sizes[index + 1]) || 1316 ShapedType::isDynamic(strides[index]) || 1317 ShapedType::isDynamic(strides[index + 1])) 1318 return std::nullopt; 1319 if (strides[index] != strides[index + 1] * sizes[index + 1]) 1320 return std::nullopt; 1321 } 1322 return strides; 1323 } 1324 1325 class VectorTypeCastOpConversion 1326 : public ConvertOpToLLVMPattern<vector::TypeCastOp> { 1327 public: 1328 using ConvertOpToLLVMPattern<vector::TypeCastOp>::ConvertOpToLLVMPattern; 1329 1330 LogicalResult 1331 matchAndRewrite(vector::TypeCastOp castOp, OpAdaptor adaptor, 1332 ConversionPatternRewriter &rewriter) const override { 1333 auto loc = castOp->getLoc(); 1334 MemRefType sourceMemRefType = 1335 castOp.getOperand().getType().cast<MemRefType>(); 1336 MemRefType targetMemRefType = castOp.getType(); 1337 1338 // Only static shape casts supported atm. 1339 if (!sourceMemRefType.hasStaticShape() || 1340 !targetMemRefType.hasStaticShape()) 1341 return failure(); 1342 1343 auto llvmSourceDescriptorTy = 1344 adaptor.getOperands()[0].getType().dyn_cast<LLVM::LLVMStructType>(); 1345 if (!llvmSourceDescriptorTy) 1346 return failure(); 1347 MemRefDescriptor sourceMemRef(adaptor.getOperands()[0]); 1348 1349 auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType) 1350 .dyn_cast_or_null<LLVM::LLVMStructType>(); 1351 if (!llvmTargetDescriptorTy) 1352 return failure(); 1353 1354 // Only contiguous source buffers supported atm. 1355 auto sourceStrides = computeContiguousStrides(sourceMemRefType); 1356 if (!sourceStrides) 1357 return failure(); 1358 auto targetStrides = computeContiguousStrides(targetMemRefType); 1359 if (!targetStrides) 1360 return failure(); 1361 // Only support static strides for now, regardless of contiguity. 1362 if (llvm::any_of(*targetStrides, ShapedType::isDynamic)) 1363 return failure(); 1364 1365 auto int64Ty = IntegerType::get(rewriter.getContext(), 64); 1366 1367 // Create descriptor. 1368 auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy); 1369 Type llvmTargetElementTy = desc.getElementPtrType(); 1370 // Set allocated ptr. 1371 Value allocated = sourceMemRef.allocatedPtr(rewriter, loc); 1372 if (!getTypeConverter()->useOpaquePointers()) 1373 allocated = 1374 rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated); 1375 desc.setAllocatedPtr(rewriter, loc, allocated); 1376 1377 // Set aligned ptr. 1378 Value ptr = sourceMemRef.alignedPtr(rewriter, loc); 1379 if (!getTypeConverter()->useOpaquePointers()) 1380 ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr); 1381 1382 desc.setAlignedPtr(rewriter, loc, ptr); 1383 // Fill offset 0. 1384 auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0); 1385 auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr); 1386 desc.setOffset(rewriter, loc, zero); 1387 1388 // Fill size and stride descriptors in memref. 1389 for (const auto &indexedSize : 1390 llvm::enumerate(targetMemRefType.getShape())) { 1391 int64_t index = indexedSize.index(); 1392 auto sizeAttr = 1393 rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value()); 1394 auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr); 1395 desc.setSize(rewriter, loc, index, size); 1396 auto strideAttr = rewriter.getIntegerAttr(rewriter.getIndexType(), 1397 (*targetStrides)[index]); 1398 auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr); 1399 desc.setStride(rewriter, loc, index, stride); 1400 } 1401 1402 rewriter.replaceOp(castOp, {desc}); 1403 return success(); 1404 } 1405 }; 1406 1407 /// Conversion pattern for a `vector.create_mask` (1-D scalable vectors only). 1408 /// Non-scalable versions of this operation are handled in Vector Transforms. 1409 class VectorCreateMaskOpRewritePattern 1410 : public OpRewritePattern<vector::CreateMaskOp> { 1411 public: 1412 explicit VectorCreateMaskOpRewritePattern(MLIRContext *context, 1413 bool enableIndexOpt) 1414 : OpRewritePattern<vector::CreateMaskOp>(context), 1415 force32BitVectorIndices(enableIndexOpt) {} 1416 1417 LogicalResult matchAndRewrite(vector::CreateMaskOp op, 1418 PatternRewriter &rewriter) const override { 1419 auto dstType = op.getType(); 1420 if (dstType.getRank() != 1 || !dstType.cast<VectorType>().isScalable()) 1421 return failure(); 1422 IntegerType idxType = 1423 force32BitVectorIndices ? rewriter.getI32Type() : rewriter.getI64Type(); 1424 auto loc = op->getLoc(); 1425 Value indices = rewriter.create<LLVM::StepVectorOp>( 1426 loc, LLVM::getVectorType(idxType, dstType.getShape()[0], 1427 /*isScalable=*/true)); 1428 auto bound = getValueOrCreateCastToIndexLike(rewriter, loc, idxType, 1429 op.getOperand(0)); 1430 Value bounds = rewriter.create<SplatOp>(loc, indices.getType(), bound); 1431 Value comp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, 1432 indices, bounds); 1433 rewriter.replaceOp(op, comp); 1434 return success(); 1435 } 1436 1437 private: 1438 const bool force32BitVectorIndices; 1439 }; 1440 1441 class VectorPrintOpConversion : public ConvertOpToLLVMPattern<vector::PrintOp> { 1442 public: 1443 using ConvertOpToLLVMPattern<vector::PrintOp>::ConvertOpToLLVMPattern; 1444 1445 // Proof-of-concept lowering implementation that relies on a small 1446 // runtime support library, which only needs to provide a few 1447 // printing methods (single value for all data types, opening/closing 1448 // bracket, comma, newline). The lowering fully unrolls a vector 1449 // in terms of these elementary printing operations. The advantage 1450 // of this approach is that the library can remain unaware of all 1451 // low-level implementation details of vectors while still supporting 1452 // output of any shaped and dimensioned vector. Due to full unrolling, 1453 // this approach is less suited for very large vectors though. 1454 // 1455 // TODO: rely solely on libc in future? something else? 1456 // 1457 LogicalResult 1458 matchAndRewrite(vector::PrintOp printOp, OpAdaptor adaptor, 1459 ConversionPatternRewriter &rewriter) const override { 1460 Type printType = printOp.getPrintType(); 1461 1462 if (typeConverter->convertType(printType) == nullptr) 1463 return failure(); 1464 1465 // Make sure element type has runtime support. 1466 PrintConversion conversion = PrintConversion::None; 1467 VectorType vectorType = printType.dyn_cast<VectorType>(); 1468 Type eltType = vectorType ? vectorType.getElementType() : printType; 1469 Operation *printer; 1470 if (eltType.isF32()) { 1471 printer = 1472 LLVM::lookupOrCreatePrintF32Fn(printOp->getParentOfType<ModuleOp>()); 1473 } else if (eltType.isF64()) { 1474 printer = 1475 LLVM::lookupOrCreatePrintF64Fn(printOp->getParentOfType<ModuleOp>()); 1476 } else if (eltType.isIndex()) { 1477 printer = 1478 LLVM::lookupOrCreatePrintU64Fn(printOp->getParentOfType<ModuleOp>()); 1479 } else if (auto intTy = eltType.dyn_cast<IntegerType>()) { 1480 // Integers need a zero or sign extension on the operand 1481 // (depending on the source type) as well as a signed or 1482 // unsigned print method. Up to 64-bit is supported. 1483 unsigned width = intTy.getWidth(); 1484 if (intTy.isUnsigned()) { 1485 if (width <= 64) { 1486 if (width < 64) 1487 conversion = PrintConversion::ZeroExt64; 1488 printer = LLVM::lookupOrCreatePrintU64Fn( 1489 printOp->getParentOfType<ModuleOp>()); 1490 } else { 1491 return failure(); 1492 } 1493 } else { 1494 assert(intTy.isSignless() || intTy.isSigned()); 1495 if (width <= 64) { 1496 // Note that we *always* zero extend booleans (1-bit integers), 1497 // so that true/false is printed as 1/0 rather than -1/0. 1498 if (width == 1) 1499 conversion = PrintConversion::ZeroExt64; 1500 else if (width < 64) 1501 conversion = PrintConversion::SignExt64; 1502 printer = LLVM::lookupOrCreatePrintI64Fn( 1503 printOp->getParentOfType<ModuleOp>()); 1504 } else { 1505 return failure(); 1506 } 1507 } 1508 } else { 1509 return failure(); 1510 } 1511 1512 // Unroll vector into elementary print calls. 1513 int64_t rank = vectorType ? vectorType.getRank() : 0; 1514 Type type = vectorType ? vectorType : eltType; 1515 emitRanks(rewriter, printOp, adaptor.getSource(), type, printer, rank, 1516 conversion); 1517 emitCall(rewriter, printOp->getLoc(), 1518 LLVM::lookupOrCreatePrintNewlineFn( 1519 printOp->getParentOfType<ModuleOp>())); 1520 rewriter.eraseOp(printOp); 1521 return success(); 1522 } 1523 1524 private: 1525 enum class PrintConversion { 1526 // clang-format off 1527 None, 1528 ZeroExt64, 1529 SignExt64 1530 // clang-format on 1531 }; 1532 1533 void emitRanks(ConversionPatternRewriter &rewriter, Operation *op, 1534 Value value, Type type, Operation *printer, int64_t rank, 1535 PrintConversion conversion) const { 1536 VectorType vectorType = type.dyn_cast<VectorType>(); 1537 Location loc = op->getLoc(); 1538 if (!vectorType) { 1539 assert(rank == 0 && "The scalar case expects rank == 0"); 1540 switch (conversion) { 1541 case PrintConversion::ZeroExt64: 1542 value = rewriter.create<arith::ExtUIOp>( 1543 loc, IntegerType::get(rewriter.getContext(), 64), value); 1544 break; 1545 case PrintConversion::SignExt64: 1546 value = rewriter.create<arith::ExtSIOp>( 1547 loc, IntegerType::get(rewriter.getContext(), 64), value); 1548 break; 1549 case PrintConversion::None: 1550 break; 1551 } 1552 emitCall(rewriter, loc, printer, value); 1553 return; 1554 } 1555 1556 emitCall(rewriter, loc, 1557 LLVM::lookupOrCreatePrintOpenFn(op->getParentOfType<ModuleOp>())); 1558 Operation *printComma = 1559 LLVM::lookupOrCreatePrintCommaFn(op->getParentOfType<ModuleOp>()); 1560 1561 if (rank <= 1) { 1562 auto reducedType = vectorType.getElementType(); 1563 auto llvmType = typeConverter->convertType(reducedType); 1564 int64_t dim = rank == 0 ? 1 : vectorType.getDimSize(0); 1565 for (int64_t d = 0; d < dim; ++d) { 1566 Value nestedVal = extractOne(rewriter, *getTypeConverter(), loc, value, 1567 llvmType, /*rank=*/0, /*pos=*/d); 1568 emitRanks(rewriter, op, nestedVal, reducedType, printer, /*rank=*/0, 1569 conversion); 1570 if (d != dim - 1) 1571 emitCall(rewriter, loc, printComma); 1572 } 1573 emitCall( 1574 rewriter, loc, 1575 LLVM::lookupOrCreatePrintCloseFn(op->getParentOfType<ModuleOp>())); 1576 return; 1577 } 1578 1579 int64_t dim = vectorType.getDimSize(0); 1580 for (int64_t d = 0; d < dim; ++d) { 1581 auto reducedType = reducedVectorTypeFront(vectorType); 1582 auto llvmType = typeConverter->convertType(reducedType); 1583 Value nestedVal = extractOne(rewriter, *getTypeConverter(), loc, value, 1584 llvmType, rank, d); 1585 emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1, 1586 conversion); 1587 if (d != dim - 1) 1588 emitCall(rewriter, loc, printComma); 1589 } 1590 emitCall(rewriter, loc, 1591 LLVM::lookupOrCreatePrintCloseFn(op->getParentOfType<ModuleOp>())); 1592 } 1593 1594 // Helper to emit a call. 1595 static void emitCall(ConversionPatternRewriter &rewriter, Location loc, 1596 Operation *ref, ValueRange params = ValueRange()) { 1597 rewriter.create<LLVM::CallOp>(loc, TypeRange(), SymbolRefAttr::get(ref), 1598 params); 1599 } 1600 }; 1601 1602 /// The Splat operation is lowered to an insertelement + a shufflevector 1603 /// operation. Splat to only 0-d and 1-d vector result types are lowered. 1604 struct VectorSplatOpLowering : public ConvertOpToLLVMPattern<vector::SplatOp> { 1605 using ConvertOpToLLVMPattern<vector::SplatOp>::ConvertOpToLLVMPattern; 1606 1607 LogicalResult 1608 matchAndRewrite(vector::SplatOp splatOp, OpAdaptor adaptor, 1609 ConversionPatternRewriter &rewriter) const override { 1610 VectorType resultType = splatOp.getType().cast<VectorType>(); 1611 if (resultType.getRank() > 1) 1612 return failure(); 1613 1614 // First insert it into an undef vector so we can shuffle it. 1615 auto vectorType = typeConverter->convertType(splatOp.getType()); 1616 Value undef = rewriter.create<LLVM::UndefOp>(splatOp.getLoc(), vectorType); 1617 auto zero = rewriter.create<LLVM::ConstantOp>( 1618 splatOp.getLoc(), 1619 typeConverter->convertType(rewriter.getIntegerType(32)), 1620 rewriter.getZeroAttr(rewriter.getIntegerType(32))); 1621 1622 // For 0-d vector, we simply do `insertelement`. 1623 if (resultType.getRank() == 0) { 1624 rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( 1625 splatOp, vectorType, undef, adaptor.getInput(), zero); 1626 return success(); 1627 } 1628 1629 // For 1-d vector, we additionally do a `vectorshuffle`. 1630 auto v = rewriter.create<LLVM::InsertElementOp>( 1631 splatOp.getLoc(), vectorType, undef, adaptor.getInput(), zero); 1632 1633 int64_t width = splatOp.getType().cast<VectorType>().getDimSize(0); 1634 SmallVector<int32_t> zeroValues(width, 0); 1635 1636 // Shuffle the value across the desired number of elements. 1637 rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>(splatOp, v, undef, 1638 zeroValues); 1639 return success(); 1640 } 1641 }; 1642 1643 /// The Splat operation is lowered to an insertelement + a shufflevector 1644 /// operation. Splat to only 2+-d vector result types are lowered by the 1645 /// SplatNdOpLowering, the 1-d case is handled by SplatOpLowering. 1646 struct VectorSplatNdOpLowering : public ConvertOpToLLVMPattern<SplatOp> { 1647 using ConvertOpToLLVMPattern<SplatOp>::ConvertOpToLLVMPattern; 1648 1649 LogicalResult 1650 matchAndRewrite(SplatOp splatOp, OpAdaptor adaptor, 1651 ConversionPatternRewriter &rewriter) const override { 1652 VectorType resultType = splatOp.getType(); 1653 if (resultType.getRank() <= 1) 1654 return failure(); 1655 1656 // First insert it into an undef vector so we can shuffle it. 1657 auto loc = splatOp.getLoc(); 1658 auto vectorTypeInfo = 1659 LLVM::detail::extractNDVectorTypeInfo(resultType, *getTypeConverter()); 1660 auto llvmNDVectorTy = vectorTypeInfo.llvmNDVectorTy; 1661 auto llvm1DVectorTy = vectorTypeInfo.llvm1DVectorTy; 1662 if (!llvmNDVectorTy || !llvm1DVectorTy) 1663 return failure(); 1664 1665 // Construct returned value. 1666 Value desc = rewriter.create<LLVM::UndefOp>(loc, llvmNDVectorTy); 1667 1668 // Construct a 1-D vector with the splatted value that we insert in all the 1669 // places within the returned descriptor. 1670 Value vdesc = rewriter.create<LLVM::UndefOp>(loc, llvm1DVectorTy); 1671 auto zero = rewriter.create<LLVM::ConstantOp>( 1672 loc, typeConverter->convertType(rewriter.getIntegerType(32)), 1673 rewriter.getZeroAttr(rewriter.getIntegerType(32))); 1674 Value v = rewriter.create<LLVM::InsertElementOp>(loc, llvm1DVectorTy, vdesc, 1675 adaptor.getInput(), zero); 1676 1677 // Shuffle the value across the desired number of elements. 1678 int64_t width = resultType.getDimSize(resultType.getRank() - 1); 1679 SmallVector<int32_t> zeroValues(width, 0); 1680 v = rewriter.create<LLVM::ShuffleVectorOp>(loc, v, v, zeroValues); 1681 1682 // Iterate of linear index, convert to coords space and insert splatted 1-D 1683 // vector in each position. 1684 nDVectorIterate(vectorTypeInfo, rewriter, [&](ArrayRef<int64_t> position) { 1685 desc = rewriter.create<LLVM::InsertValueOp>(loc, desc, v, position); 1686 }); 1687 rewriter.replaceOp(splatOp, desc); 1688 return success(); 1689 } 1690 }; 1691 1692 } // namespace 1693 1694 /// Populate the given list with patterns that convert from Vector to LLVM. 1695 void mlir::populateVectorToLLVMConversionPatterns( 1696 LLVMTypeConverter &converter, RewritePatternSet &patterns, 1697 bool reassociateFPReductions, bool force32BitVectorIndices) { 1698 MLIRContext *ctx = converter.getDialect()->getContext(); 1699 patterns.add<VectorFMAOpNDRewritePattern>(ctx); 1700 populateVectorInsertExtractStridedSliceTransforms(patterns); 1701 patterns.add<VectorReductionOpConversion>(converter, reassociateFPReductions); 1702 patterns.add<VectorCreateMaskOpRewritePattern>(ctx, force32BitVectorIndices); 1703 patterns 1704 .add<VectorBitCastOpConversion, VectorShuffleOpConversion, 1705 VectorExtractElementOpConversion, VectorExtractOpConversion, 1706 VectorFMAOp1DConversion, VectorInsertElementOpConversion, 1707 VectorInsertOpConversion, VectorPrintOpConversion, 1708 VectorTypeCastOpConversion, VectorScaleOpConversion, 1709 VectorLoadStoreConversion<vector::LoadOp, vector::LoadOpAdaptor>, 1710 VectorLoadStoreConversion<vector::MaskedLoadOp, 1711 vector::MaskedLoadOpAdaptor>, 1712 VectorLoadStoreConversion<vector::StoreOp, vector::StoreOpAdaptor>, 1713 VectorLoadStoreConversion<vector::MaskedStoreOp, 1714 vector::MaskedStoreOpAdaptor>, 1715 VectorGatherOpConversion, VectorScatterOpConversion, 1716 VectorExpandLoadOpConversion, VectorCompressStoreOpConversion, 1717 VectorSplatOpLowering, VectorSplatNdOpLowering, 1718 VectorScalableInsertOpLowering, VectorScalableExtractOpLowering, 1719 MaskedReductionOpConversion>(converter); 1720 // Transfer ops with rank > 1 are handled by VectorToSCF. 1721 populateVectorTransferLoweringPatterns(patterns, /*maxTransferRank=*/1); 1722 } 1723 1724 void mlir::populateVectorToLLVMMatrixConversionPatterns( 1725 LLVMTypeConverter &converter, RewritePatternSet &patterns) { 1726 patterns.add<VectorMatmulOpConversion>(converter); 1727 patterns.add<VectorFlatTransposeOpConversion>(converter); 1728 } 1729