xref: /llvm-project/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp (revision 65a3f289397fd7d6cfcb4ddfdf324e37cf90cad7)
1 //===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
10 
11 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
12 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
13 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
14 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
15 #include "mlir/Dialect/MemRef/IR/MemRef.h"
16 #include "mlir/Dialect/StandardOps/IR/Ops.h"
17 #include "mlir/Dialect/Vector/VectorOps.h"
18 #include "mlir/IR/BuiltinTypes.h"
19 #include "mlir/Target/LLVMIR/TypeTranslation.h"
20 #include "mlir/Transforms/DialectConversion.h"
21 
22 using namespace mlir;
23 using namespace mlir::vector;
24 
25 // Helper to reduce vector type by one rank at front.
26 static VectorType reducedVectorTypeFront(VectorType tp) {
27   assert((tp.getRank() > 1) && "unlowerable vector type");
28   return VectorType::get(tp.getShape().drop_front(), tp.getElementType());
29 }
30 
31 // Helper to reduce vector type by *all* but one rank at back.
32 static VectorType reducedVectorTypeBack(VectorType tp) {
33   assert((tp.getRank() > 1) && "unlowerable vector type");
34   return VectorType::get(tp.getShape().take_back(), tp.getElementType());
35 }
36 
37 // Helper that picks the proper sequence for inserting.
38 static Value insertOne(ConversionPatternRewriter &rewriter,
39                        LLVMTypeConverter &typeConverter, Location loc,
40                        Value val1, Value val2, Type llvmType, int64_t rank,
41                        int64_t pos) {
42   if (rank == 1) {
43     auto idxType = rewriter.getIndexType();
44     auto constant = rewriter.create<LLVM::ConstantOp>(
45         loc, typeConverter.convertType(idxType),
46         rewriter.getIntegerAttr(idxType, pos));
47     return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2,
48                                                   constant);
49   }
50   return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2,
51                                               rewriter.getI64ArrayAttr(pos));
52 }
53 
54 // Helper that picks the proper sequence for inserting.
55 static Value insertOne(PatternRewriter &rewriter, Location loc, Value from,
56                        Value into, int64_t offset) {
57   auto vectorType = into.getType().cast<VectorType>();
58   if (vectorType.getRank() > 1)
59     return rewriter.create<InsertOp>(loc, from, into, offset);
60   return rewriter.create<vector::InsertElementOp>(
61       loc, vectorType, from, into,
62       rewriter.create<ConstantIndexOp>(loc, offset));
63 }
64 
65 // Helper that picks the proper sequence for extracting.
66 static Value extractOne(ConversionPatternRewriter &rewriter,
67                         LLVMTypeConverter &typeConverter, Location loc,
68                         Value val, Type llvmType, int64_t rank, int64_t pos) {
69   if (rank == 1) {
70     auto idxType = rewriter.getIndexType();
71     auto constant = rewriter.create<LLVM::ConstantOp>(
72         loc, typeConverter.convertType(idxType),
73         rewriter.getIntegerAttr(idxType, pos));
74     return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val,
75                                                    constant);
76   }
77   return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val,
78                                                rewriter.getI64ArrayAttr(pos));
79 }
80 
81 // Helper that picks the proper sequence for extracting.
82 static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector,
83                         int64_t offset) {
84   auto vectorType = vector.getType().cast<VectorType>();
85   if (vectorType.getRank() > 1)
86     return rewriter.create<ExtractOp>(loc, vector, offset);
87   return rewriter.create<vector::ExtractElementOp>(
88       loc, vectorType.getElementType(), vector,
89       rewriter.create<ConstantIndexOp>(loc, offset));
90 }
91 
92 // Helper that returns a subset of `arrayAttr` as a vector of int64_t.
93 // TODO: Better support for attribute subtype forwarding + slicing.
94 static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr,
95                                               unsigned dropFront = 0,
96                                               unsigned dropBack = 0) {
97   assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds");
98   auto range = arrayAttr.getAsRange<IntegerAttr>();
99   SmallVector<int64_t, 4> res;
100   res.reserve(arrayAttr.size() - dropFront - dropBack);
101   for (auto it = range.begin() + dropFront, eit = range.end() - dropBack;
102        it != eit; ++it)
103     res.push_back((*it).getValue().getSExtValue());
104   return res;
105 }
106 
107 // Helper that returns data layout alignment of a memref.
108 LogicalResult getMemRefAlignment(LLVMTypeConverter &typeConverter,
109                                  MemRefType memrefType, unsigned &align) {
110   Type elementTy = typeConverter.convertType(memrefType.getElementType());
111   if (!elementTy)
112     return failure();
113 
114   // TODO: this should use the MLIR data layout when it becomes available and
115   // stop depending on translation.
116   llvm::LLVMContext llvmContext;
117   align = LLVM::TypeToLLVMIRTranslator(llvmContext)
118               .getPreferredAlignment(elementTy, typeConverter.getDataLayout());
119   return success();
120 }
121 
122 // Add an index vector component to a base pointer. This almost always succeeds
123 // unless the last stride is non-unit or the memory space is not zero.
124 static LogicalResult getIndexedPtrs(ConversionPatternRewriter &rewriter,
125                                     Location loc, Value memref, Value base,
126                                     Value index, MemRefType memRefType,
127                                     VectorType vType, Value &ptrs) {
128   int64_t offset;
129   SmallVector<int64_t, 4> strides;
130   auto successStrides = getStridesAndOffset(memRefType, strides, offset);
131   if (failed(successStrides) || strides.back() != 1 ||
132       memRefType.getMemorySpaceAsInt() != 0)
133     return failure();
134   auto pType = MemRefDescriptor(memref).getElementPtrType();
135   auto ptrsType = LLVM::getFixedVectorType(pType, vType.getDimSize(0));
136   ptrs = rewriter.create<LLVM::GEPOp>(loc, ptrsType, base, index);
137   return success();
138 }
139 
140 // Casts a strided element pointer to a vector pointer.  The vector pointer
141 // will be in the same address space as the incoming memref type.
142 static Value castDataPtr(ConversionPatternRewriter &rewriter, Location loc,
143                          Value ptr, MemRefType memRefType, Type vt) {
144   auto pType = LLVM::LLVMPointerType::get(vt, memRefType.getMemorySpaceAsInt());
145   return rewriter.create<LLVM::BitcastOp>(loc, pType, ptr);
146 }
147 
148 static LogicalResult
149 replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter,
150                                  LLVMTypeConverter &typeConverter, Location loc,
151                                  TransferReadOp xferOp,
152                                  ArrayRef<Value> operands, Value dataPtr) {
153   unsigned align;
154   if (failed(getMemRefAlignment(
155           typeConverter, xferOp.getShapedType().cast<MemRefType>(), align)))
156     return failure();
157   rewriter.replaceOpWithNewOp<LLVM::LoadOp>(xferOp, dataPtr, align);
158   return success();
159 }
160 
161 static LogicalResult
162 replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter,
163                             LLVMTypeConverter &typeConverter, Location loc,
164                             TransferReadOp xferOp, ArrayRef<Value> operands,
165                             Value dataPtr, Value mask) {
166   VectorType fillType = xferOp.getVectorType();
167   Value fill = rewriter.create<SplatOp>(loc, fillType, xferOp.padding());
168 
169   Type vecTy = typeConverter.convertType(xferOp.getVectorType());
170   if (!vecTy)
171     return failure();
172 
173   unsigned align;
174   if (failed(getMemRefAlignment(
175           typeConverter, xferOp.getShapedType().cast<MemRefType>(), align)))
176     return failure();
177 
178   rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
179       xferOp, vecTy, dataPtr, mask, ValueRange{fill},
180       rewriter.getI32IntegerAttr(align));
181   return success();
182 }
183 
184 static LogicalResult
185 replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter,
186                                  LLVMTypeConverter &typeConverter, Location loc,
187                                  TransferWriteOp xferOp,
188                                  ArrayRef<Value> operands, Value dataPtr) {
189   unsigned align;
190   if (failed(getMemRefAlignment(
191           typeConverter, xferOp.getShapedType().cast<MemRefType>(), align)))
192     return failure();
193   auto adaptor = TransferWriteOpAdaptor(operands, xferOp->getAttrDictionary());
194   rewriter.replaceOpWithNewOp<LLVM::StoreOp>(xferOp, adaptor.vector(), dataPtr,
195                                              align);
196   return success();
197 }
198 
199 static LogicalResult
200 replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter,
201                             LLVMTypeConverter &typeConverter, Location loc,
202                             TransferWriteOp xferOp, ArrayRef<Value> operands,
203                             Value dataPtr, Value mask) {
204   unsigned align;
205   if (failed(getMemRefAlignment(
206           typeConverter, xferOp.getShapedType().cast<MemRefType>(), align)))
207     return failure();
208 
209   auto adaptor = TransferWriteOpAdaptor(operands, xferOp->getAttrDictionary());
210   rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
211       xferOp, adaptor.vector(), dataPtr, mask,
212       rewriter.getI32IntegerAttr(align));
213   return success();
214 }
215 
216 static TransferReadOpAdaptor getTransferOpAdapter(TransferReadOp xferOp,
217                                                   ArrayRef<Value> operands) {
218   return TransferReadOpAdaptor(operands, xferOp->getAttrDictionary());
219 }
220 
221 static TransferWriteOpAdaptor getTransferOpAdapter(TransferWriteOp xferOp,
222                                                    ArrayRef<Value> operands) {
223   return TransferWriteOpAdaptor(operands, xferOp->getAttrDictionary());
224 }
225 
226 namespace {
227 
228 /// Conversion pattern for a vector.bitcast.
229 class VectorBitCastOpConversion
230     : public ConvertOpToLLVMPattern<vector::BitCastOp> {
231 public:
232   using ConvertOpToLLVMPattern<vector::BitCastOp>::ConvertOpToLLVMPattern;
233 
234   LogicalResult
235   matchAndRewrite(vector::BitCastOp bitCastOp, ArrayRef<Value> operands,
236                   ConversionPatternRewriter &rewriter) const override {
237     // Only 1-D vectors can be lowered to LLVM.
238     VectorType resultTy = bitCastOp.getType();
239     if (resultTy.getRank() != 1)
240       return failure();
241     Type newResultTy = typeConverter->convertType(resultTy);
242     rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(bitCastOp, newResultTy,
243                                                  operands[0]);
244     return success();
245   }
246 };
247 
248 /// Conversion pattern for a vector.matrix_multiply.
249 /// This is lowered directly to the proper llvm.intr.matrix.multiply.
250 class VectorMatmulOpConversion
251     : public ConvertOpToLLVMPattern<vector::MatmulOp> {
252 public:
253   using ConvertOpToLLVMPattern<vector::MatmulOp>::ConvertOpToLLVMPattern;
254 
255   LogicalResult
256   matchAndRewrite(vector::MatmulOp matmulOp, ArrayRef<Value> operands,
257                   ConversionPatternRewriter &rewriter) const override {
258     auto adaptor = vector::MatmulOpAdaptor(operands);
259     rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>(
260         matmulOp, typeConverter->convertType(matmulOp.res().getType()),
261         adaptor.lhs(), adaptor.rhs(), matmulOp.lhs_rows(),
262         matmulOp.lhs_columns(), matmulOp.rhs_columns());
263     return success();
264   }
265 };
266 
267 /// Conversion pattern for a vector.flat_transpose.
268 /// This is lowered directly to the proper llvm.intr.matrix.transpose.
269 class VectorFlatTransposeOpConversion
270     : public ConvertOpToLLVMPattern<vector::FlatTransposeOp> {
271 public:
272   using ConvertOpToLLVMPattern<vector::FlatTransposeOp>::ConvertOpToLLVMPattern;
273 
274   LogicalResult
275   matchAndRewrite(vector::FlatTransposeOp transOp, ArrayRef<Value> operands,
276                   ConversionPatternRewriter &rewriter) const override {
277     auto adaptor = vector::FlatTransposeOpAdaptor(operands);
278     rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>(
279         transOp, typeConverter->convertType(transOp.res().getType()),
280         adaptor.matrix(), transOp.rows(), transOp.columns());
281     return success();
282   }
283 };
284 
285 /// Overloaded utility that replaces a vector.load, vector.store,
286 /// vector.maskedload and vector.maskedstore with their respective LLVM
287 /// couterparts.
288 static void replaceLoadOrStoreOp(vector::LoadOp loadOp,
289                                  vector::LoadOpAdaptor adaptor,
290                                  VectorType vectorTy, Value ptr, unsigned align,
291                                  ConversionPatternRewriter &rewriter) {
292   rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, ptr, align);
293 }
294 
295 static void replaceLoadOrStoreOp(vector::MaskedLoadOp loadOp,
296                                  vector::MaskedLoadOpAdaptor adaptor,
297                                  VectorType vectorTy, Value ptr, unsigned align,
298                                  ConversionPatternRewriter &rewriter) {
299   rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
300       loadOp, vectorTy, ptr, adaptor.mask(), adaptor.pass_thru(), align);
301 }
302 
303 static void replaceLoadOrStoreOp(vector::StoreOp storeOp,
304                                  vector::StoreOpAdaptor adaptor,
305                                  VectorType vectorTy, Value ptr, unsigned align,
306                                  ConversionPatternRewriter &rewriter) {
307   rewriter.replaceOpWithNewOp<LLVM::StoreOp>(storeOp, adaptor.valueToStore(),
308                                              ptr, align);
309 }
310 
311 static void replaceLoadOrStoreOp(vector::MaskedStoreOp storeOp,
312                                  vector::MaskedStoreOpAdaptor adaptor,
313                                  VectorType vectorTy, Value ptr, unsigned align,
314                                  ConversionPatternRewriter &rewriter) {
315   rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
316       storeOp, adaptor.valueToStore(), ptr, adaptor.mask(), align);
317 }
318 
319 /// Conversion pattern for a vector.load, vector.store, vector.maskedload, and
320 /// vector.maskedstore.
321 template <class LoadOrStoreOp, class LoadOrStoreOpAdaptor>
322 class VectorLoadStoreConversion : public ConvertOpToLLVMPattern<LoadOrStoreOp> {
323 public:
324   using ConvertOpToLLVMPattern<LoadOrStoreOp>::ConvertOpToLLVMPattern;
325 
326   LogicalResult
327   matchAndRewrite(LoadOrStoreOp loadOrStoreOp, ArrayRef<Value> operands,
328                   ConversionPatternRewriter &rewriter) const override {
329     // Only 1-D vectors can be lowered to LLVM.
330     VectorType vectorTy = loadOrStoreOp.getVectorType();
331     if (vectorTy.getRank() > 1)
332       return failure();
333 
334     auto loc = loadOrStoreOp->getLoc();
335     auto adaptor = LoadOrStoreOpAdaptor(operands);
336     MemRefType memRefTy = loadOrStoreOp.getMemRefType();
337 
338     // Resolve alignment.
339     unsigned align;
340     if (failed(getMemRefAlignment(*this->getTypeConverter(), memRefTy, align)))
341       return failure();
342 
343     // Resolve address.
344     auto vtype = this->typeConverter->convertType(loadOrStoreOp.getVectorType())
345                      .template cast<VectorType>();
346     Value dataPtr = this->getStridedElementPtr(loc, memRefTy, adaptor.base(),
347                                                adaptor.indices(), rewriter);
348     Value ptr = castDataPtr(rewriter, loc, dataPtr, memRefTy, vtype);
349 
350     replaceLoadOrStoreOp(loadOrStoreOp, adaptor, vtype, ptr, align, rewriter);
351     return success();
352   }
353 };
354 
355 /// Conversion pattern for a vector.gather.
356 class VectorGatherOpConversion
357     : public ConvertOpToLLVMPattern<vector::GatherOp> {
358 public:
359   using ConvertOpToLLVMPattern<vector::GatherOp>::ConvertOpToLLVMPattern;
360 
361   LogicalResult
362   matchAndRewrite(vector::GatherOp gather, ArrayRef<Value> operands,
363                   ConversionPatternRewriter &rewriter) const override {
364     auto loc = gather->getLoc();
365     auto adaptor = vector::GatherOpAdaptor(operands);
366     MemRefType memRefType = gather.getMemRefType();
367 
368     // Resolve alignment.
369     unsigned align;
370     if (failed(getMemRefAlignment(*getTypeConverter(), memRefType, align)))
371       return failure();
372 
373     // Resolve address.
374     Value ptrs;
375     VectorType vType = gather.getVectorType();
376     Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
377                                      adaptor.indices(), rewriter);
378     if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), ptr,
379                               adaptor.index_vec(), memRefType, vType, ptrs)))
380       return failure();
381 
382     // Replace with the gather intrinsic.
383     rewriter.replaceOpWithNewOp<LLVM::masked_gather>(
384         gather, typeConverter->convertType(vType), ptrs, adaptor.mask(),
385         adaptor.pass_thru(), rewriter.getI32IntegerAttr(align));
386     return success();
387   }
388 };
389 
390 /// Conversion pattern for a vector.scatter.
391 class VectorScatterOpConversion
392     : public ConvertOpToLLVMPattern<vector::ScatterOp> {
393 public:
394   using ConvertOpToLLVMPattern<vector::ScatterOp>::ConvertOpToLLVMPattern;
395 
396   LogicalResult
397   matchAndRewrite(vector::ScatterOp scatter, ArrayRef<Value> operands,
398                   ConversionPatternRewriter &rewriter) const override {
399     auto loc = scatter->getLoc();
400     auto adaptor = vector::ScatterOpAdaptor(operands);
401     MemRefType memRefType = scatter.getMemRefType();
402 
403     // Resolve alignment.
404     unsigned align;
405     if (failed(getMemRefAlignment(*getTypeConverter(), memRefType, align)))
406       return failure();
407 
408     // Resolve address.
409     Value ptrs;
410     VectorType vType = scatter.getVectorType();
411     Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
412                                      adaptor.indices(), rewriter);
413     if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), ptr,
414                               adaptor.index_vec(), memRefType, vType, ptrs)))
415       return failure();
416 
417     // Replace with the scatter intrinsic.
418     rewriter.replaceOpWithNewOp<LLVM::masked_scatter>(
419         scatter, adaptor.valueToStore(), ptrs, adaptor.mask(),
420         rewriter.getI32IntegerAttr(align));
421     return success();
422   }
423 };
424 
425 /// Conversion pattern for a vector.expandload.
426 class VectorExpandLoadOpConversion
427     : public ConvertOpToLLVMPattern<vector::ExpandLoadOp> {
428 public:
429   using ConvertOpToLLVMPattern<vector::ExpandLoadOp>::ConvertOpToLLVMPattern;
430 
431   LogicalResult
432   matchAndRewrite(vector::ExpandLoadOp expand, ArrayRef<Value> operands,
433                   ConversionPatternRewriter &rewriter) const override {
434     auto loc = expand->getLoc();
435     auto adaptor = vector::ExpandLoadOpAdaptor(operands);
436     MemRefType memRefType = expand.getMemRefType();
437 
438     // Resolve address.
439     auto vtype = typeConverter->convertType(expand.getVectorType());
440     Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
441                                      adaptor.indices(), rewriter);
442 
443     rewriter.replaceOpWithNewOp<LLVM::masked_expandload>(
444         expand, vtype, ptr, adaptor.mask(), adaptor.pass_thru());
445     return success();
446   }
447 };
448 
449 /// Conversion pattern for a vector.compressstore.
450 class VectorCompressStoreOpConversion
451     : public ConvertOpToLLVMPattern<vector::CompressStoreOp> {
452 public:
453   using ConvertOpToLLVMPattern<vector::CompressStoreOp>::ConvertOpToLLVMPattern;
454 
455   LogicalResult
456   matchAndRewrite(vector::CompressStoreOp compress, ArrayRef<Value> operands,
457                   ConversionPatternRewriter &rewriter) const override {
458     auto loc = compress->getLoc();
459     auto adaptor = vector::CompressStoreOpAdaptor(operands);
460     MemRefType memRefType = compress.getMemRefType();
461 
462     // Resolve address.
463     Value ptr = getStridedElementPtr(loc, memRefType, adaptor.base(),
464                                      adaptor.indices(), rewriter);
465 
466     rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>(
467         compress, adaptor.valueToStore(), ptr, adaptor.mask());
468     return success();
469   }
470 };
471 
472 /// Conversion pattern for all vector reductions.
473 class VectorReductionOpConversion
474     : public ConvertOpToLLVMPattern<vector::ReductionOp> {
475 public:
476   explicit VectorReductionOpConversion(LLVMTypeConverter &typeConv,
477                                        bool reassociateFPRed)
478       : ConvertOpToLLVMPattern<vector::ReductionOp>(typeConv),
479         reassociateFPReductions(reassociateFPRed) {}
480 
481   LogicalResult
482   matchAndRewrite(vector::ReductionOp reductionOp, ArrayRef<Value> operands,
483                   ConversionPatternRewriter &rewriter) const override {
484     auto kind = reductionOp.kind();
485     Type eltType = reductionOp.dest().getType();
486     Type llvmType = typeConverter->convertType(eltType);
487     if (eltType.isIntOrIndex()) {
488       // Integer reductions: add/mul/min/max/and/or/xor.
489       if (kind == "add")
490         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_add>(
491             reductionOp, llvmType, operands[0]);
492       else if (kind == "mul")
493         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_mul>(
494             reductionOp, llvmType, operands[0]);
495       else if (kind == "min" &&
496                (eltType.isIndex() || eltType.isUnsignedInteger()))
497         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umin>(
498             reductionOp, llvmType, operands[0]);
499       else if (kind == "min")
500         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smin>(
501             reductionOp, llvmType, operands[0]);
502       else if (kind == "max" &&
503                (eltType.isIndex() || eltType.isUnsignedInteger()))
504         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_umax>(
505             reductionOp, llvmType, operands[0]);
506       else if (kind == "max")
507         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_smax>(
508             reductionOp, llvmType, operands[0]);
509       else if (kind == "and")
510         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_and>(
511             reductionOp, llvmType, operands[0]);
512       else if (kind == "or")
513         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_or>(
514             reductionOp, llvmType, operands[0]);
515       else if (kind == "xor")
516         rewriter.replaceOpWithNewOp<LLVM::vector_reduce_xor>(
517             reductionOp, llvmType, operands[0]);
518       else
519         return failure();
520       return success();
521     }
522 
523     if (!eltType.isa<FloatType>())
524       return failure();
525 
526     // Floating-point reductions: add/mul/min/max
527     if (kind == "add") {
528       // Optional accumulator (or zero).
529       Value acc = operands.size() > 1 ? operands[1]
530                                       : rewriter.create<LLVM::ConstantOp>(
531                                             reductionOp->getLoc(), llvmType,
532                                             rewriter.getZeroAttr(eltType));
533       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fadd>(
534           reductionOp, llvmType, acc, operands[0],
535           rewriter.getBoolAttr(reassociateFPReductions));
536     } else if (kind == "mul") {
537       // Optional accumulator (or one).
538       Value acc = operands.size() > 1
539                       ? operands[1]
540                       : rewriter.create<LLVM::ConstantOp>(
541                             reductionOp->getLoc(), llvmType,
542                             rewriter.getFloatAttr(eltType, 1.0));
543       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmul>(
544           reductionOp, llvmType, acc, operands[0],
545           rewriter.getBoolAttr(reassociateFPReductions));
546     } else if (kind == "min")
547       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmin>(
548           reductionOp, llvmType, operands[0]);
549     else if (kind == "max")
550       rewriter.replaceOpWithNewOp<LLVM::vector_reduce_fmax>(
551           reductionOp, llvmType, operands[0]);
552     else
553       return failure();
554     return success();
555   }
556 
557 private:
558   const bool reassociateFPReductions;
559 };
560 
561 class VectorShuffleOpConversion
562     : public ConvertOpToLLVMPattern<vector::ShuffleOp> {
563 public:
564   using ConvertOpToLLVMPattern<vector::ShuffleOp>::ConvertOpToLLVMPattern;
565 
566   LogicalResult
567   matchAndRewrite(vector::ShuffleOp shuffleOp, ArrayRef<Value> operands,
568                   ConversionPatternRewriter &rewriter) const override {
569     auto loc = shuffleOp->getLoc();
570     auto adaptor = vector::ShuffleOpAdaptor(operands);
571     auto v1Type = shuffleOp.getV1VectorType();
572     auto v2Type = shuffleOp.getV2VectorType();
573     auto vectorType = shuffleOp.getVectorType();
574     Type llvmType = typeConverter->convertType(vectorType);
575     auto maskArrayAttr = shuffleOp.mask();
576 
577     // Bail if result type cannot be lowered.
578     if (!llvmType)
579       return failure();
580 
581     // Get rank and dimension sizes.
582     int64_t rank = vectorType.getRank();
583     assert(v1Type.getRank() == rank);
584     assert(v2Type.getRank() == rank);
585     int64_t v1Dim = v1Type.getDimSize(0);
586 
587     // For rank 1, where both operands have *exactly* the same vector type,
588     // there is direct shuffle support in LLVM. Use it!
589     if (rank == 1 && v1Type == v2Type) {
590       Value llvmShuffleOp = rewriter.create<LLVM::ShuffleVectorOp>(
591           loc, adaptor.v1(), adaptor.v2(), maskArrayAttr);
592       rewriter.replaceOp(shuffleOp, llvmShuffleOp);
593       return success();
594     }
595 
596     // For all other cases, insert the individual values individually.
597     Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType);
598     int64_t insPos = 0;
599     for (auto en : llvm::enumerate(maskArrayAttr)) {
600       int64_t extPos = en.value().cast<IntegerAttr>().getInt();
601       Value value = adaptor.v1();
602       if (extPos >= v1Dim) {
603         extPos -= v1Dim;
604         value = adaptor.v2();
605       }
606       Value extract = extractOne(rewriter, *getTypeConverter(), loc, value,
607                                  llvmType, rank, extPos);
608       insert = insertOne(rewriter, *getTypeConverter(), loc, insert, extract,
609                          llvmType, rank, insPos++);
610     }
611     rewriter.replaceOp(shuffleOp, insert);
612     return success();
613   }
614 };
615 
616 class VectorExtractElementOpConversion
617     : public ConvertOpToLLVMPattern<vector::ExtractElementOp> {
618 public:
619   using ConvertOpToLLVMPattern<
620       vector::ExtractElementOp>::ConvertOpToLLVMPattern;
621 
622   LogicalResult
623   matchAndRewrite(vector::ExtractElementOp extractEltOp,
624                   ArrayRef<Value> operands,
625                   ConversionPatternRewriter &rewriter) const override {
626     auto adaptor = vector::ExtractElementOpAdaptor(operands);
627     auto vectorType = extractEltOp.getVectorType();
628     auto llvmType = typeConverter->convertType(vectorType.getElementType());
629 
630     // Bail if result type cannot be lowered.
631     if (!llvmType)
632       return failure();
633 
634     rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
635         extractEltOp, llvmType, adaptor.vector(), adaptor.position());
636     return success();
637   }
638 };
639 
640 class VectorExtractOpConversion
641     : public ConvertOpToLLVMPattern<vector::ExtractOp> {
642 public:
643   using ConvertOpToLLVMPattern<vector::ExtractOp>::ConvertOpToLLVMPattern;
644 
645   LogicalResult
646   matchAndRewrite(vector::ExtractOp extractOp, ArrayRef<Value> operands,
647                   ConversionPatternRewriter &rewriter) const override {
648     auto loc = extractOp->getLoc();
649     auto adaptor = vector::ExtractOpAdaptor(operands);
650     auto vectorType = extractOp.getVectorType();
651     auto resultType = extractOp.getResult().getType();
652     auto llvmResultType = typeConverter->convertType(resultType);
653     auto positionArrayAttr = extractOp.position();
654 
655     // Bail if result type cannot be lowered.
656     if (!llvmResultType)
657       return failure();
658 
659     // One-shot extraction of vector from array (only requires extractvalue).
660     if (resultType.isa<VectorType>()) {
661       Value extracted = rewriter.create<LLVM::ExtractValueOp>(
662           loc, llvmResultType, adaptor.vector(), positionArrayAttr);
663       rewriter.replaceOp(extractOp, extracted);
664       return success();
665     }
666 
667     // Potential extraction of 1-D vector from array.
668     auto *context = extractOp->getContext();
669     Value extracted = adaptor.vector();
670     auto positionAttrs = positionArrayAttr.getValue();
671     if (positionAttrs.size() > 1) {
672       auto oneDVectorType = reducedVectorTypeBack(vectorType);
673       auto nMinusOnePositionAttrs =
674           ArrayAttr::get(context, positionAttrs.drop_back());
675       extracted = rewriter.create<LLVM::ExtractValueOp>(
676           loc, typeConverter->convertType(oneDVectorType), extracted,
677           nMinusOnePositionAttrs);
678     }
679 
680     // Remaining extraction of element from 1-D LLVM vector
681     auto position = positionAttrs.back().cast<IntegerAttr>();
682     auto i64Type = IntegerType::get(rewriter.getContext(), 64);
683     auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
684     extracted =
685         rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
686     rewriter.replaceOp(extractOp, extracted);
687 
688     return success();
689   }
690 };
691 
692 /// Conversion pattern that turns a vector.fma on a 1-D vector
693 /// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion.
694 /// This does not match vectors of n >= 2 rank.
695 ///
696 /// Example:
697 /// ```
698 ///  vector.fma %a, %a, %a : vector<8xf32>
699 /// ```
700 /// is converted to:
701 /// ```
702 ///  llvm.intr.fmuladd %va, %va, %va:
703 ///    (!llvm."<8 x f32>">, !llvm<"<8 x f32>">, !llvm<"<8 x f32>">)
704 ///    -> !llvm."<8 x f32>">
705 /// ```
706 class VectorFMAOp1DConversion : public ConvertOpToLLVMPattern<vector::FMAOp> {
707 public:
708   using ConvertOpToLLVMPattern<vector::FMAOp>::ConvertOpToLLVMPattern;
709 
710   LogicalResult
711   matchAndRewrite(vector::FMAOp fmaOp, ArrayRef<Value> operands,
712                   ConversionPatternRewriter &rewriter) const override {
713     auto adaptor = vector::FMAOpAdaptor(operands);
714     VectorType vType = fmaOp.getVectorType();
715     if (vType.getRank() != 1)
716       return failure();
717     rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>(fmaOp, adaptor.lhs(),
718                                                  adaptor.rhs(), adaptor.acc());
719     return success();
720   }
721 };
722 
723 class VectorInsertElementOpConversion
724     : public ConvertOpToLLVMPattern<vector::InsertElementOp> {
725 public:
726   using ConvertOpToLLVMPattern<vector::InsertElementOp>::ConvertOpToLLVMPattern;
727 
728   LogicalResult
729   matchAndRewrite(vector::InsertElementOp insertEltOp, ArrayRef<Value> operands,
730                   ConversionPatternRewriter &rewriter) const override {
731     auto adaptor = vector::InsertElementOpAdaptor(operands);
732     auto vectorType = insertEltOp.getDestVectorType();
733     auto llvmType = typeConverter->convertType(vectorType);
734 
735     // Bail if result type cannot be lowered.
736     if (!llvmType)
737       return failure();
738 
739     rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
740         insertEltOp, llvmType, adaptor.dest(), adaptor.source(),
741         adaptor.position());
742     return success();
743   }
744 };
745 
746 class VectorInsertOpConversion
747     : public ConvertOpToLLVMPattern<vector::InsertOp> {
748 public:
749   using ConvertOpToLLVMPattern<vector::InsertOp>::ConvertOpToLLVMPattern;
750 
751   LogicalResult
752   matchAndRewrite(vector::InsertOp insertOp, ArrayRef<Value> operands,
753                   ConversionPatternRewriter &rewriter) const override {
754     auto loc = insertOp->getLoc();
755     auto adaptor = vector::InsertOpAdaptor(operands);
756     auto sourceType = insertOp.getSourceType();
757     auto destVectorType = insertOp.getDestVectorType();
758     auto llvmResultType = typeConverter->convertType(destVectorType);
759     auto positionArrayAttr = insertOp.position();
760 
761     // Bail if result type cannot be lowered.
762     if (!llvmResultType)
763       return failure();
764 
765     // One-shot insertion of a vector into an array (only requires insertvalue).
766     if (sourceType.isa<VectorType>()) {
767       Value inserted = rewriter.create<LLVM::InsertValueOp>(
768           loc, llvmResultType, adaptor.dest(), adaptor.source(),
769           positionArrayAttr);
770       rewriter.replaceOp(insertOp, inserted);
771       return success();
772     }
773 
774     // Potential extraction of 1-D vector from array.
775     auto *context = insertOp->getContext();
776     Value extracted = adaptor.dest();
777     auto positionAttrs = positionArrayAttr.getValue();
778     auto position = positionAttrs.back().cast<IntegerAttr>();
779     auto oneDVectorType = destVectorType;
780     if (positionAttrs.size() > 1) {
781       oneDVectorType = reducedVectorTypeBack(destVectorType);
782       auto nMinusOnePositionAttrs =
783           ArrayAttr::get(context, positionAttrs.drop_back());
784       extracted = rewriter.create<LLVM::ExtractValueOp>(
785           loc, typeConverter->convertType(oneDVectorType), extracted,
786           nMinusOnePositionAttrs);
787     }
788 
789     // Insertion of an element into a 1-D LLVM vector.
790     auto i64Type = IntegerType::get(rewriter.getContext(), 64);
791     auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
792     Value inserted = rewriter.create<LLVM::InsertElementOp>(
793         loc, typeConverter->convertType(oneDVectorType), extracted,
794         adaptor.source(), constant);
795 
796     // Potential insertion of resulting 1-D vector into array.
797     if (positionAttrs.size() > 1) {
798       auto nMinusOnePositionAttrs =
799           ArrayAttr::get(context, positionAttrs.drop_back());
800       inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType,
801                                                       adaptor.dest(), inserted,
802                                                       nMinusOnePositionAttrs);
803     }
804 
805     rewriter.replaceOp(insertOp, inserted);
806     return success();
807   }
808 };
809 
810 /// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1.
811 ///
812 /// Example:
813 /// ```
814 ///   %d = vector.fma %a, %b, %c : vector<2x4xf32>
815 /// ```
816 /// is rewritten into:
817 /// ```
818 ///  %r = splat %f0: vector<2x4xf32>
819 ///  %va = vector.extractvalue %a[0] : vector<2x4xf32>
820 ///  %vb = vector.extractvalue %b[0] : vector<2x4xf32>
821 ///  %vc = vector.extractvalue %c[0] : vector<2x4xf32>
822 ///  %vd = vector.fma %va, %vb, %vc : vector<4xf32>
823 ///  %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32>
824 ///  %va2 = vector.extractvalue %a2[1] : vector<2x4xf32>
825 ///  %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32>
826 ///  %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32>
827 ///  %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32>
828 ///  %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32>
829 ///  // %r3 holds the final value.
830 /// ```
831 class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> {
832 public:
833   using OpRewritePattern<FMAOp>::OpRewritePattern;
834 
835   LogicalResult matchAndRewrite(FMAOp op,
836                                 PatternRewriter &rewriter) const override {
837     auto vType = op.getVectorType();
838     if (vType.getRank() < 2)
839       return failure();
840 
841     auto loc = op.getLoc();
842     auto elemType = vType.getElementType();
843     Value zero = rewriter.create<ConstantOp>(loc, elemType,
844                                              rewriter.getZeroAttr(elemType));
845     Value desc = rewriter.create<SplatOp>(loc, vType, zero);
846     for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) {
847       Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i);
848       Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i);
849       Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i);
850       Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC);
851       desc = rewriter.create<InsertOp>(loc, fma, desc, i);
852     }
853     rewriter.replaceOp(op, desc);
854     return success();
855   }
856 };
857 
858 // When ranks are different, InsertStridedSlice needs to extract a properly
859 // ranked vector from the destination vector into which to insert. This pattern
860 // only takes care of this part and forwards the rest of the conversion to
861 // another pattern that converts InsertStridedSlice for operands of the same
862 // rank.
863 //
864 // RewritePattern for InsertStridedSliceOp where source and destination vectors
865 // have different ranks. In this case:
866 //   1. the proper subvector is extracted from the destination vector
867 //   2. a new InsertStridedSlice op is created to insert the source in the
868 //   destination subvector
869 //   3. the destination subvector is inserted back in the proper place
870 //   4. the op is replaced by the result of step 3.
871 // The new InsertStridedSlice from step 2. will be picked up by a
872 // `VectorInsertStridedSliceOpSameRankRewritePattern`.
873 class VectorInsertStridedSliceOpDifferentRankRewritePattern
874     : public OpRewritePattern<InsertStridedSliceOp> {
875 public:
876   using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
877 
878   LogicalResult matchAndRewrite(InsertStridedSliceOp op,
879                                 PatternRewriter &rewriter) const override {
880     auto srcType = op.getSourceVectorType();
881     auto dstType = op.getDestVectorType();
882 
883     if (op.offsets().getValue().empty())
884       return failure();
885 
886     auto loc = op.getLoc();
887     int64_t rankDiff = dstType.getRank() - srcType.getRank();
888     assert(rankDiff >= 0);
889     if (rankDiff == 0)
890       return failure();
891 
892     int64_t rankRest = dstType.getRank() - rankDiff;
893     // Extract / insert the subvector of matching rank and InsertStridedSlice
894     // on it.
895     Value extracted =
896         rewriter.create<ExtractOp>(loc, op.dest(),
897                                    getI64SubArray(op.offsets(), /*dropFront=*/0,
898                                                   /*dropBack=*/rankRest));
899     // A different pattern will kick in for InsertStridedSlice with matching
900     // ranks.
901     auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>(
902         loc, op.source(), extracted,
903         getI64SubArray(op.offsets(), /*dropFront=*/rankDiff),
904         getI64SubArray(op.strides(), /*dropFront=*/0));
905     rewriter.replaceOpWithNewOp<InsertOp>(
906         op, stridedSliceInnerOp.getResult(), op.dest(),
907         getI64SubArray(op.offsets(), /*dropFront=*/0,
908                        /*dropBack=*/rankRest));
909     return success();
910   }
911 };
912 
913 // RewritePattern for InsertStridedSliceOp where source and destination vectors
914 // have the same rank. In this case, we reduce
915 //   1. the proper subvector is extracted from the destination vector
916 //   2. a new InsertStridedSlice op is created to insert the source in the
917 //   destination subvector
918 //   3. the destination subvector is inserted back in the proper place
919 //   4. the op is replaced by the result of step 3.
920 // The new InsertStridedSlice from step 2. will be picked up by a
921 // `VectorInsertStridedSliceOpSameRankRewritePattern`.
922 class VectorInsertStridedSliceOpSameRankRewritePattern
923     : public OpRewritePattern<InsertStridedSliceOp> {
924 public:
925   VectorInsertStridedSliceOpSameRankRewritePattern(MLIRContext *ctx)
926       : OpRewritePattern<InsertStridedSliceOp>(ctx) {
927     // This pattern creates recursive InsertStridedSliceOp, but the recursion is
928     // bounded as the rank is strictly decreasing.
929     setHasBoundedRewriteRecursion();
930   }
931 
932   LogicalResult matchAndRewrite(InsertStridedSliceOp op,
933                                 PatternRewriter &rewriter) const override {
934     auto srcType = op.getSourceVectorType();
935     auto dstType = op.getDestVectorType();
936 
937     if (op.offsets().getValue().empty())
938       return failure();
939 
940     int64_t rankDiff = dstType.getRank() - srcType.getRank();
941     assert(rankDiff >= 0);
942     if (rankDiff != 0)
943       return failure();
944 
945     if (srcType == dstType) {
946       rewriter.replaceOp(op, op.source());
947       return success();
948     }
949 
950     int64_t offset =
951         op.offsets().getValue().front().cast<IntegerAttr>().getInt();
952     int64_t size = srcType.getShape().front();
953     int64_t stride =
954         op.strides().getValue().front().cast<IntegerAttr>().getInt();
955 
956     auto loc = op.getLoc();
957     Value res = op.dest();
958     // For each slice of the source vector along the most major dimension.
959     for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
960          off += stride, ++idx) {
961       // 1. extract the proper subvector (or element) from source
962       Value extractedSource = extractOne(rewriter, loc, op.source(), idx);
963       if (extractedSource.getType().isa<VectorType>()) {
964         // 2. If we have a vector, extract the proper subvector from destination
965         // Otherwise we are at the element level and no need to recurse.
966         Value extractedDest = extractOne(rewriter, loc, op.dest(), off);
967         // 3. Reduce the problem to lowering a new InsertStridedSlice op with
968         // smaller rank.
969         extractedSource = rewriter.create<InsertStridedSliceOp>(
970             loc, extractedSource, extractedDest,
971             getI64SubArray(op.offsets(), /* dropFront=*/1),
972             getI64SubArray(op.strides(), /* dropFront=*/1));
973       }
974       // 4. Insert the extractedSource into the res vector.
975       res = insertOne(rewriter, loc, extractedSource, res, off);
976     }
977 
978     rewriter.replaceOp(op, res);
979     return success();
980   }
981 };
982 
983 /// Returns the strides if the memory underlying `memRefType` has a contiguous
984 /// static layout.
985 static llvm::Optional<SmallVector<int64_t, 4>>
986 computeContiguousStrides(MemRefType memRefType) {
987   int64_t offset;
988   SmallVector<int64_t, 4> strides;
989   if (failed(getStridesAndOffset(memRefType, strides, offset)))
990     return None;
991   if (!strides.empty() && strides.back() != 1)
992     return None;
993   // If no layout or identity layout, this is contiguous by definition.
994   if (memRefType.getAffineMaps().empty() ||
995       memRefType.getAffineMaps().front().isIdentity())
996     return strides;
997 
998   // Otherwise, we must determine contiguity form shapes. This can only ever
999   // work in static cases because MemRefType is underspecified to represent
1000   // contiguous dynamic shapes in other ways than with just empty/identity
1001   // layout.
1002   auto sizes = memRefType.getShape();
1003   for (int index = 0, e = strides.size() - 2; index < e; ++index) {
1004     if (ShapedType::isDynamic(sizes[index + 1]) ||
1005         ShapedType::isDynamicStrideOrOffset(strides[index]) ||
1006         ShapedType::isDynamicStrideOrOffset(strides[index + 1]))
1007       return None;
1008     if (strides[index] != strides[index + 1] * sizes[index + 1])
1009       return None;
1010   }
1011   return strides;
1012 }
1013 
1014 class VectorTypeCastOpConversion
1015     : public ConvertOpToLLVMPattern<vector::TypeCastOp> {
1016 public:
1017   using ConvertOpToLLVMPattern<vector::TypeCastOp>::ConvertOpToLLVMPattern;
1018 
1019   LogicalResult
1020   matchAndRewrite(vector::TypeCastOp castOp, ArrayRef<Value> operands,
1021                   ConversionPatternRewriter &rewriter) const override {
1022     auto loc = castOp->getLoc();
1023     MemRefType sourceMemRefType =
1024         castOp.getOperand().getType().cast<MemRefType>();
1025     MemRefType targetMemRefType = castOp.getType();
1026 
1027     // Only static shape casts supported atm.
1028     if (!sourceMemRefType.hasStaticShape() ||
1029         !targetMemRefType.hasStaticShape())
1030       return failure();
1031 
1032     auto llvmSourceDescriptorTy =
1033         operands[0].getType().dyn_cast<LLVM::LLVMStructType>();
1034     if (!llvmSourceDescriptorTy)
1035       return failure();
1036     MemRefDescriptor sourceMemRef(operands[0]);
1037 
1038     auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType)
1039                                       .dyn_cast_or_null<LLVM::LLVMStructType>();
1040     if (!llvmTargetDescriptorTy)
1041       return failure();
1042 
1043     // Only contiguous source buffers supported atm.
1044     auto sourceStrides = computeContiguousStrides(sourceMemRefType);
1045     if (!sourceStrides)
1046       return failure();
1047     auto targetStrides = computeContiguousStrides(targetMemRefType);
1048     if (!targetStrides)
1049       return failure();
1050     // Only support static strides for now, regardless of contiguity.
1051     if (llvm::any_of(*targetStrides, [](int64_t stride) {
1052           return ShapedType::isDynamicStrideOrOffset(stride);
1053         }))
1054       return failure();
1055 
1056     auto int64Ty = IntegerType::get(rewriter.getContext(), 64);
1057 
1058     // Create descriptor.
1059     auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
1060     Type llvmTargetElementTy = desc.getElementPtrType();
1061     // Set allocated ptr.
1062     Value allocated = sourceMemRef.allocatedPtr(rewriter, loc);
1063     allocated =
1064         rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
1065     desc.setAllocatedPtr(rewriter, loc, allocated);
1066     // Set aligned ptr.
1067     Value ptr = sourceMemRef.alignedPtr(rewriter, loc);
1068     ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
1069     desc.setAlignedPtr(rewriter, loc, ptr);
1070     // Fill offset 0.
1071     auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
1072     auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
1073     desc.setOffset(rewriter, loc, zero);
1074 
1075     // Fill size and stride descriptors in memref.
1076     for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
1077       int64_t index = indexedSize.index();
1078       auto sizeAttr =
1079           rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
1080       auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
1081       desc.setSize(rewriter, loc, index, size);
1082       auto strideAttr = rewriter.getIntegerAttr(rewriter.getIndexType(),
1083                                                 (*targetStrides)[index]);
1084       auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
1085       desc.setStride(rewriter, loc, index, stride);
1086     }
1087 
1088     rewriter.replaceOp(castOp, {desc});
1089     return success();
1090   }
1091 };
1092 
1093 /// Conversion pattern that converts a 1-D vector transfer read/write op into a
1094 /// a masked or unmasked read/write.
1095 template <typename ConcreteOp>
1096 class VectorTransferConversion : public ConvertOpToLLVMPattern<ConcreteOp> {
1097 public:
1098   using ConvertOpToLLVMPattern<ConcreteOp>::ConvertOpToLLVMPattern;
1099 
1100   LogicalResult
1101   matchAndRewrite(ConcreteOp xferOp, ArrayRef<Value> operands,
1102                   ConversionPatternRewriter &rewriter) const override {
1103     auto adaptor = getTransferOpAdapter(xferOp, operands);
1104 
1105     if (xferOp.getVectorType().getRank() > 1 ||
1106         llvm::size(xferOp.indices()) == 0)
1107       return failure();
1108     if (xferOp.permutation_map() !=
1109         AffineMap::getMinorIdentityMap(xferOp.permutation_map().getNumInputs(),
1110                                        xferOp.getVectorType().getRank(),
1111                                        xferOp->getContext()))
1112       return failure();
1113     auto memRefType = xferOp.getShapedType().template dyn_cast<MemRefType>();
1114     if (!memRefType)
1115       return failure();
1116     // Only contiguous source tensors supported atm.
1117     auto strides = computeContiguousStrides(memRefType);
1118     if (!strides)
1119       return failure();
1120     // Out-of-bounds dims are handled by MaterializeTransferMask.
1121     if (xferOp.hasOutOfBoundsDim())
1122       return failure();
1123 
1124     auto toLLVMTy = [&](Type t) {
1125       return this->getTypeConverter()->convertType(t);
1126     };
1127 
1128     Location loc = xferOp->getLoc();
1129 
1130     if (auto memrefVectorElementType =
1131             memRefType.getElementType().template dyn_cast<VectorType>()) {
1132       // Memref has vector element type.
1133       if (memrefVectorElementType.getElementType() !=
1134           xferOp.getVectorType().getElementType())
1135         return failure();
1136 #ifndef NDEBUG
1137       // Check that memref vector type is a suffix of 'vectorType.
1138       unsigned memrefVecEltRank = memrefVectorElementType.getRank();
1139       unsigned resultVecRank = xferOp.getVectorType().getRank();
1140       assert(memrefVecEltRank <= resultVecRank);
1141       // TODO: Move this to isSuffix in Vector/Utils.h.
1142       unsigned rankOffset = resultVecRank - memrefVecEltRank;
1143       auto memrefVecEltShape = memrefVectorElementType.getShape();
1144       auto resultVecShape = xferOp.getVectorType().getShape();
1145       for (unsigned i = 0; i < memrefVecEltRank; ++i)
1146         assert(memrefVecEltShape[i] != resultVecShape[rankOffset + i] &&
1147                "memref vector element shape should match suffix of vector "
1148                "result shape.");
1149 #endif // ifndef NDEBUG
1150     }
1151 
1152     // Get the source/dst address as an LLVM vector pointer.
1153     VectorType vtp = xferOp.getVectorType();
1154     Value dataPtr = this->getStridedElementPtr(
1155         loc, memRefType, adaptor.source(), adaptor.indices(), rewriter);
1156     Value vectorDataPtr =
1157         castDataPtr(rewriter, loc, dataPtr, memRefType, toLLVMTy(vtp));
1158 
1159     // Rewrite as an unmasked masked read / write.
1160     if (!xferOp.mask())
1161       return replaceTransferOpWithLoadOrStore(rewriter,
1162                                               *this->getTypeConverter(), loc,
1163                                               xferOp, operands, vectorDataPtr);
1164 
1165     // Rewrite as a masked read / write.
1166     return replaceTransferOpWithMasked(rewriter, *this->getTypeConverter(), loc,
1167                                        xferOp, operands, vectorDataPtr,
1168                                        xferOp.mask());
1169   }
1170 };
1171 
1172 class VectorPrintOpConversion : public ConvertOpToLLVMPattern<vector::PrintOp> {
1173 public:
1174   using ConvertOpToLLVMPattern<vector::PrintOp>::ConvertOpToLLVMPattern;
1175 
1176   // Proof-of-concept lowering implementation that relies on a small
1177   // runtime support library, which only needs to provide a few
1178   // printing methods (single value for all data types, opening/closing
1179   // bracket, comma, newline). The lowering fully unrolls a vector
1180   // in terms of these elementary printing operations. The advantage
1181   // of this approach is that the library can remain unaware of all
1182   // low-level implementation details of vectors while still supporting
1183   // output of any shaped and dimensioned vector. Due to full unrolling,
1184   // this approach is less suited for very large vectors though.
1185   //
1186   // TODO: rely solely on libc in future? something else?
1187   //
1188   LogicalResult
1189   matchAndRewrite(vector::PrintOp printOp, ArrayRef<Value> operands,
1190                   ConversionPatternRewriter &rewriter) const override {
1191     auto adaptor = vector::PrintOpAdaptor(operands);
1192     Type printType = printOp.getPrintType();
1193 
1194     if (typeConverter->convertType(printType) == nullptr)
1195       return failure();
1196 
1197     // Make sure element type has runtime support.
1198     PrintConversion conversion = PrintConversion::None;
1199     VectorType vectorType = printType.dyn_cast<VectorType>();
1200     Type eltType = vectorType ? vectorType.getElementType() : printType;
1201     Operation *printer;
1202     if (eltType.isF32()) {
1203       printer =
1204           LLVM::lookupOrCreatePrintF32Fn(printOp->getParentOfType<ModuleOp>());
1205     } else if (eltType.isF64()) {
1206       printer =
1207           LLVM::lookupOrCreatePrintF64Fn(printOp->getParentOfType<ModuleOp>());
1208     } else if (eltType.isIndex()) {
1209       printer =
1210           LLVM::lookupOrCreatePrintU64Fn(printOp->getParentOfType<ModuleOp>());
1211     } else if (auto intTy = eltType.dyn_cast<IntegerType>()) {
1212       // Integers need a zero or sign extension on the operand
1213       // (depending on the source type) as well as a signed or
1214       // unsigned print method. Up to 64-bit is supported.
1215       unsigned width = intTy.getWidth();
1216       if (intTy.isUnsigned()) {
1217         if (width <= 64) {
1218           if (width < 64)
1219             conversion = PrintConversion::ZeroExt64;
1220           printer = LLVM::lookupOrCreatePrintU64Fn(
1221               printOp->getParentOfType<ModuleOp>());
1222         } else {
1223           return failure();
1224         }
1225       } else {
1226         assert(intTy.isSignless() || intTy.isSigned());
1227         if (width <= 64) {
1228           // Note that we *always* zero extend booleans (1-bit integers),
1229           // so that true/false is printed as 1/0 rather than -1/0.
1230           if (width == 1)
1231             conversion = PrintConversion::ZeroExt64;
1232           else if (width < 64)
1233             conversion = PrintConversion::SignExt64;
1234           printer = LLVM::lookupOrCreatePrintI64Fn(
1235               printOp->getParentOfType<ModuleOp>());
1236         } else {
1237           return failure();
1238         }
1239       }
1240     } else {
1241       return failure();
1242     }
1243 
1244     // Unroll vector into elementary print calls.
1245     int64_t rank = vectorType ? vectorType.getRank() : 0;
1246     emitRanks(rewriter, printOp, adaptor.source(), vectorType, printer, rank,
1247               conversion);
1248     emitCall(rewriter, printOp->getLoc(),
1249              LLVM::lookupOrCreatePrintNewlineFn(
1250                  printOp->getParentOfType<ModuleOp>()));
1251     rewriter.eraseOp(printOp);
1252     return success();
1253   }
1254 
1255 private:
1256   enum class PrintConversion {
1257     // clang-format off
1258     None,
1259     ZeroExt64,
1260     SignExt64
1261     // clang-format on
1262   };
1263 
1264   void emitRanks(ConversionPatternRewriter &rewriter, Operation *op,
1265                  Value value, VectorType vectorType, Operation *printer,
1266                  int64_t rank, PrintConversion conversion) const {
1267     Location loc = op->getLoc();
1268     if (rank == 0) {
1269       switch (conversion) {
1270       case PrintConversion::ZeroExt64:
1271         value = rewriter.create<ZeroExtendIOp>(
1272             loc, value, IntegerType::get(rewriter.getContext(), 64));
1273         break;
1274       case PrintConversion::SignExt64:
1275         value = rewriter.create<SignExtendIOp>(
1276             loc, value, IntegerType::get(rewriter.getContext(), 64));
1277         break;
1278       case PrintConversion::None:
1279         break;
1280       }
1281       emitCall(rewriter, loc, printer, value);
1282       return;
1283     }
1284 
1285     emitCall(rewriter, loc,
1286              LLVM::lookupOrCreatePrintOpenFn(op->getParentOfType<ModuleOp>()));
1287     Operation *printComma =
1288         LLVM::lookupOrCreatePrintCommaFn(op->getParentOfType<ModuleOp>());
1289     int64_t dim = vectorType.getDimSize(0);
1290     for (int64_t d = 0; d < dim; ++d) {
1291       auto reducedType =
1292           rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr;
1293       auto llvmType = typeConverter->convertType(
1294           rank > 1 ? reducedType : vectorType.getElementType());
1295       Value nestedVal = extractOne(rewriter, *getTypeConverter(), loc, value,
1296                                    llvmType, rank, d);
1297       emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1,
1298                 conversion);
1299       if (d != dim - 1)
1300         emitCall(rewriter, loc, printComma);
1301     }
1302     emitCall(rewriter, loc,
1303              LLVM::lookupOrCreatePrintCloseFn(op->getParentOfType<ModuleOp>()));
1304   }
1305 
1306   // Helper to emit a call.
1307   static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
1308                        Operation *ref, ValueRange params = ValueRange()) {
1309     rewriter.create<LLVM::CallOp>(loc, TypeRange(),
1310                                   rewriter.getSymbolRefAttr(ref), params);
1311   }
1312 };
1313 
1314 /// Progressive lowering of ExtractStridedSliceOp to either:
1315 ///   1. express single offset extract as a direct shuffle.
1316 ///   2. extract + lower rank strided_slice + insert for the n-D case.
1317 class VectorExtractStridedSliceOpConversion
1318     : public OpRewritePattern<ExtractStridedSliceOp> {
1319 public:
1320   VectorExtractStridedSliceOpConversion(MLIRContext *ctx)
1321       : OpRewritePattern<ExtractStridedSliceOp>(ctx) {
1322     // This pattern creates recursive ExtractStridedSliceOp, but the recursion
1323     // is bounded as the rank is strictly decreasing.
1324     setHasBoundedRewriteRecursion();
1325   }
1326 
1327   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
1328                                 PatternRewriter &rewriter) const override {
1329     auto dstType = op.getType();
1330 
1331     assert(!op.offsets().getValue().empty() && "Unexpected empty offsets");
1332 
1333     int64_t offset =
1334         op.offsets().getValue().front().cast<IntegerAttr>().getInt();
1335     int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt();
1336     int64_t stride =
1337         op.strides().getValue().front().cast<IntegerAttr>().getInt();
1338 
1339     auto loc = op.getLoc();
1340     auto elemType = dstType.getElementType();
1341     assert(elemType.isSignlessIntOrIndexOrFloat());
1342 
1343     // Single offset can be more efficiently shuffled.
1344     if (op.offsets().getValue().size() == 1) {
1345       SmallVector<int64_t, 4> offsets;
1346       offsets.reserve(size);
1347       for (int64_t off = offset, e = offset + size * stride; off < e;
1348            off += stride)
1349         offsets.push_back(off);
1350       rewriter.replaceOpWithNewOp<ShuffleOp>(op, dstType, op.vector(),
1351                                              op.vector(),
1352                                              rewriter.getI64ArrayAttr(offsets));
1353       return success();
1354     }
1355 
1356     // Extract/insert on a lower ranked extract strided slice op.
1357     Value zero = rewriter.create<ConstantOp>(loc, elemType,
1358                                              rewriter.getZeroAttr(elemType));
1359     Value res = rewriter.create<SplatOp>(loc, dstType, zero);
1360     for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
1361          off += stride, ++idx) {
1362       Value one = extractOne(rewriter, loc, op.vector(), off);
1363       Value extracted = rewriter.create<ExtractStridedSliceOp>(
1364           loc, one, getI64SubArray(op.offsets(), /* dropFront=*/1),
1365           getI64SubArray(op.sizes(), /* dropFront=*/1),
1366           getI64SubArray(op.strides(), /* dropFront=*/1));
1367       res = insertOne(rewriter, loc, extracted, res, idx);
1368     }
1369     rewriter.replaceOp(op, res);
1370     return success();
1371   }
1372 };
1373 
1374 } // namespace
1375 
1376 /// Populate the given list with patterns that convert from Vector to LLVM.
1377 void mlir::populateVectorToLLVMConversionPatterns(
1378     LLVMTypeConverter &converter, RewritePatternSet &patterns,
1379     bool reassociateFPReductions) {
1380   MLIRContext *ctx = converter.getDialect()->getContext();
1381   patterns.add<VectorFMAOpNDRewritePattern,
1382                VectorInsertStridedSliceOpDifferentRankRewritePattern,
1383                VectorInsertStridedSliceOpSameRankRewritePattern,
1384                VectorExtractStridedSliceOpConversion>(ctx);
1385   patterns.add<VectorReductionOpConversion>(converter, reassociateFPReductions);
1386   patterns
1387       .add<VectorBitCastOpConversion, VectorShuffleOpConversion,
1388            VectorExtractElementOpConversion, VectorExtractOpConversion,
1389            VectorFMAOp1DConversion, VectorInsertElementOpConversion,
1390            VectorInsertOpConversion, VectorPrintOpConversion,
1391            VectorTypeCastOpConversion,
1392            VectorLoadStoreConversion<vector::LoadOp, vector::LoadOpAdaptor>,
1393            VectorLoadStoreConversion<vector::MaskedLoadOp,
1394                                      vector::MaskedLoadOpAdaptor>,
1395            VectorLoadStoreConversion<vector::StoreOp, vector::StoreOpAdaptor>,
1396            VectorLoadStoreConversion<vector::MaskedStoreOp,
1397                                      vector::MaskedStoreOpAdaptor>,
1398            VectorGatherOpConversion, VectorScatterOpConversion,
1399            VectorExpandLoadOpConversion, VectorCompressStoreOpConversion,
1400            VectorTransferConversion<TransferReadOp>,
1401            VectorTransferConversion<TransferWriteOp>>(converter);
1402 }
1403 
1404 void mlir::populateVectorToLLVMMatrixConversionPatterns(
1405     LLVMTypeConverter &converter, RewritePatternSet &patterns) {
1406   patterns.add<VectorMatmulOpConversion>(converter);
1407   patterns.add<VectorFlatTransposeOpConversion>(converter);
1408 }
1409