xref: /llvm-project/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp (revision 864adf399e58a6bfd823136fc2cbcfe9dff5b4a8)
1 //===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
10 
11 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
12 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
13 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
14 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
15 #include "mlir/Dialect/MemRef/IR/MemRef.h"
16 #include "mlir/Dialect/StandardOps/IR/Ops.h"
17 #include "mlir/Dialect/Vector/VectorOps.h"
18 #include "mlir/IR/BuiltinTypes.h"
19 #include "mlir/Target/LLVMIR/TypeTranslation.h"
20 #include "mlir/Transforms/DialectConversion.h"
21 
22 using namespace mlir;
23 using namespace mlir::vector;
24 
25 // Helper to reduce vector type by one rank at front.
26 static VectorType reducedVectorTypeFront(VectorType tp) {
27   assert((tp.getRank() > 1) && "unlowerable vector type");
28   return VectorType::get(tp.getShape().drop_front(), tp.getElementType());
29 }
30 
31 // Helper to reduce vector type by *all* but one rank at back.
32 static VectorType reducedVectorTypeBack(VectorType tp) {
33   assert((tp.getRank() > 1) && "unlowerable vector type");
34   return VectorType::get(tp.getShape().take_back(), tp.getElementType());
35 }
36 
37 // Helper that picks the proper sequence for inserting.
38 static Value insertOne(ConversionPatternRewriter &rewriter,
39                        LLVMTypeConverter &typeConverter, Location loc,
40                        Value val1, Value val2, Type llvmType, int64_t rank,
41                        int64_t pos) {
42   if (rank == 1) {
43     auto idxType = rewriter.getIndexType();
44     auto constant = rewriter.create<LLVM::ConstantOp>(
45         loc, typeConverter.convertType(idxType),
46         rewriter.getIntegerAttr(idxType, pos));
47     return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2,
48                                                   constant);
49   }
50   return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2,
51                                               rewriter.getI64ArrayAttr(pos));
52 }
53 
54 // Helper that picks the proper sequence for inserting.
55 static Value insertOne(PatternRewriter &rewriter, Location loc, Value from,
56                        Value into, int64_t offset) {
57   auto vectorType = into.getType().cast<VectorType>();
58   if (vectorType.getRank() > 1)
59     return rewriter.create<InsertOp>(loc, from, into, offset);
60   return rewriter.create<vector::InsertElementOp>(
61       loc, vectorType, from, into,
62       rewriter.create<ConstantIndexOp>(loc, offset));
63 }
64 
65 // Helper that picks the proper sequence for extracting.
66 static Value extractOne(ConversionPatternRewriter &rewriter,
67                         LLVMTypeConverter &typeConverter, Location loc,
68                         Value val, Type llvmType, int64_t rank, int64_t pos) {
69   if (rank == 1) {
70     auto idxType = rewriter.getIndexType();
71     auto constant = rewriter.create<LLVM::ConstantOp>(
72         loc, typeConverter.convertType(idxType),
73         rewriter.getIntegerAttr(idxType, pos));
74     return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val,
75                                                    constant);
76   }
77   return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val,
78                                                rewriter.getI64ArrayAttr(pos));
79 }
80 
81 // Helper that picks the proper sequence for extracting.
82 static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector,
83                         int64_t offset) {
84   auto vectorType = vector.getType().cast<VectorType>();
85   if (vectorType.getRank() > 1)
86     return rewriter.create<ExtractOp>(loc, vector, offset);
87   return rewriter.create<vector::ExtractElementOp>(
88       loc, vectorType.getElementType(), vector,
89       rewriter.create<ConstantIndexOp>(loc, offset));
90 }
91 
92 // Helper that returns a subset of `arrayAttr` as a vector of int64_t.
93 // TODO: Better support for attribute subtype forwarding + slicing.
94 static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr,
95                                               unsigned dropFront = 0,
96                                               unsigned dropBack = 0) {
97   assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds");
98   auto range = arrayAttr.getAsRange<IntegerAttr>();
99   SmallVector<int64_t, 4> res;
100   res.reserve(arrayAttr.size() - dropFront - dropBack);
101   for (auto it = range.begin() + dropFront, eit = range.end() - dropBack;
102        it != eit; ++it)
103     res.push_back((*it).getValue().getSExtValue());
104   return res;
105 }
106 
107 // Helper that returns data layout alignment of a memref.
108 LogicalResult getMemRefAlignment(LLVMTypeConverter &typeConverter,
109                                  MemRefType memrefType, unsigned &align) {
110   Type elementTy = typeConverter.convertType(memrefType.getElementType());
111   if (!elementTy)
112     return failure();
113 
114   // TODO: this should use the MLIR data layout when it becomes available and
115   // stop depending on translation.
116   llvm::LLVMContext llvmContext;
117   align = LLVM::TypeToLLVMIRTranslator(llvmContext)
118               .getPreferredAlignment(elementTy, typeConverter.getDataLayout());
119   return success();
120 }
121 
122 // Add an index vector component to a base pointer. This almost always succeeds
123 // unless the last stride is non-unit or the memory space is not zero.
124 static LogicalResult getIndexedPtrs(ConversionPatternRewriter &rewriter,
125                                     Location loc, Value memref, Value base,
126                                     Value index, MemRefType memRefType,
127                                     VectorType vType, Value &ptrs) {
128   int64_t offset;
129   SmallVector<int64_t, 4> strides;
130   auto successStrides = getStridesAndOffset(memRefType, strides, offset);
131   if (failed(successStrides) || strides.back() != 1 ||
132       memRefType.getMemorySpaceAsInt() != 0)
133     return failure();
134   auto pType = MemRefDescriptor(memref).getElementPtrType();
135   auto ptrsType = LLVM::getFixedVectorType(pType, vType.getDimSize(0));
136   ptrs = rewriter.create<LLVM::GEPOp>(loc, ptrsType, base, index);
137   return success();
138 }
139 
140 // Casts a strided element pointer to a vector pointer.  The vector pointer
141 // will be in the same address space as the incoming memref type.
142 static Value castDataPtr(ConversionPatternRewriter &rewriter, Location loc,
143                          Value ptr, MemRefType memRefType, Type vt) {
144   auto pType = LLVM::LLVMPointerType::get(vt, memRefType.getMemorySpaceAsInt());
145   return rewriter.create<LLVM::BitcastOp>(loc, pType, ptr);
146 }
147 
148 static LogicalResult
149 replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter,
150                                  LLVMTypeConverter &typeConverter, Location loc,
151                                  TransferReadOp xferOp,
152                                  ArrayRef<Value> operands, Value dataPtr) {
153   unsigned align;
154   if (failed(getMemRefAlignment(
155           typeConverter, xferOp.getShapedType().cast<MemRefType>(), align)))
156     return failure();
157   rewriter.replaceOpWithNewOp<LLVM::LoadOp>(xferOp, dataPtr, align);
158   return success();
159 }
160 
161 static LogicalResult
162 replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter,
163                             LLVMTypeConverter &typeConverter, Location loc,
164                             TransferReadOp xferOp, ArrayRef<Value> operands,
165                             Value dataPtr, Value mask) {
166   Type vecTy = typeConverter.convertType(xferOp.getVectorType());
167   if (!vecTy)
168     return failure();
169 
170   auto adaptor = TransferReadOpAdaptor(operands, xferOp->getAttrDictionary());
171   Value fill = rewriter.create<SplatOp>(loc, vecTy, adaptor.padding());
172 
173   unsigned align;
174   if (failed(getMemRefAlignment(
175           typeConverter, xferOp.getShapedType().cast<MemRefType>(), align)))
176     return failure();
177 
178   rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
179       xferOp, vecTy, dataPtr, mask, ValueRange{fill},
180       rewriter.getI32IntegerAttr(align));
181   return success();
182 }
183 
184 static LogicalResult
185 replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter,
186                                  LLVMTypeConverter &typeConverter, Location loc,
187                                  TransferWriteOp xferOp,
188                                  ArrayRef<Value> operands, Value dataPtr) {
189   unsigned align;
190   if (failed(getMemRefAlignment(
191           typeConverter, xferOp.getShapedType().cast<MemRefType>(), align)))
192     return failure();
193   auto adaptor = TransferWriteOpAdaptor(operands, xferOp->getAttrDictionary());
194   rewriter.replaceOpWithNewOp<LLVM::StoreOp>(xferOp, adaptor.vector(), dataPtr,
195                                              align);
196   return success();
197 }
198 
199 static LogicalResult
200 replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter,
201                             LLVMTypeConverter &typeConverter, Location loc,
202                             TransferWriteOp xferOp, ArrayRef<Value> operands,
203                             Value dataPtr, Value mask) {
204   unsigned align;
205   if (failed(getMemRefAlignment(
206           typeConverter, xferOp.getShapedType().cast<MemRefType>(), align)))
207     return failure();
208 
209   auto adaptor = TransferWriteOpAdaptor(operands, xferOp->getAttrDictionary());
210   rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
211       xferOp, adaptor.vector(), dataPtr, mask,
212       rewriter.getI32IntegerAttr(align));
213   return success();
214 }
215 
216 static TransferReadOpAdaptor getTransferOpAdapter(TransferReadOp xferOp,
217                                                   ArrayRef<Value> operands) {
218   return TransferReadOpAdaptor(operands, xferOp->getAttrDictionary());
219 }
220 
221 static TransferWriteOpAdaptor getTransferOpAdapter(TransferWriteOp xferOp,
222                                                    ArrayRef<Value> operands) {
223   return TransferWriteOpAdaptor(operands, xferOp->getAttrDictionary());
224 }
225 
226 namespace {
227 
228 /// Conversion pattern for a vector.bitcast.
229 class VectorBitCastOpConversion
230     : public ConvertOpToLLVMPattern<vector::BitCastOp> {
231 public:
232   using ConvertOpToLLVMPattern<vector::BitCastOp>::ConvertOpToLLVMPattern;
233 
234   LogicalResult
235   matchAndRewrite(vector::BitCastOp bitCastOp, ArrayRef<Value> operands,
236                   ConversionPatternRewriter &rewriter) const override {
237     // Only 1-D vectors can be lowered to LLVM.
238     VectorType resultTy = bitCastOp.getType();
239     if (resultTy.getRank() != 1)
240       return failure();
241     Type newResultTy = typeConverter->convertType(resultTy);
242     rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(bitCastOp, newResultTy,
243                                                  operands[0]);
244     return success();
245   }
246 };
247 
248 /// Conversion pattern for a vector.matrix_multiply.
249 /// This is lowered directly to the proper llvm.intr.matrix.multiply.
250 class VectorMatmulOpConversion
251     : public ConvertOpToLLVMPattern<vector::MatmulOp> {
252 public:
253   using ConvertOpToLLVMPattern<vector::MatmulOp>::ConvertOpToLLVMPattern;
254 
255   LogicalResult
256   matchAndRewrite(vector::MatmulOp matmulOp, ArrayRef<Value> operands,
257                   ConversionPatternRewriter &rewriter) const override {
258     auto adaptor = vector::MatmulOpAdaptor(operands);
259     rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>(
260         matmulOp, typeConverter->convertType(matmulOp.res().getType()),
261         adaptor.lhs(), adaptor.rhs(), matmulOp.lhs_rows(),
262         matmulOp.lhs_columns(), matmulOp.rhs_columns());
263     return success();
264   }
265 };
266 
267 /// Conversion pattern for a vector.flat_transpose.
268 /// This is lowered directly to the proper llvm.intr.matrix.transpose.
269 class VectorFlatTransposeOpConversion
270     : public ConvertOpToLLVMPattern<vector::FlatTransposeOp> {
271 public:
272   using ConvertOpToLLVMPattern<vector::FlatTransposeOp>::ConvertOpToLLVMPattern;
273 
274   LogicalResult
275   matchAndRewrite(vector::FlatTransposeOp transOp, ArrayRef<Value> operands,
276                   ConversionPatternRewriter &rewriter) const override {
277     auto adaptor = vector::FlatTransposeOpAdaptor(operands);
278     rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>(
279         transOp, typeConverter->convertType(transOp.res().getType()),
280         adaptor.matrix(), transOp.rows(), transOp.columns());
281     return success();
282   }
283 };
284 
285 /// Overloaded utility that replaces a vector.load, vector.store,
286 /// vector.maskedload and vector.maskedstore with their respective LLVM
287 /// couterparts.
288 static void replaceLoadOrStoreOp(vector::LoadOp loadOp,
289                                  vector::LoadOpAdaptor adaptor,
290                                  VectorType vectorTy, Value ptr, unsigned align,
291                                  ConversionPatternRewriter &rewriter) {
292   rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, ptr, align);
293 }
294 
295 static void replaceLoadOrStoreOp(vector::MaskedLoadOp loadOp,
296                                  vector::MaskedLoadOpAdaptor adaptor,
297                                  VectorType vectorTy, Value ptr, unsigned align,
298                                  ConversionPatternRewriter &rewriter) {
299   rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
300       loadOp, vectorTy, ptr, adaptor.mask(), adaptor.pass_thru(), align);
301 }
302 
303 static void replaceLoadOrStoreOp(vector::StoreOp storeOp,
304                                  vector::StoreOpAdaptor adaptor,
305                                  VectorType vectorTy, Value ptr, unsigned align,
306                                  ConversionPatternRewriter &rewriter) {
307   rewriter.replaceOpWithNewOp<LLVM::StoreOp>(storeOp, adaptor.valueToStore(),
308                                              ptr, align);
309 }
310 
311 static void replaceLoadOrStoreOp(vector::MaskedStoreOp storeOp,
312                                  vector::MaskedStoreOpAdaptor adaptor,
313                                  VectorType vectorTy, Value ptr, unsigned align,
314                                  ConversionPatternRewriter &rewriter) {
315   rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
316       storeOp, adaptor.valueToStore(), ptr, adaptor.mask(), align);
317 }
318 
319 /// Conversion pattern for a vector.load, vector.store, vector.maskedload, and
320 /// vector.maskedstore.
321 template <class LoadOrStoreOp, class LoadOrStoreOpAdaptor>
322 class VectorLoadStoreConversion : public ConvertOpToLLVMPattern<LoadOrStoreOp> {
323 public:
324   using ConvertOpToLLVMPattern<LoadOrStoreOp>::ConvertOpToLLVMPattern;
325 
326   LogicalResult
327   matchAndRewrite(LoadOrStoreOp loadOrStoreOp, ArrayRef<Value> operands,
328                   ConversionPatternRewriter &rewriter) const override {
329     // Only 1-D vectors can be lowered to LLVM.
330     VectorType vectorTy = loadOrStoreOp.getVectorType();
331     if (vectorTy.getRank() > 1)
332       return failure();
333 
334     auto loc = loadOrStoreOp->getLoc();
335     auto adaptor = LoadOrStoreOpAdaptor(operands);
336     MemRefType memRefTy = loadOrStoreOp.getMemRefType();
337 
338     // Resolve alignment.
339     unsigned align;
340     if (failed(getMemRefAlignment(*this->getTypeConverter(), memRefTy, align)))
341       return failure();
342 
343     // Resolve address.
344     auto vtype = this->typeConverter->convertType(loadOrStoreOp.getVectorType())
345                      .template cast<VectorType>();
346     Value dataPtr = this->getStridedElementPtr(loc, memRefTy, adaptor.base(),
347                                                adaptor.indices(), rewriter);
348     Value ptr = castDataPtr(rewriter, loc, dataPtr, memRefTy, vtype);
349 
350     replaceLoadOrStoreOp(loadOrStoreOp, adaptor, vtype, ptr, align, rewriter);
351     return success();
352   }
353 };
354 
355 /// Conversion pattern for a vector.gather.
356 class VectorGatherOpConversion
357     : public ConvertOpToLLVMPattern<vector::GatherOp> {
358 public:
359   using ConvertOpToLLVMPattern<vector::GatherOp>::ConvertOpToLLVMPattern;
360 
361   LogicalResult
362   matchAndRewrite(vector::GatherOp gather, ArrayRef<Value> operands,
363                   ConversionPatternRewriter &rewriter) const override {
364     auto loc = gather->getLoc();
365     auto adaptor = vector::GatherOpAdaptor(operands);
366     MemRefType memRefType = gather.getMemRefType();
367 
368     // Resolve alignment.
369     unsigned align;
370     if (failed(getMemRefAlignment(*getTypeConverter(), memRefType, align)))
371       return failure();
372 
373     // Resolve address.
374     Value ptrs;
375     VectorType vType = gather.getVectorType();
376     Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
377                                      adaptor.indices(), rewriter);
378     if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), ptr,
379                               adaptor.index_vec(), memRefType, vType, ptrs)))
380       return failure();
381 
382     // Replace with the gather intrinsic.
383     rewriter.replaceOpWithNewOp<LLVM::masked_gather>(
384         gather, typeConverter->convertType(vType), ptrs, adaptor.mask(),
385         adaptor.pass_thru(), rewriter.getI32IntegerAttr(align));
386     return success();
387   }
388 };
389 
390 /// Conversion pattern for a vector.scatter.
391 class VectorScatterOpConversion
392     : public ConvertOpToLLVMPattern<vector::ScatterOp> {
393 public:
394   using ConvertOpToLLVMPattern<vector::ScatterOp>::ConvertOpToLLVMPattern;
395 
396   LogicalResult
397   matchAndRewrite(vector::ScatterOp scatter, ArrayRef<Value> operands,
398                   ConversionPatternRewriter &rewriter) const override {
399     auto loc = scatter->getLoc();
400     auto adaptor = vector::ScatterOpAdaptor(operands);
401     MemRefType memRefType = scatter.getMemRefType();
402 
403     // Resolve alignment.
404     unsigned align;
405     if (failed(getMemRefAlignment(*getTypeConverter(), memRefType, align)))
406       return failure();
407 
408     // Resolve address.
409     Value ptrs;
410     VectorType vType = scatter.getVectorType();
411     Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
412                                      adaptor.indices(), rewriter);
413     if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), ptr,
414                               adaptor.index_vec(), memRefType, vType, ptrs)))
415       return failure();
416 
417     // Replace with the scatter intrinsic.
418     rewriter.replaceOpWithNewOp<LLVM::masked_scatter>(
419         scatter, adaptor.valueToStore(), ptrs, adaptor.mask(),
420         rewriter.getI32IntegerAttr(align));
421     return success();
422   }
423 };
424 
425 /// Conversion pattern for a vector.expandload.
426 class VectorExpandLoadOpConversion
427     : public ConvertOpToLLVMPattern<vector::ExpandLoadOp> {
428 public:
429   using ConvertOpToLLVMPattern<vector::ExpandLoadOp>::ConvertOpToLLVMPattern;
430 
431   LogicalResult
432   matchAndRewrite(vector::ExpandLoadOp expand, ArrayRef<Value> operands,
433                   ConversionPatternRewriter &rewriter) const override {
434     auto loc = expand->getLoc();
435     auto adaptor = vector::ExpandLoadOpAdaptor(operands);
436     MemRefType memRefType = expand.getMemRefType();
437 
438     // Resolve address.
439     auto vtype = typeConverter->convertType(expand.getVectorType());
440     Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
441                                      adaptor.indices(), rewriter);
442 
443     rewriter.replaceOpWithNewOp<LLVM::masked_expandload>(
444         expand, vtype, ptr, adaptor.mask(), adaptor.pass_thru());
445     return success();
446   }
447 };
448 
449 /// Conversion pattern for a vector.compressstore.
450 class VectorCompressStoreOpConversion
451     : public ConvertOpToLLVMPattern<vector::CompressStoreOp> {
452 public:
453   using ConvertOpToLLVMPattern<vector::CompressStoreOp>::ConvertOpToLLVMPattern;
454 
455   LogicalResult
456   matchAndRewrite(vector::CompressStoreOp compress, ArrayRef<Value> operands,
457                   ConversionPatternRewriter &rewriter) const override {
458     auto loc = compress->getLoc();
459     auto adaptor = vector::CompressStoreOpAdaptor(operands);
460     MemRefType memRefType = compress.getMemRefType();
461 
462     // Resolve address.
463     Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
464                                      adaptor.indices(), rewriter);
465 
466     rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>(
467         compress, adaptor.valueToStore(), ptr, adaptor.mask());
468     return success();
469   }
470 };
471 
472 /// Conversion pattern for all vector reductions.
473 class VectorReductionOpConversion
474     : public ConvertOpToLLVMPattern<vector::ReductionOp> {
475 public:
476   explicit VectorReductionOpConversion(LLVMTypeConverter &typeConv,
477                                        bool reassociateFPRed)
478       : ConvertOpToLLVMPattern<vector::ReductionOp>(typeConv),
479         reassociateFPReductions(reassociateFPRed) {}
480 
481   LogicalResult
482   matchAndRewrite(vector::ReductionOp reductionOp, ArrayRef<Value> operands,
483                   ConversionPatternRewriter &rewriter) const override {
484     auto kind = reductionOp.kind();
485     Type eltType = reductionOp.dest().getType();
486     Type llvmType = typeConverter->convertType(eltType);
487     if (eltType.isIntOrIndex()) {
488       // Integer reductions: add/mul/min/max/and/or/xor.
489       if (kind == "add")
490         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_add>(
491             reductionOp, llvmType, operands[0]);
492       else if (kind == "mul")
493         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_mul>(
494             reductionOp, llvmType, operands[0]);
495       else if (kind == "min" &&
496                (eltType.isIndex() || eltType.isUnsignedInteger()))
497         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umin>(
498             reductionOp, llvmType, operands[0]);
499       else if (kind == "min")
500         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smin>(
501             reductionOp, llvmType, operands[0]);
502       else if (kind == "max" &&
503                (eltType.isIndex() || eltType.isUnsignedInteger()))
504         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umax>(
505             reductionOp, llvmType, operands[0]);
506       else if (kind == "max")
507         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smax>(
508             reductionOp, llvmType, operands[0]);
509       else if (kind == "and")
510         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_and>(
511             reductionOp, llvmType, operands[0]);
512       else if (kind == "or")
513         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_or>(
514             reductionOp, llvmType, operands[0]);
515       else if (kind == "xor")
516         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_xor>(
517             reductionOp, llvmType, operands[0]);
518       else
519         return failure();
520       return success();
521     }
522 
523     if (!eltType.isa<FloatType>())
524       return failure();
525 
526     // Floating-point reductions: add/mul/min/max
527     if (kind == "add") {
528       // Optional accumulator (or zero).
529       Value acc = operands.size() > 1 ? operands[1]
530                                       : rewriter.create<LLVM::ConstantOp>(
531                                             reductionOp->getLoc(), llvmType,
532                                             rewriter.getZeroAttr(eltType));
533       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fadd>(
534           reductionOp, llvmType, acc, operands[0],
535           rewriter.getBoolAttr(reassociateFPReductions));
536     } else if (kind == "mul") {
537       // Optional accumulator (or one).
538       Value acc = operands.size() > 1
539                       ? operands[1]
540                       : rewriter.create<LLVM::ConstantOp>(
541                             reductionOp->getLoc(), llvmType,
542                             rewriter.getFloatAttr(eltType, 1.0));
543       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmul>(
544           reductionOp, llvmType, acc, operands[0],
545           rewriter.getBoolAttr(reassociateFPReductions));
546     } else if (kind == "min")
547       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmin>(
548           reductionOp, llvmType, operands[0]);
549     else if (kind == "max")
550       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmax>(
551           reductionOp, llvmType, operands[0]);
552     else
553       return failure();
554     return success();
555   }
556 
557 private:
558   const bool reassociateFPReductions;
559 };
560 
561 class VectorShuffleOpConversion
562     : public ConvertOpToLLVMPattern<vector::ShuffleOp> {
563 public:
564   using ConvertOpToLLVMPattern<vector::ShuffleOp>::ConvertOpToLLVMPattern;
565 
566   LogicalResult
567   matchAndRewrite(vector::ShuffleOp shuffleOp, ArrayRef<Value> operands,
568                   ConversionPatternRewriter &rewriter) const override {
569     auto loc = shuffleOp->getLoc();
570     auto adaptor = vector::ShuffleOpAdaptor(operands);
571     auto v1Type = shuffleOp.getV1VectorType();
572     auto v2Type = shuffleOp.getV2VectorType();
573     auto vectorType = shuffleOp.getVectorType();
574     Type llvmType = typeConverter->convertType(vectorType);
575     auto maskArrayAttr = shuffleOp.mask();
576 
577     // Bail if result type cannot be lowered.
578     if (!llvmType)
579       return failure();
580 
581     // Get rank and dimension sizes.
582     int64_t rank = vectorType.getRank();
583     assert(v1Type.getRank() == rank);
584     assert(v2Type.getRank() == rank);
585     int64_t v1Dim = v1Type.getDimSize(0);
586 
587     // For rank 1, where both operands have *exactly* the same vector type,
588     // there is direct shuffle support in LLVM. Use it!
589     if (rank == 1 && v1Type == v2Type) {
590       Value llvmShuffleOp = rewriter.create<LLVM::ShuffleVectorOp>(
591           loc, adaptor.v1(), adaptor.v2(), maskArrayAttr);
592       rewriter.replaceOp(shuffleOp, llvmShuffleOp);
593       return success();
594     }
595 
596     // For all other cases, insert the individual values individually.
597     Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType);
598     int64_t insPos = 0;
599     for (auto en : llvm::enumerate(maskArrayAttr)) {
600       int64_t extPos = en.value().cast<IntegerAttr>().getInt();
601       Value value = adaptor.v1();
602       if (extPos >= v1Dim) {
603         extPos -= v1Dim;
604         value = adaptor.v2();
605       }
606       Value extract = extractOne(rewriter, *getTypeConverter(), loc, value,
607                                  llvmType, rank, extPos);
608       insert = insertOne(rewriter, *getTypeConverter(), loc, insert, extract,
609                          llvmType, rank, insPos++);
610     }
611     rewriter.replaceOp(shuffleOp, insert);
612     return success();
613   }
614 };
615 
616 class VectorExtractElementOpConversion
617     : public ConvertOpToLLVMPattern<vector::ExtractElementOp> {
618 public:
619   using ConvertOpToLLVMPattern<
620       vector::ExtractElementOp>::ConvertOpToLLVMPattern;
621 
622   LogicalResult
623   matchAndRewrite(vector::ExtractElementOp extractEltOp,
624                   ArrayRef<Value> operands,
625                   ConversionPatternRewriter &rewriter) const override {
626     auto adaptor = vector::ExtractElementOpAdaptor(operands);
627     auto vectorType = extractEltOp.getVectorType();
628     auto llvmType = typeConverter->convertType(vectorType.getElementType());
629 
630     // Bail if result type cannot be lowered.
631     if (!llvmType)
632       return failure();
633 
634     rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
635         extractEltOp, llvmType, adaptor.vector(), adaptor.position());
636     return success();
637   }
638 };
639 
640 class VectorExtractOpConversion
641     : public ConvertOpToLLVMPattern<vector::ExtractOp> {
642 public:
643   using ConvertOpToLLVMPattern<vector::ExtractOp>::ConvertOpToLLVMPattern;
644 
645   LogicalResult
646   matchAndRewrite(vector::ExtractOp extractOp, ArrayRef<Value> operands,
647                   ConversionPatternRewriter &rewriter) const override {
648     auto loc = extractOp->getLoc();
649     auto adaptor = vector::ExtractOpAdaptor(operands);
650     auto vectorType = extractOp.getVectorType();
651     auto resultType = extractOp.getResult().getType();
652     auto llvmResultType = typeConverter->convertType(resultType);
653     auto positionArrayAttr = extractOp.position();
654 
655     // Bail if result type cannot be lowered.
656     if (!llvmResultType)
657       return failure();
658 
659     // Extract entire vector. Should be handled by folder, but just to be safe.
660     if (positionArrayAttr.empty()) {
661       rewriter.replaceOp(extractOp, adaptor.vector());
662       return success();
663     }
664 
665     // One-shot extraction of vector from array (only requires extractvalue).
666     if (resultType.isa<VectorType>()) {
667       Value extracted = rewriter.create<LLVM::ExtractValueOp>(
668           loc, llvmResultType, adaptor.vector(), positionArrayAttr);
669       rewriter.replaceOp(extractOp, extracted);
670       return success();
671     }
672 
673     // Potential extraction of 1-D vector from array.
674     auto *context = extractOp->getContext();
675     Value extracted = adaptor.vector();
676     auto positionAttrs = positionArrayAttr.getValue();
677     if (positionAttrs.size() > 1) {
678       auto oneDVectorType = reducedVectorTypeBack(vectorType);
679       auto nMinusOnePositionAttrs =
680           ArrayAttr::get(context, positionAttrs.drop_back());
681       extracted = rewriter.create<LLVM::ExtractValueOp>(
682           loc, typeConverter->convertType(oneDVectorType), extracted,
683           nMinusOnePositionAttrs);
684     }
685 
686     // Remaining extraction of element from 1-D LLVM vector
687     auto position = positionAttrs.back().cast<IntegerAttr>();
688     auto i64Type = IntegerType::get(rewriter.getContext(), 64);
689     auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
690     extracted =
691         rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
692     rewriter.replaceOp(extractOp, extracted);
693 
694     return success();
695   }
696 };
697 
698 /// Conversion pattern that turns a vector.fma on a 1-D vector
699 /// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion.
700 /// This does not match vectors of n >= 2 rank.
701 ///
702 /// Example:
703 /// ```
704 ///  vector.fma %a, %a, %a : vector<8xf32>
705 /// ```
706 /// is converted to:
707 /// ```
708 ///  llvm.intr.fmuladd %va, %va, %va:
709 ///    (!llvm."<8 x f32>">, !llvm<"<8 x f32>">, !llvm<"<8 x f32>">)
710 ///    -> !llvm."<8 x f32>">
711 /// ```
712 class VectorFMAOp1DConversion : public ConvertOpToLLVMPattern<vector::FMAOp> {
713 public:
714   using ConvertOpToLLVMPattern<vector::FMAOp>::ConvertOpToLLVMPattern;
715 
716   LogicalResult
717   matchAndRewrite(vector::FMAOp fmaOp, ArrayRef<Value> operands,
718                   ConversionPatternRewriter &rewriter) const override {
719     auto adaptor = vector::FMAOpAdaptor(operands);
720     VectorType vType = fmaOp.getVectorType();
721     if (vType.getRank() != 1)
722       return failure();
723     rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>(fmaOp, adaptor.lhs(),
724                                                  adaptor.rhs(), adaptor.acc());
725     return success();
726   }
727 };
728 
729 class VectorInsertElementOpConversion
730     : public ConvertOpToLLVMPattern<vector::InsertElementOp> {
731 public:
732   using ConvertOpToLLVMPattern<vector::InsertElementOp>::ConvertOpToLLVMPattern;
733 
734   LogicalResult
735   matchAndRewrite(vector::InsertElementOp insertEltOp, ArrayRef<Value> operands,
736                   ConversionPatternRewriter &rewriter) const override {
737     auto adaptor = vector::InsertElementOpAdaptor(operands);
738     auto vectorType = insertEltOp.getDestVectorType();
739     auto llvmType = typeConverter->convertType(vectorType);
740 
741     // Bail if result type cannot be lowered.
742     if (!llvmType)
743       return failure();
744 
745     rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
746         insertEltOp, llvmType, adaptor.dest(), adaptor.source(),
747         adaptor.position());
748     return success();
749   }
750 };
751 
752 class VectorInsertOpConversion
753     : public ConvertOpToLLVMPattern<vector::InsertOp> {
754 public:
755   using ConvertOpToLLVMPattern<vector::InsertOp>::ConvertOpToLLVMPattern;
756 
757   LogicalResult
758   matchAndRewrite(vector::InsertOp insertOp, ArrayRef<Value> operands,
759                   ConversionPatternRewriter &rewriter) const override {
760     auto loc = insertOp->getLoc();
761     auto adaptor = vector::InsertOpAdaptor(operands);
762     auto sourceType = insertOp.getSourceType();
763     auto destVectorType = insertOp.getDestVectorType();
764     auto llvmResultType = typeConverter->convertType(destVectorType);
765     auto positionArrayAttr = insertOp.position();
766 
767     // Bail if result type cannot be lowered.
768     if (!llvmResultType)
769       return failure();
770 
771     // Overwrite entire vector with value. Should be handled by folder, but
772     // just to be safe.
773     if (positionArrayAttr.empty()) {
774       rewriter.replaceOp(insertOp, adaptor.source());
775       return success();
776     }
777 
778     // One-shot insertion of a vector into an array (only requires insertvalue).
779     if (sourceType.isa<VectorType>()) {
780       Value inserted = rewriter.create<LLVM::InsertValueOp>(
781           loc, llvmResultType, adaptor.dest(), adaptor.source(),
782           positionArrayAttr);
783       rewriter.replaceOp(insertOp, inserted);
784       return success();
785     }
786 
787     // Potential extraction of 1-D vector from array.
788     auto *context = insertOp->getContext();
789     Value extracted = adaptor.dest();
790     auto positionAttrs = positionArrayAttr.getValue();
791     auto position = positionAttrs.back().cast<IntegerAttr>();
792     auto oneDVectorType = destVectorType;
793     if (positionAttrs.size() > 1) {
794       oneDVectorType = reducedVectorTypeBack(destVectorType);
795       auto nMinusOnePositionAttrs =
796           ArrayAttr::get(context, positionAttrs.drop_back());
797       extracted = rewriter.create<LLVM::ExtractValueOp>(
798           loc, typeConverter->convertType(oneDVectorType), extracted,
799           nMinusOnePositionAttrs);
800     }
801 
802     // Insertion of an element into a 1-D LLVM vector.
803     auto i64Type = IntegerType::get(rewriter.getContext(), 64);
804     auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
805     Value inserted = rewriter.create<LLVM::InsertElementOp>(
806         loc, typeConverter->convertType(oneDVectorType), extracted,
807         adaptor.source(), constant);
808 
809     // Potential insertion of resulting 1-D vector into array.
810     if (positionAttrs.size() > 1) {
811       auto nMinusOnePositionAttrs =
812           ArrayAttr::get(context, positionAttrs.drop_back());
813       inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType,
814                                                       adaptor.dest(), inserted,
815                                                       nMinusOnePositionAttrs);
816     }
817 
818     rewriter.replaceOp(insertOp, inserted);
819     return success();
820   }
821 };
822 
823 /// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1.
824 ///
825 /// Example:
826 /// ```
827 ///   %d = vector.fma %a, %b, %c : vector<2x4xf32>
828 /// ```
829 /// is rewritten into:
830 /// ```
831 ///  %r = splat %f0: vector<2x4xf32>
832 ///  %va = vector.extractvalue %a[0] : vector<2x4xf32>
833 ///  %vb = vector.extractvalue %b[0] : vector<2x4xf32>
834 ///  %vc = vector.extractvalue %c[0] : vector<2x4xf32>
835 ///  %vd = vector.fma %va, %vb, %vc : vector<4xf32>
836 ///  %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32>
837 ///  %va2 = vector.extractvalue %a2[1] : vector<2x4xf32>
838 ///  %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32>
839 ///  %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32>
840 ///  %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32>
841 ///  %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32>
842 ///  // %r3 holds the final value.
843 /// ```
844 class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> {
845 public:
846   using OpRewritePattern<FMAOp>::OpRewritePattern;
847 
848   LogicalResult matchAndRewrite(FMAOp op,
849                                 PatternRewriter &rewriter) const override {
850     auto vType = op.getVectorType();
851     if (vType.getRank() < 2)
852       return failure();
853 
854     auto loc = op.getLoc();
855     auto elemType = vType.getElementType();
856     Value zero = rewriter.create<ConstantOp>(loc, elemType,
857                                              rewriter.getZeroAttr(elemType));
858     Value desc = rewriter.create<SplatOp>(loc, vType, zero);
859     for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) {
860       Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i);
861       Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i);
862       Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i);
863       Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC);
864       desc = rewriter.create<InsertOp>(loc, fma, desc, i);
865     }
866     rewriter.replaceOp(op, desc);
867     return success();
868   }
869 };
870 
871 // When ranks are different, InsertStridedSlice needs to extract a properly
872 // ranked vector from the destination vector into which to insert. This pattern
873 // only takes care of this part and forwards the rest of the conversion to
874 // another pattern that converts InsertStridedSlice for operands of the same
875 // rank.
876 //
877 // RewritePattern for InsertStridedSliceOp where source and destination vectors
878 // have different ranks. In this case:
879 //   1. the proper subvector is extracted from the destination vector
880 //   2. a new InsertStridedSlice op is created to insert the source in the
881 //   destination subvector
882 //   3. the destination subvector is inserted back in the proper place
883 //   4. the op is replaced by the result of step 3.
884 // The new InsertStridedSlice from step 2. will be picked up by a
885 // `VectorInsertStridedSliceOpSameRankRewritePattern`.
886 class VectorInsertStridedSliceOpDifferentRankRewritePattern
887     : public OpRewritePattern<InsertStridedSliceOp> {
888 public:
889   using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
890 
891   LogicalResult matchAndRewrite(InsertStridedSliceOp op,
892                                 PatternRewriter &rewriter) const override {
893     auto srcType = op.getSourceVectorType();
894     auto dstType = op.getDestVectorType();
895 
896     if (op.offsets().getValue().empty())
897       return failure();
898 
899     auto loc = op.getLoc();
900     int64_t rankDiff = dstType.getRank() - srcType.getRank();
901     assert(rankDiff >= 0);
902     if (rankDiff == 0)
903       return failure();
904 
905     int64_t rankRest = dstType.getRank() - rankDiff;
906     // Extract / insert the subvector of matching rank and InsertStridedSlice
907     // on it.
908     Value extracted =
909         rewriter.create<ExtractOp>(loc, op.dest(),
910                                    getI64SubArray(op.offsets(), /*dropFront=*/0,
911                                                   /*dropBack=*/rankRest));
912     // A different pattern will kick in for InsertStridedSlice with matching
913     // ranks.
914     auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>(
915         loc, op.source(), extracted,
916         getI64SubArray(op.offsets(), /*dropFront=*/rankDiff),
917         getI64SubArray(op.strides(), /*dropFront=*/0));
918     rewriter.replaceOpWithNewOp<InsertOp>(
919         op, stridedSliceInnerOp.getResult(), op.dest(),
920         getI64SubArray(op.offsets(), /*dropFront=*/0,
921                        /*dropBack=*/rankRest));
922     return success();
923   }
924 };
925 
926 // RewritePattern for InsertStridedSliceOp where source and destination vectors
927 // have the same rank. In this case, we reduce
928 //   1. the proper subvector is extracted from the destination vector
929 //   2. a new InsertStridedSlice op is created to insert the source in the
930 //   destination subvector
931 //   3. the destination subvector is inserted back in the proper place
932 //   4. the op is replaced by the result of step 3.
933 // The new InsertStridedSlice from step 2. will be picked up by a
934 // `VectorInsertStridedSliceOpSameRankRewritePattern`.
935 class VectorInsertStridedSliceOpSameRankRewritePattern
936     : public OpRewritePattern<InsertStridedSliceOp> {
937 public:
938   VectorInsertStridedSliceOpSameRankRewritePattern(MLIRContext *ctx)
939       : OpRewritePattern<InsertStridedSliceOp>(ctx) {
940     // This pattern creates recursive InsertStridedSliceOp, but the recursion is
941     // bounded as the rank is strictly decreasing.
942     setHasBoundedRewriteRecursion();
943   }
944 
945   LogicalResult matchAndRewrite(InsertStridedSliceOp op,
946                                 PatternRewriter &rewriter) const override {
947     auto srcType = op.getSourceVectorType();
948     auto dstType = op.getDestVectorType();
949 
950     if (op.offsets().getValue().empty())
951       return failure();
952 
953     int64_t rankDiff = dstType.getRank() - srcType.getRank();
954     assert(rankDiff >= 0);
955     if (rankDiff != 0)
956       return failure();
957 
958     if (srcType == dstType) {
959       rewriter.replaceOp(op, op.source());
960       return success();
961     }
962 
963     int64_t offset =
964         op.offsets().getValue().front().cast<IntegerAttr>().getInt();
965     int64_t size = srcType.getShape().front();
966     int64_t stride =
967         op.strides().getValue().front().cast<IntegerAttr>().getInt();
968 
969     auto loc = op.getLoc();
970     Value res = op.dest();
971     // For each slice of the source vector along the most major dimension.
972     for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
973          off += stride, ++idx) {
974       // 1. extract the proper subvector (or element) from source
975       Value extractedSource = extractOne(rewriter, loc, op.source(), idx);
976       if (extractedSource.getType().isa<VectorType>()) {
977         // 2. If we have a vector, extract the proper subvector from destination
978         // Otherwise we are at the element level and no need to recurse.
979         Value extractedDest = extractOne(rewriter, loc, op.dest(), off);
980         // 3. Reduce the problem to lowering a new InsertStridedSlice op with
981         // smaller rank.
982         extractedSource = rewriter.create<InsertStridedSliceOp>(
983             loc, extractedSource, extractedDest,
984             getI64SubArray(op.offsets(), /* dropFront=*/1),
985             getI64SubArray(op.strides(), /* dropFront=*/1));
986       }
987       // 4. Insert the extractedSource into the res vector.
988       res = insertOne(rewriter, loc, extractedSource, res, off);
989     }
990 
991     rewriter.replaceOp(op, res);
992     return success();
993   }
994 };
995 
996 /// Returns the strides if the memory underlying `memRefType` has a contiguous
997 /// static layout.
998 static llvm::Optional<SmallVector<int64_t, 4>>
999 computeContiguousStrides(MemRefType memRefType) {
1000   int64_t offset;
1001   SmallVector<int64_t, 4> strides;
1002   if (failed(getStridesAndOffset(memRefType, strides, offset)))
1003     return None;
1004   if (!strides.empty() && strides.back() != 1)
1005     return None;
1006   // If no layout or identity layout, this is contiguous by definition.
1007   if (memRefType.getAffineMaps().empty() ||
1008       memRefType.getAffineMaps().front().isIdentity())
1009     return strides;
1010 
1011   // Otherwise, we must determine contiguity form shapes. This can only ever
1012   // work in static cases because MemRefType is underspecified to represent
1013   // contiguous dynamic shapes in other ways than with just empty/identity
1014   // layout.
1015   auto sizes = memRefType.getShape();
1016   for (int index = 0, e = strides.size() - 2; index < e; ++index) {
1017     if (ShapedType::isDynamic(sizes[index + 1]) ||
1018         ShapedType::isDynamicStrideOrOffset(strides[index]) ||
1019         ShapedType::isDynamicStrideOrOffset(strides[index + 1]))
1020       return None;
1021     if (strides[index] != strides[index + 1] * sizes[index + 1])
1022       return None;
1023   }
1024   return strides;
1025 }
1026 
1027 class VectorTypeCastOpConversion
1028     : public ConvertOpToLLVMPattern<vector::TypeCastOp> {
1029 public:
1030   using ConvertOpToLLVMPattern<vector::TypeCastOp>::ConvertOpToLLVMPattern;
1031 
1032   LogicalResult
1033   matchAndRewrite(vector::TypeCastOp castOp, ArrayRef<Value> operands,
1034                   ConversionPatternRewriter &rewriter) const override {
1035     auto loc = castOp->getLoc();
1036     MemRefType sourceMemRefType =
1037         castOp.getOperand().getType().cast<MemRefType>();
1038     MemRefType targetMemRefType = castOp.getType();
1039 
1040     // Only static shape casts supported atm.
1041     if (!sourceMemRefType.hasStaticShape() ||
1042         !targetMemRefType.hasStaticShape())
1043       return failure();
1044 
1045     auto llvmSourceDescriptorTy =
1046         operands[0].getType().dyn_cast<LLVM::LLVMStructType>();
1047     if (!llvmSourceDescriptorTy)
1048       return failure();
1049     MemRefDescriptor sourceMemRef(operands[0]);
1050 
1051     auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType)
1052                                       .dyn_cast_or_null<LLVM::LLVMStructType>();
1053     if (!llvmTargetDescriptorTy)
1054       return failure();
1055 
1056     // Only contiguous source buffers supported atm.
1057     auto sourceStrides = computeContiguousStrides(sourceMemRefType);
1058     if (!sourceStrides)
1059       return failure();
1060     auto targetStrides = computeContiguousStrides(targetMemRefType);
1061     if (!targetStrides)
1062       return failure();
1063     // Only support static strides for now, regardless of contiguity.
1064     if (llvm::any_of(*targetStrides, [](int64_t stride) {
1065           return ShapedType::isDynamicStrideOrOffset(stride);
1066         }))
1067       return failure();
1068 
1069     auto int64Ty = IntegerType::get(rewriter.getContext(), 64);
1070 
1071     // Create descriptor.
1072     auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
1073     Type llvmTargetElementTy = desc.getElementPtrType();
1074     // Set allocated ptr.
1075     Value allocated = sourceMemRef.allocatedPtr(rewriter, loc);
1076     allocated =
1077         rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
1078     desc.setAllocatedPtr(rewriter, loc, allocated);
1079     // Set aligned ptr.
1080     Value ptr = sourceMemRef.alignedPtr(rewriter, loc);
1081     ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
1082     desc.setAlignedPtr(rewriter, loc, ptr);
1083     // Fill offset 0.
1084     auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
1085     auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
1086     desc.setOffset(rewriter, loc, zero);
1087 
1088     // Fill size and stride descriptors in memref.
1089     for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
1090       int64_t index = indexedSize.index();
1091       auto sizeAttr =
1092           rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
1093       auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
1094       desc.setSize(rewriter, loc, index, size);
1095       auto strideAttr = rewriter.getIntegerAttr(rewriter.getIndexType(),
1096                                                 (*targetStrides)[index]);
1097       auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
1098       desc.setStride(rewriter, loc, index, stride);
1099     }
1100 
1101     rewriter.replaceOp(castOp, {desc});
1102     return success();
1103   }
1104 };
1105 
1106 /// Conversion pattern that converts a 1-D vector transfer read/write op into a
1107 /// a masked or unmasked read/write.
1108 template <typename ConcreteOp>
1109 class VectorTransferConversion : public ConvertOpToLLVMPattern<ConcreteOp> {
1110 public:
1111   using ConvertOpToLLVMPattern<ConcreteOp>::ConvertOpToLLVMPattern;
1112 
1113   LogicalResult
1114   matchAndRewrite(ConcreteOp xferOp, ArrayRef<Value> operands,
1115                   ConversionPatternRewriter &rewriter) const override {
1116     auto adaptor = getTransferOpAdapter(xferOp, operands);
1117 
1118     if (xferOp.getVectorType().getRank() > 1 ||
1119         llvm::size(xferOp.indices()) == 0)
1120       return failure();
1121     if (xferOp.permutation_map() !=
1122         AffineMap::getMinorIdentityMap(xferOp.permutation_map().getNumInputs(),
1123                                        xferOp.getVectorType().getRank(),
1124                                        xferOp->getContext()))
1125       return failure();
1126     auto memRefType = xferOp.getShapedType().template dyn_cast<MemRefType>();
1127     if (!memRefType)
1128       return failure();
1129     // Only contiguous source tensors supported atm.
1130     auto strides = computeContiguousStrides(memRefType);
1131     if (!strides)
1132       return failure();
1133     // Out-of-bounds dims are handled by MaterializeTransferMask.
1134     if (xferOp.hasOutOfBoundsDim())
1135       return failure();
1136 
1137     auto toLLVMTy = [&](Type t) {
1138       return this->getTypeConverter()->convertType(t);
1139     };
1140 
1141     Location loc = xferOp->getLoc();
1142 
1143     if (auto memrefVectorElementType =
1144             memRefType.getElementType().template dyn_cast<VectorType>()) {
1145       // Memref has vector element type.
1146       if (memrefVectorElementType.getElementType() !=
1147           xferOp.getVectorType().getElementType())
1148         return failure();
1149 #ifndef NDEBUG
1150       // Check that memref vector type is a suffix of 'vectorType.
1151       unsigned memrefVecEltRank = memrefVectorElementType.getRank();
1152       unsigned resultVecRank = xferOp.getVectorType().getRank();
1153       assert(memrefVecEltRank <= resultVecRank);
1154       // TODO: Move this to isSuffix in Vector/Utils.h.
1155       unsigned rankOffset = resultVecRank - memrefVecEltRank;
1156       auto memrefVecEltShape = memrefVectorElementType.getShape();
1157       auto resultVecShape = xferOp.getVectorType().getShape();
1158       for (unsigned i = 0; i < memrefVecEltRank; ++i)
1159         assert(memrefVecEltShape[i] != resultVecShape[rankOffset + i] &&
1160                "memref vector element shape should match suffix of vector "
1161                "result shape.");
1162 #endif // ifndef NDEBUG
1163     }
1164 
1165     // Get the source/dst address as an LLVM vector pointer.
1166     VectorType vtp = xferOp.getVectorType();
1167     Value dataPtr = this->getStridedElementPtr(
1168         loc, memRefType, adaptor.source(), adaptor.indices(), rewriter);
1169     Value vectorDataPtr =
1170         castDataPtr(rewriter, loc, dataPtr, memRefType, toLLVMTy(vtp));
1171 
1172     // Rewrite as an unmasked masked read / write.
1173     if (!xferOp.mask())
1174       return replaceTransferOpWithLoadOrStore(rewriter,
1175                                               *this->getTypeConverter(), loc,
1176                                               xferOp, operands, vectorDataPtr);
1177 
1178     // Rewrite as a masked read / write.
1179     return replaceTransferOpWithMasked(rewriter, *this->getTypeConverter(), loc,
1180                                        xferOp, operands, vectorDataPtr,
1181                                        xferOp.mask());
1182   }
1183 };
1184 
1185 class VectorPrintOpConversion : public ConvertOpToLLVMPattern<vector::PrintOp> {
1186 public:
1187   using ConvertOpToLLVMPattern<vector::PrintOp>::ConvertOpToLLVMPattern;
1188 
1189   // Proof-of-concept lowering implementation that relies on a small
1190   // runtime support library, which only needs to provide a few
1191   // printing methods (single value for all data types, opening/closing
1192   // bracket, comma, newline). The lowering fully unrolls a vector
1193   // in terms of these elementary printing operations. The advantage
1194   // of this approach is that the library can remain unaware of all
1195   // low-level implementation details of vectors while still supporting
1196   // output of any shaped and dimensioned vector. Due to full unrolling,
1197   // this approach is less suited for very large vectors though.
1198   //
1199   // TODO: rely solely on libc in future? something else?
1200   //
1201   LogicalResult
1202   matchAndRewrite(vector::PrintOp printOp, ArrayRef<Value> operands,
1203                   ConversionPatternRewriter &rewriter) const override {
1204     auto adaptor = vector::PrintOpAdaptor(operands);
1205     Type printType = printOp.getPrintType();
1206 
1207     if (typeConverter->convertType(printType) == nullptr)
1208       return failure();
1209 
1210     // Make sure element type has runtime support.
1211     PrintConversion conversion = PrintConversion::None;
1212     VectorType vectorType = printType.dyn_cast<VectorType>();
1213     Type eltType = vectorType ? vectorType.getElementType() : printType;
1214     Operation *printer;
1215     if (eltType.isF32()) {
1216       printer =
1217           LLVM::lookupOrCreatePrintF32Fn(printOp->getParentOfType<ModuleOp>());
1218     } else if (eltType.isF64()) {
1219       printer =
1220           LLVM::lookupOrCreatePrintF64Fn(printOp->getParentOfType<ModuleOp>());
1221     } else if (eltType.isIndex()) {
1222       printer =
1223           LLVM::lookupOrCreatePrintU64Fn(printOp->getParentOfType<ModuleOp>());
1224     } else if (auto intTy = eltType.dyn_cast<IntegerType>()) {
1225       // Integers need a zero or sign extension on the operand
1226       // (depending on the source type) as well as a signed or
1227       // unsigned print method. Up to 64-bit is supported.
1228       unsigned width = intTy.getWidth();
1229       if (intTy.isUnsigned()) {
1230         if (width <= 64) {
1231           if (width < 64)
1232             conversion = PrintConversion::ZeroExt64;
1233           printer = LLVM::lookupOrCreatePrintU64Fn(
1234               printOp->getParentOfType<ModuleOp>());
1235         } else {
1236           return failure();
1237         }
1238       } else {
1239         assert(intTy.isSignless() || intTy.isSigned());
1240         if (width <= 64) {
1241           // Note that we *always* zero extend booleans (1-bit integers),
1242           // so that true/false is printed as 1/0 rather than -1/0.
1243           if (width == 1)
1244             conversion = PrintConversion::ZeroExt64;
1245           else if (width < 64)
1246             conversion = PrintConversion::SignExt64;
1247           printer = LLVM::lookupOrCreatePrintI64Fn(
1248               printOp->getParentOfType<ModuleOp>());
1249         } else {
1250           return failure();
1251         }
1252       }
1253     } else {
1254       return failure();
1255     }
1256 
1257     // Unroll vector into elementary print calls.
1258     int64_t rank = vectorType ? vectorType.getRank() : 0;
1259     emitRanks(rewriter, printOp, adaptor.source(), vectorType, printer, rank,
1260               conversion);
1261     emitCall(rewriter, printOp->getLoc(),
1262              LLVM::lookupOrCreatePrintNewlineFn(
1263                  printOp->getParentOfType<ModuleOp>()));
1264     rewriter.eraseOp(printOp);
1265     return success();
1266   }
1267 
1268 private:
1269   enum class PrintConversion {
1270     // clang-format off
1271     None,
1272     ZeroExt64,
1273     SignExt64
1274     // clang-format on
1275   };
1276 
1277   void emitRanks(ConversionPatternRewriter &rewriter, Operation *op,
1278                  Value value, VectorType vectorType, Operation *printer,
1279                  int64_t rank, PrintConversion conversion) const {
1280     Location loc = op->getLoc();
1281     if (rank == 0) {
1282       switch (conversion) {
1283       case PrintConversion::ZeroExt64:
1284         value = rewriter.create<ZeroExtendIOp>(
1285             loc, value, IntegerType::get(rewriter.getContext(), 64));
1286         break;
1287       case PrintConversion::SignExt64:
1288         value = rewriter.create<SignExtendIOp>(
1289             loc, value, IntegerType::get(rewriter.getContext(), 64));
1290         break;
1291       case PrintConversion::None:
1292         break;
1293       }
1294       emitCall(rewriter, loc, printer, value);
1295       return;
1296     }
1297 
1298     emitCall(rewriter, loc,
1299              LLVM::lookupOrCreatePrintOpenFn(op->getParentOfType<ModuleOp>()));
1300     Operation *printComma =
1301         LLVM::lookupOrCreatePrintCommaFn(op->getParentOfType<ModuleOp>());
1302     int64_t dim = vectorType.getDimSize(0);
1303     for (int64_t d = 0; d < dim; ++d) {
1304       auto reducedType =
1305           rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr;
1306       auto llvmType = typeConverter->convertType(
1307           rank > 1 ? reducedType : vectorType.getElementType());
1308       Value nestedVal = extractOne(rewriter, *getTypeConverter(), loc, value,
1309                                    llvmType, rank, d);
1310       emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1,
1311                 conversion);
1312       if (d != dim - 1)
1313         emitCall(rewriter, loc, printComma);
1314     }
1315     emitCall(rewriter, loc,
1316              LLVM::lookupOrCreatePrintCloseFn(op->getParentOfType<ModuleOp>()));
1317   }
1318 
1319   // Helper to emit a call.
1320   static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
1321                        Operation *ref, ValueRange params = ValueRange()) {
1322     rewriter.create<LLVM::CallOp>(loc, TypeRange(),
1323                                   rewriter.getSymbolRefAttr(ref), params);
1324   }
1325 };
1326 
1327 /// Progressive lowering of ExtractStridedSliceOp to either:
1328 ///   1. express single offset extract as a direct shuffle.
1329 ///   2. extract + lower rank strided_slice + insert for the n-D case.
1330 class VectorExtractStridedSliceOpConversion
1331     : public OpRewritePattern<ExtractStridedSliceOp> {
1332 public:
1333   VectorExtractStridedSliceOpConversion(MLIRContext *ctx)
1334       : OpRewritePattern<ExtractStridedSliceOp>(ctx) {
1335     // This pattern creates recursive ExtractStridedSliceOp, but the recursion
1336     // is bounded as the rank is strictly decreasing.
1337     setHasBoundedRewriteRecursion();
1338   }
1339 
1340   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
1341                                 PatternRewriter &rewriter) const override {
1342     auto dstType = op.getType();
1343 
1344     assert(!op.offsets().getValue().empty() && "Unexpected empty offsets");
1345 
1346     int64_t offset =
1347         op.offsets().getValue().front().cast<IntegerAttr>().getInt();
1348     int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt();
1349     int64_t stride =
1350         op.strides().getValue().front().cast<IntegerAttr>().getInt();
1351 
1352     auto loc = op.getLoc();
1353     auto elemType = dstType.getElementType();
1354     assert(elemType.isSignlessIntOrIndexOrFloat());
1355 
1356     // Single offset can be more efficiently shuffled.
1357     if (op.offsets().getValue().size() == 1) {
1358       SmallVector<int64_t, 4> offsets;
1359       offsets.reserve(size);
1360       for (int64_t off = offset, e = offset + size * stride; off < e;
1361            off += stride)
1362         offsets.push_back(off);
1363       rewriter.replaceOpWithNewOp<ShuffleOp>(op, dstType, op.vector(),
1364                                              op.vector(),
1365                                              rewriter.getI64ArrayAttr(offsets));
1366       return success();
1367     }
1368 
1369     // Extract/insert on a lower ranked extract strided slice op.
1370     Value zero = rewriter.create<ConstantOp>(loc, elemType,
1371                                              rewriter.getZeroAttr(elemType));
1372     Value res = rewriter.create<SplatOp>(loc, dstType, zero);
1373     for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
1374          off += stride, ++idx) {
1375       Value one = extractOne(rewriter, loc, op.vector(), off);
1376       Value extracted = rewriter.create<ExtractStridedSliceOp>(
1377           loc, one, getI64SubArray(op.offsets(), /* dropFront=*/1),
1378           getI64SubArray(op.sizes(), /* dropFront=*/1),
1379           getI64SubArray(op.strides(), /* dropFront=*/1));
1380       res = insertOne(rewriter, loc, extracted, res, idx);
1381     }
1382     rewriter.replaceOp(op, res);
1383     return success();
1384   }
1385 };
1386 
1387 } // namespace
1388 
1389 /// Populate the given list with patterns that convert from Vector to LLVM.
1390 void mlir::populateVectorToLLVMConversionPatterns(
1391     LLVMTypeConverter &converter, RewritePatternSet &patterns,
1392     bool reassociateFPReductions) {
1393   MLIRContext *ctx = converter.getDialect()->getContext();
1394   patterns.add<VectorFMAOpNDRewritePattern,
1395                VectorInsertStridedSliceOpDifferentRankRewritePattern,
1396                VectorInsertStridedSliceOpSameRankRewritePattern,
1397                VectorExtractStridedSliceOpConversion>(ctx);
1398   patterns.add<VectorReductionOpConversion>(converter, reassociateFPReductions);
1399   patterns
1400       .add<VectorBitCastOpConversion, VectorShuffleOpConversion,
1401            VectorExtractElementOpConversion, VectorExtractOpConversion,
1402            VectorFMAOp1DConversion, VectorInsertElementOpConversion,
1403            VectorInsertOpConversion, VectorPrintOpConversion,
1404            VectorTypeCastOpConversion,
1405            VectorLoadStoreConversion<vector::LoadOp, vector::LoadOpAdaptor>,
1406            VectorLoadStoreConversion<vector::MaskedLoadOp,
1407                                      vector::MaskedLoadOpAdaptor>,
1408            VectorLoadStoreConversion<vector::StoreOp, vector::StoreOpAdaptor>,
1409            VectorLoadStoreConversion<vector::MaskedStoreOp,
1410                                      vector::MaskedStoreOpAdaptor>,
1411            VectorGatherOpConversion, VectorScatterOpConversion,
1412            VectorExpandLoadOpConversion, VectorCompressStoreOpConversion,
1413            VectorTransferConversion<TransferReadOp>,
1414            VectorTransferConversion<TransferWriteOp>>(converter);
1415 }
1416 
1417 void mlir::populateVectorToLLVMMatrixConversionPatterns(
1418     LLVMTypeConverter &converter, RewritePatternSet &patterns) {
1419   patterns.add<VectorMatmulOpConversion>(converter);
1420   patterns.add<VectorFlatTransposeOpConversion>(converter);
1421 }
1422