xref: /llvm-project/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp (revision 239eff502bca64f544f311e7d7a65fdec01cb9c4)
1 //===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
10 
11 #include "../PassDetail.h"
12 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
13 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
14 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
15 #include "mlir/Dialect/StandardOps/IR/Ops.h"
16 #include "mlir/Dialect/Vector/VectorOps.h"
17 #include "mlir/IR/AffineMap.h"
18 #include "mlir/IR/Attributes.h"
19 #include "mlir/IR/Builders.h"
20 #include "mlir/IR/MLIRContext.h"
21 #include "mlir/IR/Module.h"
22 #include "mlir/IR/Operation.h"
23 #include "mlir/IR/PatternMatch.h"
24 #include "mlir/IR/StandardTypes.h"
25 #include "mlir/IR/Types.h"
26 #include "mlir/Target/LLVMIR/TypeTranslation.h"
27 #include "mlir/Transforms/DialectConversion.h"
28 #include "mlir/Transforms/Passes.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/Support/Allocator.h"
33 #include "llvm/Support/ErrorHandling.h"
34 
35 using namespace mlir;
36 using namespace mlir::vector;
37 
38 // Helper to reduce vector type by one rank at front.
39 static VectorType reducedVectorTypeFront(VectorType tp) {
40   assert((tp.getRank() > 1) && "unlowerable vector type");
41   return VectorType::get(tp.getShape().drop_front(), tp.getElementType());
42 }
43 
44 // Helper to reduce vector type by *all* but one rank at back.
45 static VectorType reducedVectorTypeBack(VectorType tp) {
46   assert((tp.getRank() > 1) && "unlowerable vector type");
47   return VectorType::get(tp.getShape().take_back(), tp.getElementType());
48 }
49 
50 // Helper that picks the proper sequence for inserting.
51 static Value insertOne(ConversionPatternRewriter &rewriter,
52                        LLVMTypeConverter &typeConverter, Location loc,
53                        Value val1, Value val2, Type llvmType, int64_t rank,
54                        int64_t pos) {
55   if (rank == 1) {
56     auto idxType = rewriter.getIndexType();
57     auto constant = rewriter.create<LLVM::ConstantOp>(
58         loc, typeConverter.convertType(idxType),
59         rewriter.getIntegerAttr(idxType, pos));
60     return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2,
61                                                   constant);
62   }
63   return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2,
64                                               rewriter.getI64ArrayAttr(pos));
65 }
66 
67 // Helper that picks the proper sequence for inserting.
68 static Value insertOne(PatternRewriter &rewriter, Location loc, Value from,
69                        Value into, int64_t offset) {
70   auto vectorType = into.getType().cast<VectorType>();
71   if (vectorType.getRank() > 1)
72     return rewriter.create<InsertOp>(loc, from, into, offset);
73   return rewriter.create<vector::InsertElementOp>(
74       loc, vectorType, from, into,
75       rewriter.create<ConstantIndexOp>(loc, offset));
76 }
77 
78 // Helper that picks the proper sequence for extracting.
79 static Value extractOne(ConversionPatternRewriter &rewriter,
80                         LLVMTypeConverter &typeConverter, Location loc,
81                         Value val, Type llvmType, int64_t rank, int64_t pos) {
82   if (rank == 1) {
83     auto idxType = rewriter.getIndexType();
84     auto constant = rewriter.create<LLVM::ConstantOp>(
85         loc, typeConverter.convertType(idxType),
86         rewriter.getIntegerAttr(idxType, pos));
87     return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val,
88                                                    constant);
89   }
90   return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val,
91                                                rewriter.getI64ArrayAttr(pos));
92 }
93 
94 // Helper that picks the proper sequence for extracting.
95 static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector,
96                         int64_t offset) {
97   auto vectorType = vector.getType().cast<VectorType>();
98   if (vectorType.getRank() > 1)
99     return rewriter.create<ExtractOp>(loc, vector, offset);
100   return rewriter.create<vector::ExtractElementOp>(
101       loc, vectorType.getElementType(), vector,
102       rewriter.create<ConstantIndexOp>(loc, offset));
103 }
104 
105 // Helper that returns a subset of `arrayAttr` as a vector of int64_t.
106 // TODO: Better support for attribute subtype forwarding + slicing.
107 static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr,
108                                               unsigned dropFront = 0,
109                                               unsigned dropBack = 0) {
110   assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds");
111   auto range = arrayAttr.getAsRange<IntegerAttr>();
112   SmallVector<int64_t, 4> res;
113   res.reserve(arrayAttr.size() - dropFront - dropBack);
114   for (auto it = range.begin() + dropFront, eit = range.end() - dropBack;
115        it != eit; ++it)
116     res.push_back((*it).getValue().getSExtValue());
117   return res;
118 }
119 
120 // Helper that returns a vector comparison that constructs a mask:
121 //     mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b]
122 //
123 // NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative,
124 //       much more compact, IR for this operation, but LLVM eventually
125 //       generates more elaborate instructions for this intrinsic since it
126 //       is very conservative on the boundary conditions.
127 static Value buildVectorComparison(ConversionPatternRewriter &rewriter,
128                                    Operation *op, bool enableIndexOptimizations,
129                                    int64_t dim, Value b, Value *off = nullptr) {
130   auto loc = op->getLoc();
131   // If we can assume all indices fit in 32-bit, we perform the vector
132   // comparison in 32-bit to get a higher degree of SIMD parallelism.
133   // Otherwise we perform the vector comparison using 64-bit indices.
134   Value indices;
135   Type idxType;
136   if (enableIndexOptimizations) {
137     indices = rewriter.create<ConstantOp>(
138         loc, rewriter.getI32VectorAttr(
139                  llvm::to_vector<4>(llvm::seq<int32_t>(0, dim))));
140     idxType = rewriter.getI32Type();
141   } else {
142     indices = rewriter.create<ConstantOp>(
143         loc, rewriter.getI64VectorAttr(
144                  llvm::to_vector<4>(llvm::seq<int64_t>(0, dim))));
145     idxType = rewriter.getI64Type();
146   }
147   // Add in an offset if requested.
148   if (off) {
149     Value o = rewriter.create<IndexCastOp>(loc, idxType, *off);
150     Value ov = rewriter.create<SplatOp>(loc, indices.getType(), o);
151     indices = rewriter.create<AddIOp>(loc, ov, indices);
152   }
153   // Construct the vector comparison.
154   Value bound = rewriter.create<IndexCastOp>(loc, idxType, b);
155   Value bounds = rewriter.create<SplatOp>(loc, indices.getType(), bound);
156   return rewriter.create<CmpIOp>(loc, CmpIPredicate::slt, indices, bounds);
157 }
158 
159 // Helper that returns data layout alignment of an operation with memref.
160 template <typename T>
161 LogicalResult getMemRefAlignment(LLVMTypeConverter &typeConverter, T op,
162                                  unsigned &align) {
163   Type elementTy =
164       typeConverter.convertType(op.getMemRefType().getElementType());
165   if (!elementTy)
166     return failure();
167 
168   // TODO: this should use the MLIR data layout when it becomes available and
169   // stop depending on translation.
170   llvm::LLVMContext llvmContext;
171   align = LLVM::TypeToLLVMIRTranslator(llvmContext)
172               .getPreferredAlignment(elementTy.cast<LLVM::LLVMType>(),
173                                      typeConverter.getDataLayout());
174   return success();
175 }
176 
177 // Helper that returns the base address of a memref.
178 static LogicalResult getBase(ConversionPatternRewriter &rewriter, Location loc,
179                              Value memref, MemRefType memRefType, Value &base) {
180   // Inspect stride and offset structure.
181   //
182   // TODO: flat memory only for now, generalize
183   //
184   int64_t offset;
185   SmallVector<int64_t, 4> strides;
186   auto successStrides = getStridesAndOffset(memRefType, strides, offset);
187   if (failed(successStrides) || strides.size() != 1 || strides[0] != 1 ||
188       offset != 0 || memRefType.getMemorySpace() != 0)
189     return failure();
190   base = MemRefDescriptor(memref).alignedPtr(rewriter, loc);
191   return success();
192 }
193 
194 // Helper that returns a pointer given a memref base.
195 static LogicalResult getBasePtr(ConversionPatternRewriter &rewriter,
196                                 Location loc, Value memref,
197                                 MemRefType memRefType, Value &ptr) {
198   Value base;
199   if (failed(getBase(rewriter, loc, memref, memRefType, base)))
200     return failure();
201   auto pType = MemRefDescriptor(memref).getElementType();
202   ptr = rewriter.create<LLVM::GEPOp>(loc, pType, base);
203   return success();
204 }
205 
206 // Helper that returns a bit-casted pointer given a memref base.
207 static LogicalResult getBasePtr(ConversionPatternRewriter &rewriter,
208                                 Location loc, Value memref,
209                                 MemRefType memRefType, Type type, Value &ptr) {
210   Value base;
211   if (failed(getBase(rewriter, loc, memref, memRefType, base)))
212     return failure();
213   auto pType = type.template cast<LLVM::LLVMType>().getPointerTo();
214   base = rewriter.create<LLVM::BitcastOp>(loc, pType, base);
215   ptr = rewriter.create<LLVM::GEPOp>(loc, pType, base);
216   return success();
217 }
218 
219 // Helper that returns vector of pointers given a memref base and an index
220 // vector.
221 static LogicalResult getIndexedPtrs(ConversionPatternRewriter &rewriter,
222                                     Location loc, Value memref, Value indices,
223                                     MemRefType memRefType, VectorType vType,
224                                     Type iType, Value &ptrs) {
225   Value base;
226   if (failed(getBase(rewriter, loc, memref, memRefType, base)))
227     return failure();
228   auto pType = MemRefDescriptor(memref).getElementType();
229   auto ptrsType = LLVM::LLVMType::getVectorTy(pType, vType.getDimSize(0));
230   ptrs = rewriter.create<LLVM::GEPOp>(loc, ptrsType, base, indices);
231   return success();
232 }
233 
234 static LogicalResult
235 replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter,
236                                  LLVMTypeConverter &typeConverter, Location loc,
237                                  TransferReadOp xferOp,
238                                  ArrayRef<Value> operands, Value dataPtr) {
239   unsigned align;
240   if (failed(getMemRefAlignment(typeConverter, xferOp, align)))
241     return failure();
242   rewriter.replaceOpWithNewOp<LLVM::LoadOp>(xferOp, dataPtr, align);
243   return success();
244 }
245 
246 static LogicalResult
247 replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter,
248                             LLVMTypeConverter &typeConverter, Location loc,
249                             TransferReadOp xferOp, ArrayRef<Value> operands,
250                             Value dataPtr, Value mask) {
251   auto toLLVMTy = [&](Type t) { return typeConverter.convertType(t); };
252   VectorType fillType = xferOp.getVectorType();
253   Value fill = rewriter.create<SplatOp>(loc, fillType, xferOp.padding());
254   fill = rewriter.create<LLVM::DialectCastOp>(loc, toLLVMTy(fillType), fill);
255 
256   Type vecTy = typeConverter.convertType(xferOp.getVectorType());
257   if (!vecTy)
258     return failure();
259 
260   unsigned align;
261   if (failed(getMemRefAlignment(typeConverter, xferOp, align)))
262     return failure();
263 
264   rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
265       xferOp, vecTy, dataPtr, mask, ValueRange{fill},
266       rewriter.getI32IntegerAttr(align));
267   return success();
268 }
269 
270 static LogicalResult
271 replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter,
272                                  LLVMTypeConverter &typeConverter, Location loc,
273                                  TransferWriteOp xferOp,
274                                  ArrayRef<Value> operands, Value dataPtr) {
275   unsigned align;
276   if (failed(getMemRefAlignment(typeConverter, xferOp, align)))
277     return failure();
278   auto adaptor = TransferWriteOpAdaptor(operands);
279   rewriter.replaceOpWithNewOp<LLVM::StoreOp>(xferOp, adaptor.vector(), dataPtr,
280                                              align);
281   return success();
282 }
283 
284 static LogicalResult
285 replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter,
286                             LLVMTypeConverter &typeConverter, Location loc,
287                             TransferWriteOp xferOp, ArrayRef<Value> operands,
288                             Value dataPtr, Value mask) {
289   unsigned align;
290   if (failed(getMemRefAlignment(typeConverter, xferOp, align)))
291     return failure();
292 
293   auto adaptor = TransferWriteOpAdaptor(operands);
294   rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
295       xferOp, adaptor.vector(), dataPtr, mask,
296       rewriter.getI32IntegerAttr(align));
297   return success();
298 }
299 
300 static TransferReadOpAdaptor getTransferOpAdapter(TransferReadOp xferOp,
301                                                   ArrayRef<Value> operands) {
302   return TransferReadOpAdaptor(operands);
303 }
304 
305 static TransferWriteOpAdaptor getTransferOpAdapter(TransferWriteOp xferOp,
306                                                    ArrayRef<Value> operands) {
307   return TransferWriteOpAdaptor(operands);
308 }
309 
310 namespace {
311 
312 /// Conversion pattern for a vector.matrix_multiply.
313 /// This is lowered directly to the proper llvm.intr.matrix.multiply.
314 class VectorMatmulOpConversion : public ConvertToLLVMPattern {
315 public:
316   explicit VectorMatmulOpConversion(MLIRContext *context,
317                                     LLVMTypeConverter &typeConverter)
318       : ConvertToLLVMPattern(vector::MatmulOp::getOperationName(), context,
319                              typeConverter) {}
320 
321   LogicalResult
322   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
323                   ConversionPatternRewriter &rewriter) const override {
324     auto matmulOp = cast<vector::MatmulOp>(op);
325     auto adaptor = vector::MatmulOpAdaptor(operands);
326     rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>(
327         op, typeConverter.convertType(matmulOp.res().getType()), adaptor.lhs(),
328         adaptor.rhs(), matmulOp.lhs_rows(), matmulOp.lhs_columns(),
329         matmulOp.rhs_columns());
330     return success();
331   }
332 };
333 
334 /// Conversion pattern for a vector.flat_transpose.
335 /// This is lowered directly to the proper llvm.intr.matrix.transpose.
336 class VectorFlatTransposeOpConversion : public ConvertToLLVMPattern {
337 public:
338   explicit VectorFlatTransposeOpConversion(MLIRContext *context,
339                                            LLVMTypeConverter &typeConverter)
340       : ConvertToLLVMPattern(vector::FlatTransposeOp::getOperationName(),
341                              context, typeConverter) {}
342 
343   LogicalResult
344   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
345                   ConversionPatternRewriter &rewriter) const override {
346     auto transOp = cast<vector::FlatTransposeOp>(op);
347     auto adaptor = vector::FlatTransposeOpAdaptor(operands);
348     rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>(
349         transOp, typeConverter.convertType(transOp.res().getType()),
350         adaptor.matrix(), transOp.rows(), transOp.columns());
351     return success();
352   }
353 };
354 
355 /// Conversion pattern for a vector.maskedload.
356 class VectorMaskedLoadOpConversion : public ConvertToLLVMPattern {
357 public:
358   explicit VectorMaskedLoadOpConversion(MLIRContext *context,
359                                         LLVMTypeConverter &typeConverter)
360       : ConvertToLLVMPattern(vector::MaskedLoadOp::getOperationName(), context,
361                              typeConverter) {}
362 
363   LogicalResult
364   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
365                   ConversionPatternRewriter &rewriter) const override {
366     auto loc = op->getLoc();
367     auto load = cast<vector::MaskedLoadOp>(op);
368     auto adaptor = vector::MaskedLoadOpAdaptor(operands);
369 
370     // Resolve alignment.
371     unsigned align;
372     if (failed(getMemRefAlignment(typeConverter, load, align)))
373       return failure();
374 
375     auto vtype = typeConverter.convertType(load.getResultVectorType());
376     Value ptr;
377     if (failed(getBasePtr(rewriter, loc, adaptor.base(), load.getMemRefType(),
378                           vtype, ptr)))
379       return failure();
380 
381     rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
382         load, vtype, ptr, adaptor.mask(), adaptor.pass_thru(),
383         rewriter.getI32IntegerAttr(align));
384     return success();
385   }
386 };
387 
388 /// Conversion pattern for a vector.maskedstore.
389 class VectorMaskedStoreOpConversion : public ConvertToLLVMPattern {
390 public:
391   explicit VectorMaskedStoreOpConversion(MLIRContext *context,
392                                          LLVMTypeConverter &typeConverter)
393       : ConvertToLLVMPattern(vector::MaskedStoreOp::getOperationName(), context,
394                              typeConverter) {}
395 
396   LogicalResult
397   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
398                   ConversionPatternRewriter &rewriter) const override {
399     auto loc = op->getLoc();
400     auto store = cast<vector::MaskedStoreOp>(op);
401     auto adaptor = vector::MaskedStoreOpAdaptor(operands);
402 
403     // Resolve alignment.
404     unsigned align;
405     if (failed(getMemRefAlignment(typeConverter, store, align)))
406       return failure();
407 
408     auto vtype = typeConverter.convertType(store.getValueVectorType());
409     Value ptr;
410     if (failed(getBasePtr(rewriter, loc, adaptor.base(), store.getMemRefType(),
411                           vtype, ptr)))
412       return failure();
413 
414     rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
415         store, adaptor.value(), ptr, adaptor.mask(),
416         rewriter.getI32IntegerAttr(align));
417     return success();
418   }
419 };
420 
421 /// Conversion pattern for a vector.gather.
422 class VectorGatherOpConversion : public ConvertToLLVMPattern {
423 public:
424   explicit VectorGatherOpConversion(MLIRContext *context,
425                                     LLVMTypeConverter &typeConverter)
426       : ConvertToLLVMPattern(vector::GatherOp::getOperationName(), context,
427                              typeConverter) {}
428 
429   LogicalResult
430   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
431                   ConversionPatternRewriter &rewriter) const override {
432     auto loc = op->getLoc();
433     auto gather = cast<vector::GatherOp>(op);
434     auto adaptor = vector::GatherOpAdaptor(operands);
435 
436     // Resolve alignment.
437     unsigned align;
438     if (failed(getMemRefAlignment(typeConverter, gather, align)))
439       return failure();
440 
441     // Get index ptrs.
442     VectorType vType = gather.getResultVectorType();
443     Type iType = gather.getIndicesVectorType().getElementType();
444     Value ptrs;
445     if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), adaptor.indices(),
446                               gather.getMemRefType(), vType, iType, ptrs)))
447       return failure();
448 
449     // Replace with the gather intrinsic.
450     rewriter.replaceOpWithNewOp<LLVM::masked_gather>(
451         gather, typeConverter.convertType(vType), ptrs, adaptor.mask(),
452         adaptor.pass_thru(), rewriter.getI32IntegerAttr(align));
453     return success();
454   }
455 };
456 
457 /// Conversion pattern for a vector.scatter.
458 class VectorScatterOpConversion : public ConvertToLLVMPattern {
459 public:
460   explicit VectorScatterOpConversion(MLIRContext *context,
461                                      LLVMTypeConverter &typeConverter)
462       : ConvertToLLVMPattern(vector::ScatterOp::getOperationName(), context,
463                              typeConverter) {}
464 
465   LogicalResult
466   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
467                   ConversionPatternRewriter &rewriter) const override {
468     auto loc = op->getLoc();
469     auto scatter = cast<vector::ScatterOp>(op);
470     auto adaptor = vector::ScatterOpAdaptor(operands);
471 
472     // Resolve alignment.
473     unsigned align;
474     if (failed(getMemRefAlignment(typeConverter, scatter, align)))
475       return failure();
476 
477     // Get index ptrs.
478     VectorType vType = scatter.getValueVectorType();
479     Type iType = scatter.getIndicesVectorType().getElementType();
480     Value ptrs;
481     if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), adaptor.indices(),
482                               scatter.getMemRefType(), vType, iType, ptrs)))
483       return failure();
484 
485     // Replace with the scatter intrinsic.
486     rewriter.replaceOpWithNewOp<LLVM::masked_scatter>(
487         scatter, adaptor.value(), ptrs, adaptor.mask(),
488         rewriter.getI32IntegerAttr(align));
489     return success();
490   }
491 };
492 
493 /// Conversion pattern for a vector.expandload.
494 class VectorExpandLoadOpConversion : public ConvertToLLVMPattern {
495 public:
496   explicit VectorExpandLoadOpConversion(MLIRContext *context,
497                                         LLVMTypeConverter &typeConverter)
498       : ConvertToLLVMPattern(vector::ExpandLoadOp::getOperationName(), context,
499                              typeConverter) {}
500 
501   LogicalResult
502   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
503                   ConversionPatternRewriter &rewriter) const override {
504     auto loc = op->getLoc();
505     auto expand = cast<vector::ExpandLoadOp>(op);
506     auto adaptor = vector::ExpandLoadOpAdaptor(operands);
507 
508     Value ptr;
509     if (failed(getBasePtr(rewriter, loc, adaptor.base(), expand.getMemRefType(),
510                           ptr)))
511       return failure();
512 
513     auto vType = expand.getResultVectorType();
514     rewriter.replaceOpWithNewOp<LLVM::masked_expandload>(
515         op, typeConverter.convertType(vType), ptr, adaptor.mask(),
516         adaptor.pass_thru());
517     return success();
518   }
519 };
520 
521 /// Conversion pattern for a vector.compressstore.
522 class VectorCompressStoreOpConversion : public ConvertToLLVMPattern {
523 public:
524   explicit VectorCompressStoreOpConversion(MLIRContext *context,
525                                            LLVMTypeConverter &typeConverter)
526       : ConvertToLLVMPattern(vector::CompressStoreOp::getOperationName(),
527                              context, typeConverter) {}
528 
529   LogicalResult
530   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
531                   ConversionPatternRewriter &rewriter) const override {
532     auto loc = op->getLoc();
533     auto compress = cast<vector::CompressStoreOp>(op);
534     auto adaptor = vector::CompressStoreOpAdaptor(operands);
535 
536     Value ptr;
537     if (failed(getBasePtr(rewriter, loc, adaptor.base(),
538                           compress.getMemRefType(), ptr)))
539       return failure();
540 
541     rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>(
542         op, adaptor.value(), ptr, adaptor.mask());
543     return success();
544   }
545 };
546 
547 /// Conversion pattern for all vector reductions.
548 class VectorReductionOpConversion : public ConvertToLLVMPattern {
549 public:
550   explicit VectorReductionOpConversion(MLIRContext *context,
551                                        LLVMTypeConverter &typeConverter,
552                                        bool reassociateFPRed)
553       : ConvertToLLVMPattern(vector::ReductionOp::getOperationName(), context,
554                              typeConverter),
555         reassociateFPReductions(reassociateFPRed) {}
556 
557   LogicalResult
558   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
559                   ConversionPatternRewriter &rewriter) const override {
560     auto reductionOp = cast<vector::ReductionOp>(op);
561     auto kind = reductionOp.kind();
562     Type eltType = reductionOp.dest().getType();
563     Type llvmType = typeConverter.convertType(eltType);
564     if (eltType.isSignlessInteger(32) || eltType.isSignlessInteger(64)) {
565       // Integer reductions: add/mul/min/max/and/or/xor.
566       if (kind == "add")
567         rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_add>(
568             op, llvmType, operands[0]);
569       else if (kind == "mul")
570         rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_mul>(
571             op, llvmType, operands[0]);
572       else if (kind == "min")
573         rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smin>(
574             op, llvmType, operands[0]);
575       else if (kind == "max")
576         rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smax>(
577             op, llvmType, operands[0]);
578       else if (kind == "and")
579         rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_and>(
580             op, llvmType, operands[0]);
581       else if (kind == "or")
582         rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_or>(
583             op, llvmType, operands[0]);
584       else if (kind == "xor")
585         rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_xor>(
586             op, llvmType, operands[0]);
587       else
588         return failure();
589       return success();
590 
591     } else if (eltType.isF32() || eltType.isF64()) {
592       // Floating-point reductions: add/mul/min/max
593       if (kind == "add") {
594         // Optional accumulator (or zero).
595         Value acc = operands.size() > 1 ? operands[1]
596                                         : rewriter.create<LLVM::ConstantOp>(
597                                               op->getLoc(), llvmType,
598                                               rewriter.getZeroAttr(eltType));
599         rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fadd>(
600             op, llvmType, acc, operands[0],
601             rewriter.getBoolAttr(reassociateFPReductions));
602       } else if (kind == "mul") {
603         // Optional accumulator (or one).
604         Value acc = operands.size() > 1
605                         ? operands[1]
606                         : rewriter.create<LLVM::ConstantOp>(
607                               op->getLoc(), llvmType,
608                               rewriter.getFloatAttr(eltType, 1.0));
609         rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fmul>(
610             op, llvmType, acc, operands[0],
611             rewriter.getBoolAttr(reassociateFPReductions));
612       } else if (kind == "min")
613         rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmin>(
614             op, llvmType, operands[0]);
615       else if (kind == "max")
616         rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmax>(
617             op, llvmType, operands[0]);
618       else
619         return failure();
620       return success();
621     }
622     return failure();
623   }
624 
625 private:
626   const bool reassociateFPReductions;
627 };
628 
629 /// Conversion pattern for a vector.create_mask (1-D only).
630 class VectorCreateMaskOpConversion : public ConvertToLLVMPattern {
631 public:
632   explicit VectorCreateMaskOpConversion(MLIRContext *context,
633                                         LLVMTypeConverter &typeConverter,
634                                         bool enableIndexOpt)
635       : ConvertToLLVMPattern(vector::CreateMaskOp::getOperationName(), context,
636                              typeConverter),
637         enableIndexOptimizations(enableIndexOpt) {}
638 
639   LogicalResult
640   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
641                   ConversionPatternRewriter &rewriter) const override {
642     auto dstType = op->getResult(0).getType().cast<VectorType>();
643     int64_t rank = dstType.getRank();
644     if (rank == 1) {
645       rewriter.replaceOp(
646           op, buildVectorComparison(rewriter, op, enableIndexOptimizations,
647                                     dstType.getDimSize(0), operands[0]));
648       return success();
649     }
650     return failure();
651   }
652 
653 private:
654   const bool enableIndexOptimizations;
655 };
656 
657 class VectorShuffleOpConversion : public ConvertToLLVMPattern {
658 public:
659   explicit VectorShuffleOpConversion(MLIRContext *context,
660                                      LLVMTypeConverter &typeConverter)
661       : ConvertToLLVMPattern(vector::ShuffleOp::getOperationName(), context,
662                              typeConverter) {}
663 
664   LogicalResult
665   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
666                   ConversionPatternRewriter &rewriter) const override {
667     auto loc = op->getLoc();
668     auto adaptor = vector::ShuffleOpAdaptor(operands);
669     auto shuffleOp = cast<vector::ShuffleOp>(op);
670     auto v1Type = shuffleOp.getV1VectorType();
671     auto v2Type = shuffleOp.getV2VectorType();
672     auto vectorType = shuffleOp.getVectorType();
673     Type llvmType = typeConverter.convertType(vectorType);
674     auto maskArrayAttr = shuffleOp.mask();
675 
676     // Bail if result type cannot be lowered.
677     if (!llvmType)
678       return failure();
679 
680     // Get rank and dimension sizes.
681     int64_t rank = vectorType.getRank();
682     assert(v1Type.getRank() == rank);
683     assert(v2Type.getRank() == rank);
684     int64_t v1Dim = v1Type.getDimSize(0);
685 
686     // For rank 1, where both operands have *exactly* the same vector type,
687     // there is direct shuffle support in LLVM. Use it!
688     if (rank == 1 && v1Type == v2Type) {
689       Value shuffle = rewriter.create<LLVM::ShuffleVectorOp>(
690           loc, adaptor.v1(), adaptor.v2(), maskArrayAttr);
691       rewriter.replaceOp(op, shuffle);
692       return success();
693     }
694 
695     // For all other cases, insert the individual values individually.
696     Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType);
697     int64_t insPos = 0;
698     for (auto en : llvm::enumerate(maskArrayAttr)) {
699       int64_t extPos = en.value().cast<IntegerAttr>().getInt();
700       Value value = adaptor.v1();
701       if (extPos >= v1Dim) {
702         extPos -= v1Dim;
703         value = adaptor.v2();
704       }
705       Value extract = extractOne(rewriter, typeConverter, loc, value, llvmType,
706                                  rank, extPos);
707       insert = insertOne(rewriter, typeConverter, loc, insert, extract,
708                          llvmType, rank, insPos++);
709     }
710     rewriter.replaceOp(op, insert);
711     return success();
712   }
713 };
714 
715 class VectorExtractElementOpConversion : public ConvertToLLVMPattern {
716 public:
717   explicit VectorExtractElementOpConversion(MLIRContext *context,
718                                             LLVMTypeConverter &typeConverter)
719       : ConvertToLLVMPattern(vector::ExtractElementOp::getOperationName(),
720                              context, typeConverter) {}
721 
722   LogicalResult
723   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
724                   ConversionPatternRewriter &rewriter) const override {
725     auto adaptor = vector::ExtractElementOpAdaptor(operands);
726     auto extractEltOp = cast<vector::ExtractElementOp>(op);
727     auto vectorType = extractEltOp.getVectorType();
728     auto llvmType = typeConverter.convertType(vectorType.getElementType());
729 
730     // Bail if result type cannot be lowered.
731     if (!llvmType)
732       return failure();
733 
734     rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
735         op, llvmType, adaptor.vector(), adaptor.position());
736     return success();
737   }
738 };
739 
740 class VectorExtractOpConversion : public ConvertToLLVMPattern {
741 public:
742   explicit VectorExtractOpConversion(MLIRContext *context,
743                                      LLVMTypeConverter &typeConverter)
744       : ConvertToLLVMPattern(vector::ExtractOp::getOperationName(), context,
745                              typeConverter) {}
746 
747   LogicalResult
748   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
749                   ConversionPatternRewriter &rewriter) const override {
750     auto loc = op->getLoc();
751     auto adaptor = vector::ExtractOpAdaptor(operands);
752     auto extractOp = cast<vector::ExtractOp>(op);
753     auto vectorType = extractOp.getVectorType();
754     auto resultType = extractOp.getResult().getType();
755     auto llvmResultType = typeConverter.convertType(resultType);
756     auto positionArrayAttr = extractOp.position();
757 
758     // Bail if result type cannot be lowered.
759     if (!llvmResultType)
760       return failure();
761 
762     // One-shot extraction of vector from array (only requires extractvalue).
763     if (resultType.isa<VectorType>()) {
764       Value extracted = rewriter.create<LLVM::ExtractValueOp>(
765           loc, llvmResultType, adaptor.vector(), positionArrayAttr);
766       rewriter.replaceOp(op, extracted);
767       return success();
768     }
769 
770     // Potential extraction of 1-D vector from array.
771     auto *context = op->getContext();
772     Value extracted = adaptor.vector();
773     auto positionAttrs = positionArrayAttr.getValue();
774     if (positionAttrs.size() > 1) {
775       auto oneDVectorType = reducedVectorTypeBack(vectorType);
776       auto nMinusOnePositionAttrs =
777           ArrayAttr::get(positionAttrs.drop_back(), context);
778       extracted = rewriter.create<LLVM::ExtractValueOp>(
779           loc, typeConverter.convertType(oneDVectorType), extracted,
780           nMinusOnePositionAttrs);
781     }
782 
783     // Remaining extraction of element from 1-D LLVM vector
784     auto position = positionAttrs.back().cast<IntegerAttr>();
785     auto i64Type = LLVM::LLVMType::getInt64Ty(rewriter.getContext());
786     auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
787     extracted =
788         rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
789     rewriter.replaceOp(op, extracted);
790 
791     return success();
792   }
793 };
794 
795 /// Conversion pattern that turns a vector.fma on a 1-D vector
796 /// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion.
797 /// This does not match vectors of n >= 2 rank.
798 ///
799 /// Example:
800 /// ```
801 ///  vector.fma %a, %a, %a : vector<8xf32>
802 /// ```
803 /// is converted to:
804 /// ```
805 ///  llvm.intr.fmuladd %va, %va, %va:
806 ///    (!llvm<"<8 x float>">, !llvm<"<8 x float>">, !llvm<"<8 x float>">)
807 ///    -> !llvm<"<8 x float>">
808 /// ```
809 class VectorFMAOp1DConversion : public ConvertToLLVMPattern {
810 public:
811   explicit VectorFMAOp1DConversion(MLIRContext *context,
812                                    LLVMTypeConverter &typeConverter)
813       : ConvertToLLVMPattern(vector::FMAOp::getOperationName(), context,
814                              typeConverter) {}
815 
816   LogicalResult
817   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
818                   ConversionPatternRewriter &rewriter) const override {
819     auto adaptor = vector::FMAOpAdaptor(operands);
820     vector::FMAOp fmaOp = cast<vector::FMAOp>(op);
821     VectorType vType = fmaOp.getVectorType();
822     if (vType.getRank() != 1)
823       return failure();
824     rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>(op, adaptor.lhs(),
825                                                  adaptor.rhs(), adaptor.acc());
826     return success();
827   }
828 };
829 
830 class VectorInsertElementOpConversion : public ConvertToLLVMPattern {
831 public:
832   explicit VectorInsertElementOpConversion(MLIRContext *context,
833                                            LLVMTypeConverter &typeConverter)
834       : ConvertToLLVMPattern(vector::InsertElementOp::getOperationName(),
835                              context, typeConverter) {}
836 
837   LogicalResult
838   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
839                   ConversionPatternRewriter &rewriter) const override {
840     auto adaptor = vector::InsertElementOpAdaptor(operands);
841     auto insertEltOp = cast<vector::InsertElementOp>(op);
842     auto vectorType = insertEltOp.getDestVectorType();
843     auto llvmType = typeConverter.convertType(vectorType);
844 
845     // Bail if result type cannot be lowered.
846     if (!llvmType)
847       return failure();
848 
849     rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
850         op, llvmType, adaptor.dest(), adaptor.source(), adaptor.position());
851     return success();
852   }
853 };
854 
855 class VectorInsertOpConversion : public ConvertToLLVMPattern {
856 public:
857   explicit VectorInsertOpConversion(MLIRContext *context,
858                                     LLVMTypeConverter &typeConverter)
859       : ConvertToLLVMPattern(vector::InsertOp::getOperationName(), context,
860                              typeConverter) {}
861 
862   LogicalResult
863   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
864                   ConversionPatternRewriter &rewriter) const override {
865     auto loc = op->getLoc();
866     auto adaptor = vector::InsertOpAdaptor(operands);
867     auto insertOp = cast<vector::InsertOp>(op);
868     auto sourceType = insertOp.getSourceType();
869     auto destVectorType = insertOp.getDestVectorType();
870     auto llvmResultType = typeConverter.convertType(destVectorType);
871     auto positionArrayAttr = insertOp.position();
872 
873     // Bail if result type cannot be lowered.
874     if (!llvmResultType)
875       return failure();
876 
877     // One-shot insertion of a vector into an array (only requires insertvalue).
878     if (sourceType.isa<VectorType>()) {
879       Value inserted = rewriter.create<LLVM::InsertValueOp>(
880           loc, llvmResultType, adaptor.dest(), adaptor.source(),
881           positionArrayAttr);
882       rewriter.replaceOp(op, inserted);
883       return success();
884     }
885 
886     // Potential extraction of 1-D vector from array.
887     auto *context = op->getContext();
888     Value extracted = adaptor.dest();
889     auto positionAttrs = positionArrayAttr.getValue();
890     auto position = positionAttrs.back().cast<IntegerAttr>();
891     auto oneDVectorType = destVectorType;
892     if (positionAttrs.size() > 1) {
893       oneDVectorType = reducedVectorTypeBack(destVectorType);
894       auto nMinusOnePositionAttrs =
895           ArrayAttr::get(positionAttrs.drop_back(), context);
896       extracted = rewriter.create<LLVM::ExtractValueOp>(
897           loc, typeConverter.convertType(oneDVectorType), extracted,
898           nMinusOnePositionAttrs);
899     }
900 
901     // Insertion of an element into a 1-D LLVM vector.
902     auto i64Type = LLVM::LLVMType::getInt64Ty(rewriter.getContext());
903     auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
904     Value inserted = rewriter.create<LLVM::InsertElementOp>(
905         loc, typeConverter.convertType(oneDVectorType), extracted,
906         adaptor.source(), constant);
907 
908     // Potential insertion of resulting 1-D vector into array.
909     if (positionAttrs.size() > 1) {
910       auto nMinusOnePositionAttrs =
911           ArrayAttr::get(positionAttrs.drop_back(), context);
912       inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType,
913                                                       adaptor.dest(), inserted,
914                                                       nMinusOnePositionAttrs);
915     }
916 
917     rewriter.replaceOp(op, inserted);
918     return success();
919   }
920 };
921 
922 /// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1.
923 ///
924 /// Example:
925 /// ```
926 ///   %d = vector.fma %a, %b, %c : vector<2x4xf32>
927 /// ```
928 /// is rewritten into:
929 /// ```
930 ///  %r = splat %f0: vector<2x4xf32>
931 ///  %va = vector.extractvalue %a[0] : vector<2x4xf32>
932 ///  %vb = vector.extractvalue %b[0] : vector<2x4xf32>
933 ///  %vc = vector.extractvalue %c[0] : vector<2x4xf32>
934 ///  %vd = vector.fma %va, %vb, %vc : vector<4xf32>
935 ///  %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32>
936 ///  %va2 = vector.extractvalue %a2[1] : vector<2x4xf32>
937 ///  %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32>
938 ///  %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32>
939 ///  %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32>
940 ///  %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32>
941 ///  // %r3 holds the final value.
942 /// ```
943 class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> {
944 public:
945   using OpRewritePattern<FMAOp>::OpRewritePattern;
946 
947   LogicalResult matchAndRewrite(FMAOp op,
948                                 PatternRewriter &rewriter) const override {
949     auto vType = op.getVectorType();
950     if (vType.getRank() < 2)
951       return failure();
952 
953     auto loc = op.getLoc();
954     auto elemType = vType.getElementType();
955     Value zero = rewriter.create<ConstantOp>(loc, elemType,
956                                              rewriter.getZeroAttr(elemType));
957     Value desc = rewriter.create<SplatOp>(loc, vType, zero);
958     for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) {
959       Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i);
960       Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i);
961       Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i);
962       Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC);
963       desc = rewriter.create<InsertOp>(loc, fma, desc, i);
964     }
965     rewriter.replaceOp(op, desc);
966     return success();
967   }
968 };
969 
970 // When ranks are different, InsertStridedSlice needs to extract a properly
971 // ranked vector from the destination vector into which to insert. This pattern
972 // only takes care of this part and forwards the rest of the conversion to
973 // another pattern that converts InsertStridedSlice for operands of the same
974 // rank.
975 //
976 // RewritePattern for InsertStridedSliceOp where source and destination vectors
977 // have different ranks. In this case:
978 //   1. the proper subvector is extracted from the destination vector
979 //   2. a new InsertStridedSlice op is created to insert the source in the
980 //   destination subvector
981 //   3. the destination subvector is inserted back in the proper place
982 //   4. the op is replaced by the result of step 3.
983 // The new InsertStridedSlice from step 2. will be picked up by a
984 // `VectorInsertStridedSliceOpSameRankRewritePattern`.
985 class VectorInsertStridedSliceOpDifferentRankRewritePattern
986     : public OpRewritePattern<InsertStridedSliceOp> {
987 public:
988   using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
989 
990   LogicalResult matchAndRewrite(InsertStridedSliceOp op,
991                                 PatternRewriter &rewriter) const override {
992     auto srcType = op.getSourceVectorType();
993     auto dstType = op.getDestVectorType();
994 
995     if (op.offsets().getValue().empty())
996       return failure();
997 
998     auto loc = op.getLoc();
999     int64_t rankDiff = dstType.getRank() - srcType.getRank();
1000     assert(rankDiff >= 0);
1001     if (rankDiff == 0)
1002       return failure();
1003 
1004     int64_t rankRest = dstType.getRank() - rankDiff;
1005     // Extract / insert the subvector of matching rank and InsertStridedSlice
1006     // on it.
1007     Value extracted =
1008         rewriter.create<ExtractOp>(loc, op.dest(),
1009                                    getI64SubArray(op.offsets(), /*dropFront=*/0,
1010                                                   /*dropFront=*/rankRest));
1011     // A different pattern will kick in for InsertStridedSlice with matching
1012     // ranks.
1013     auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>(
1014         loc, op.source(), extracted,
1015         getI64SubArray(op.offsets(), /*dropFront=*/rankDiff),
1016         getI64SubArray(op.strides(), /*dropFront=*/0));
1017     rewriter.replaceOpWithNewOp<InsertOp>(
1018         op, stridedSliceInnerOp.getResult(), op.dest(),
1019         getI64SubArray(op.offsets(), /*dropFront=*/0,
1020                        /*dropFront=*/rankRest));
1021     return success();
1022   }
1023 };
1024 
1025 // RewritePattern for InsertStridedSliceOp where source and destination vectors
1026 // have the same rank. In this case, we reduce
1027 //   1. the proper subvector is extracted from the destination vector
1028 //   2. a new InsertStridedSlice op is created to insert the source in the
1029 //   destination subvector
1030 //   3. the destination subvector is inserted back in the proper place
1031 //   4. the op is replaced by the result of step 3.
1032 // The new InsertStridedSlice from step 2. will be picked up by a
1033 // `VectorInsertStridedSliceOpSameRankRewritePattern`.
1034 class VectorInsertStridedSliceOpSameRankRewritePattern
1035     : public OpRewritePattern<InsertStridedSliceOp> {
1036 public:
1037   using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern;
1038 
1039   LogicalResult matchAndRewrite(InsertStridedSliceOp op,
1040                                 PatternRewriter &rewriter) const override {
1041     auto srcType = op.getSourceVectorType();
1042     auto dstType = op.getDestVectorType();
1043 
1044     if (op.offsets().getValue().empty())
1045       return failure();
1046 
1047     int64_t rankDiff = dstType.getRank() - srcType.getRank();
1048     assert(rankDiff >= 0);
1049     if (rankDiff != 0)
1050       return failure();
1051 
1052     if (srcType == dstType) {
1053       rewriter.replaceOp(op, op.source());
1054       return success();
1055     }
1056 
1057     int64_t offset =
1058         op.offsets().getValue().front().cast<IntegerAttr>().getInt();
1059     int64_t size = srcType.getShape().front();
1060     int64_t stride =
1061         op.strides().getValue().front().cast<IntegerAttr>().getInt();
1062 
1063     auto loc = op.getLoc();
1064     Value res = op.dest();
1065     // For each slice of the source vector along the most major dimension.
1066     for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
1067          off += stride, ++idx) {
1068       // 1. extract the proper subvector (or element) from source
1069       Value extractedSource = extractOne(rewriter, loc, op.source(), idx);
1070       if (extractedSource.getType().isa<VectorType>()) {
1071         // 2. If we have a vector, extract the proper subvector from destination
1072         // Otherwise we are at the element level and no need to recurse.
1073         Value extractedDest = extractOne(rewriter, loc, op.dest(), off);
1074         // 3. Reduce the problem to lowering a new InsertStridedSlice op with
1075         // smaller rank.
1076         extractedSource = rewriter.create<InsertStridedSliceOp>(
1077             loc, extractedSource, extractedDest,
1078             getI64SubArray(op.offsets(), /* dropFront=*/1),
1079             getI64SubArray(op.strides(), /* dropFront=*/1));
1080       }
1081       // 4. Insert the extractedSource into the res vector.
1082       res = insertOne(rewriter, loc, extractedSource, res, off);
1083     }
1084 
1085     rewriter.replaceOp(op, res);
1086     return success();
1087   }
1088   /// This pattern creates recursive InsertStridedSliceOp, but the recursion is
1089   /// bounded as the rank is strictly decreasing.
1090   bool hasBoundedRewriteRecursion() const final { return true; }
1091 };
1092 
1093 /// Returns true if the memory underlying `memRefType` has a contiguous layout.
1094 /// Strides are written to `strides`.
1095 static bool isContiguous(MemRefType memRefType,
1096                          SmallVectorImpl<int64_t> &strides) {
1097   int64_t offset;
1098   auto successStrides = getStridesAndOffset(memRefType, strides, offset);
1099   bool isContiguous = strides.empty() || strides.back() == 1;
1100   if (isContiguous) {
1101     auto sizes = memRefType.getShape();
1102     for (int index = 0, e = strides.size() - 2; index < e; ++index) {
1103       if (strides[index] != strides[index + 1] * sizes[index + 1]) {
1104         isContiguous = false;
1105         break;
1106       }
1107     }
1108   }
1109   return succeeded(successStrides) && isContiguous;
1110 }
1111 
1112 class VectorTypeCastOpConversion : public ConvertToLLVMPattern {
1113 public:
1114   explicit VectorTypeCastOpConversion(MLIRContext *context,
1115                                       LLVMTypeConverter &typeConverter)
1116       : ConvertToLLVMPattern(vector::TypeCastOp::getOperationName(), context,
1117                              typeConverter) {}
1118 
1119   LogicalResult
1120   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
1121                   ConversionPatternRewriter &rewriter) const override {
1122     auto loc = op->getLoc();
1123     vector::TypeCastOp castOp = cast<vector::TypeCastOp>(op);
1124     MemRefType sourceMemRefType =
1125         castOp.getOperand().getType().cast<MemRefType>();
1126     MemRefType targetMemRefType =
1127         castOp.getResult().getType().cast<MemRefType>();
1128 
1129     // Only static shape casts supported atm.
1130     if (!sourceMemRefType.hasStaticShape() ||
1131         !targetMemRefType.hasStaticShape())
1132       return failure();
1133 
1134     auto llvmSourceDescriptorTy =
1135         operands[0].getType().dyn_cast<LLVM::LLVMType>();
1136     if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy())
1137       return failure();
1138     MemRefDescriptor sourceMemRef(operands[0]);
1139 
1140     auto llvmTargetDescriptorTy = typeConverter.convertType(targetMemRefType)
1141                                       .dyn_cast_or_null<LLVM::LLVMType>();
1142     if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy())
1143       return failure();
1144 
1145     // Only contiguous source tensors supported atm.
1146     SmallVector<int64_t, 4> strides;
1147     if (!isContiguous(sourceMemRefType, strides))
1148       return failure();
1149 
1150     auto int64Ty = LLVM::LLVMType::getInt64Ty(rewriter.getContext());
1151 
1152     // Create descriptor.
1153     auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
1154     Type llvmTargetElementTy = desc.getElementType();
1155     // Set allocated ptr.
1156     Value allocated = sourceMemRef.allocatedPtr(rewriter, loc);
1157     allocated =
1158         rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
1159     desc.setAllocatedPtr(rewriter, loc, allocated);
1160     // Set aligned ptr.
1161     Value ptr = sourceMemRef.alignedPtr(rewriter, loc);
1162     ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
1163     desc.setAlignedPtr(rewriter, loc, ptr);
1164     // Fill offset 0.
1165     auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
1166     auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
1167     desc.setOffset(rewriter, loc, zero);
1168 
1169     // Fill size and stride descriptors in memref.
1170     for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
1171       int64_t index = indexedSize.index();
1172       auto sizeAttr =
1173           rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
1174       auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
1175       desc.setSize(rewriter, loc, index, size);
1176       auto strideAttr =
1177           rewriter.getIntegerAttr(rewriter.getIndexType(), strides[index]);
1178       auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
1179       desc.setStride(rewriter, loc, index, stride);
1180     }
1181 
1182     rewriter.replaceOp(op, {desc});
1183     return success();
1184   }
1185 };
1186 
1187 /// Conversion pattern that converts a 1-D vector transfer read/write op in a
1188 /// sequence of:
1189 /// 1. Get the source/dst address as an LLVM vector pointer.
1190 /// 2. Create a vector with linear indices [ 0 .. vector_length - 1 ].
1191 /// 3. Create an offsetVector = [ offset + 0 .. offset + vector_length - 1 ].
1192 /// 4. Create a mask where offsetVector is compared against memref upper bound.
1193 /// 5. Rewrite op as a masked read or write.
1194 template <typename ConcreteOp>
1195 class VectorTransferConversion : public ConvertToLLVMPattern {
1196 public:
1197   explicit VectorTransferConversion(MLIRContext *context,
1198                                     LLVMTypeConverter &typeConv,
1199                                     bool enableIndexOpt)
1200       : ConvertToLLVMPattern(ConcreteOp::getOperationName(), context, typeConv),
1201         enableIndexOptimizations(enableIndexOpt) {}
1202 
1203   LogicalResult
1204   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
1205                   ConversionPatternRewriter &rewriter) const override {
1206     auto xferOp = cast<ConcreteOp>(op);
1207     auto adaptor = getTransferOpAdapter(xferOp, operands);
1208 
1209     if (xferOp.getVectorType().getRank() > 1 ||
1210         llvm::size(xferOp.indices()) == 0)
1211       return failure();
1212     if (xferOp.permutation_map() !=
1213         AffineMap::getMinorIdentityMap(xferOp.permutation_map().getNumInputs(),
1214                                        xferOp.getVectorType().getRank(),
1215                                        op->getContext()))
1216       return failure();
1217     // Only contiguous source tensors supported atm.
1218     SmallVector<int64_t, 4> strides;
1219     if (!isContiguous(xferOp.getMemRefType(), strides))
1220       return failure();
1221 
1222     auto toLLVMTy = [&](Type t) { return typeConverter.convertType(t); };
1223 
1224     Location loc = op->getLoc();
1225     MemRefType memRefType = xferOp.getMemRefType();
1226 
1227     if (auto memrefVectorElementType =
1228             memRefType.getElementType().dyn_cast<VectorType>()) {
1229       // Memref has vector element type.
1230       if (memrefVectorElementType.getElementType() !=
1231           xferOp.getVectorType().getElementType())
1232         return failure();
1233 #ifndef NDEBUG
1234       // Check that memref vector type is a suffix of 'vectorType.
1235       unsigned memrefVecEltRank = memrefVectorElementType.getRank();
1236       unsigned resultVecRank = xferOp.getVectorType().getRank();
1237       assert(memrefVecEltRank <= resultVecRank);
1238       // TODO: Move this to isSuffix in Vector/Utils.h.
1239       unsigned rankOffset = resultVecRank - memrefVecEltRank;
1240       auto memrefVecEltShape = memrefVectorElementType.getShape();
1241       auto resultVecShape = xferOp.getVectorType().getShape();
1242       for (unsigned i = 0; i < memrefVecEltRank; ++i)
1243         assert(memrefVecEltShape[i] != resultVecShape[rankOffset + i] &&
1244                "memref vector element shape should match suffix of vector "
1245                "result shape.");
1246 #endif // ifndef NDEBUG
1247     }
1248 
1249     // 1. Get the source/dst address as an LLVM vector pointer.
1250     //    The vector pointer would always be on address space 0, therefore
1251     //    addrspacecast shall be used when source/dst memrefs are not on
1252     //    address space 0.
1253     // TODO: support alignment when possible.
1254     Value dataPtr = getDataPtr(loc, memRefType, adaptor.memref(),
1255                                adaptor.indices(), rewriter);
1256     auto vecTy =
1257         toLLVMTy(xferOp.getVectorType()).template cast<LLVM::LLVMType>();
1258     Value vectorDataPtr;
1259     if (memRefType.getMemorySpace() == 0)
1260       vectorDataPtr =
1261           rewriter.create<LLVM::BitcastOp>(loc, vecTy.getPointerTo(), dataPtr);
1262     else
1263       vectorDataPtr = rewriter.create<LLVM::AddrSpaceCastOp>(
1264           loc, vecTy.getPointerTo(), dataPtr);
1265 
1266     if (!xferOp.isMaskedDim(0))
1267       return replaceTransferOpWithLoadOrStore(rewriter, typeConverter, loc,
1268                                               xferOp, operands, vectorDataPtr);
1269 
1270     // 2. Create a vector with linear indices [ 0 .. vector_length - 1 ].
1271     // 3. Create offsetVector = [ offset + 0 .. offset + vector_length - 1 ].
1272     // 4. Let dim the memref dimension, compute the vector comparison mask:
1273     //   [ offset + 0 .. offset + vector_length - 1 ] < [ dim .. dim ]
1274     //
1275     // TODO: when the leaf transfer rank is k > 1, we need the last `k`
1276     //       dimensions here.
1277     unsigned vecWidth = vecTy.getVectorNumElements();
1278     unsigned lastIndex = llvm::size(xferOp.indices()) - 1;
1279     Value off = xferOp.indices()[lastIndex];
1280     Value dim = rewriter.create<DimOp>(loc, xferOp.memref(), lastIndex);
1281     Value mask = buildVectorComparison(rewriter, op, enableIndexOptimizations,
1282                                        vecWidth, dim, &off);
1283 
1284     // 5. Rewrite as a masked read / write.
1285     return replaceTransferOpWithMasked(rewriter, typeConverter, loc, xferOp,
1286                                        operands, vectorDataPtr, mask);
1287   }
1288 
1289 private:
1290   const bool enableIndexOptimizations;
1291 };
1292 
1293 class VectorPrintOpConversion : public ConvertToLLVMPattern {
1294 public:
1295   explicit VectorPrintOpConversion(MLIRContext *context,
1296                                    LLVMTypeConverter &typeConverter)
1297       : ConvertToLLVMPattern(vector::PrintOp::getOperationName(), context,
1298                              typeConverter) {}
1299 
1300   // Proof-of-concept lowering implementation that relies on a small
1301   // runtime support library, which only needs to provide a few
1302   // printing methods (single value for all data types, opening/closing
1303   // bracket, comma, newline). The lowering fully unrolls a vector
1304   // in terms of these elementary printing operations. The advantage
1305   // of this approach is that the library can remain unaware of all
1306   // low-level implementation details of vectors while still supporting
1307   // output of any shaped and dimensioned vector. Due to full unrolling,
1308   // this approach is less suited for very large vectors though.
1309   //
1310   // TODO: rely solely on libc in future? something else?
1311   //
1312   LogicalResult
1313   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
1314                   ConversionPatternRewriter &rewriter) const override {
1315     auto printOp = cast<vector::PrintOp>(op);
1316     auto adaptor = vector::PrintOpAdaptor(operands);
1317     Type printType = printOp.getPrintType();
1318 
1319     if (typeConverter.convertType(printType) == nullptr)
1320       return failure();
1321 
1322     // Make sure element type has runtime support (currently just Float/Double).
1323     VectorType vectorType = printType.dyn_cast<VectorType>();
1324     Type eltType = vectorType ? vectorType.getElementType() : printType;
1325     int64_t rank = vectorType ? vectorType.getRank() : 0;
1326     Operation *printer;
1327     if (eltType.isSignlessInteger(1) || eltType.isSignlessInteger(32))
1328       printer = getPrintI32(op);
1329     else if (eltType.isSignlessInteger(64))
1330       printer = getPrintI64(op);
1331     else if (eltType.isF32())
1332       printer = getPrintFloat(op);
1333     else if (eltType.isF64())
1334       printer = getPrintDouble(op);
1335     else
1336       return failure();
1337 
1338     // Unroll vector into elementary print calls.
1339     emitRanks(rewriter, op, adaptor.source(), vectorType, printer, rank);
1340     emitCall(rewriter, op->getLoc(), getPrintNewline(op));
1341     rewriter.eraseOp(op);
1342     return success();
1343   }
1344 
1345 private:
1346   void emitRanks(ConversionPatternRewriter &rewriter, Operation *op,
1347                  Value value, VectorType vectorType, Operation *printer,
1348                  int64_t rank) const {
1349     Location loc = op->getLoc();
1350     if (rank == 0) {
1351       if (value.getType() == LLVM::LLVMType::getInt1Ty(rewriter.getContext())) {
1352         // Convert i1 (bool) to i32 so we can use the print_i32 method.
1353         // This avoids the need for a print_i1 method with an unclear ABI.
1354         auto i32Type = LLVM::LLVMType::getInt32Ty(rewriter.getContext());
1355         auto trueVal = rewriter.create<ConstantOp>(
1356             loc, i32Type, rewriter.getI32IntegerAttr(1));
1357         auto falseVal = rewriter.create<ConstantOp>(
1358             loc, i32Type, rewriter.getI32IntegerAttr(0));
1359         value = rewriter.create<SelectOp>(loc, value, trueVal, falseVal);
1360       }
1361       emitCall(rewriter, loc, printer, value);
1362       return;
1363     }
1364 
1365     emitCall(rewriter, loc, getPrintOpen(op));
1366     Operation *printComma = getPrintComma(op);
1367     int64_t dim = vectorType.getDimSize(0);
1368     for (int64_t d = 0; d < dim; ++d) {
1369       auto reducedType =
1370           rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr;
1371       auto llvmType = typeConverter.convertType(
1372           rank > 1 ? reducedType : vectorType.getElementType());
1373       Value nestedVal =
1374           extractOne(rewriter, typeConverter, loc, value, llvmType, rank, d);
1375       emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1);
1376       if (d != dim - 1)
1377         emitCall(rewriter, loc, printComma);
1378     }
1379     emitCall(rewriter, loc, getPrintClose(op));
1380   }
1381 
1382   // Helper to emit a call.
1383   static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
1384                        Operation *ref, ValueRange params = ValueRange()) {
1385     rewriter.create<LLVM::CallOp>(loc, ArrayRef<Type>{},
1386                                   rewriter.getSymbolRefAttr(ref), params);
1387   }
1388 
1389   // Helper for printer method declaration (first hit) and lookup.
1390   static Operation *getPrint(Operation *op, StringRef name,
1391                              ArrayRef<LLVM::LLVMType> params) {
1392     auto module = op->getParentOfType<ModuleOp>();
1393     auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name);
1394     if (func)
1395       return func;
1396     OpBuilder moduleBuilder(module.getBodyRegion());
1397     return moduleBuilder.create<LLVM::LLVMFuncOp>(
1398         op->getLoc(), name,
1399         LLVM::LLVMType::getFunctionTy(
1400             LLVM::LLVMType::getVoidTy(op->getContext()), params,
1401             /*isVarArg=*/false));
1402   }
1403 
1404   // Helpers for method names.
1405   Operation *getPrintI32(Operation *op) const {
1406     return getPrint(op, "print_i32",
1407                     LLVM::LLVMType::getInt32Ty(op->getContext()));
1408   }
1409   Operation *getPrintI64(Operation *op) const {
1410     return getPrint(op, "print_i64",
1411                     LLVM::LLVMType::getInt64Ty(op->getContext()));
1412   }
1413   Operation *getPrintFloat(Operation *op) const {
1414     return getPrint(op, "print_f32",
1415                     LLVM::LLVMType::getFloatTy(op->getContext()));
1416   }
1417   Operation *getPrintDouble(Operation *op) const {
1418     return getPrint(op, "print_f64",
1419                     LLVM::LLVMType::getDoubleTy(op->getContext()));
1420   }
1421   Operation *getPrintOpen(Operation *op) const {
1422     return getPrint(op, "print_open", {});
1423   }
1424   Operation *getPrintClose(Operation *op) const {
1425     return getPrint(op, "print_close", {});
1426   }
1427   Operation *getPrintComma(Operation *op) const {
1428     return getPrint(op, "print_comma", {});
1429   }
1430   Operation *getPrintNewline(Operation *op) const {
1431     return getPrint(op, "print_newline", {});
1432   }
1433 };
1434 
1435 /// Progressive lowering of ExtractStridedSliceOp to either:
1436 ///   1. express single offset extract as a direct shuffle.
1437 ///   2. extract + lower rank strided_slice + insert for the n-D case.
1438 class VectorExtractStridedSliceOpConversion
1439     : public OpRewritePattern<ExtractStridedSliceOp> {
1440 public:
1441   using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern;
1442 
1443   LogicalResult matchAndRewrite(ExtractStridedSliceOp op,
1444                                 PatternRewriter &rewriter) const override {
1445     auto dstType = op.getResult().getType().cast<VectorType>();
1446 
1447     assert(!op.offsets().getValue().empty() && "Unexpected empty offsets");
1448 
1449     int64_t offset =
1450         op.offsets().getValue().front().cast<IntegerAttr>().getInt();
1451     int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt();
1452     int64_t stride =
1453         op.strides().getValue().front().cast<IntegerAttr>().getInt();
1454 
1455     auto loc = op.getLoc();
1456     auto elemType = dstType.getElementType();
1457     assert(elemType.isSignlessIntOrIndexOrFloat());
1458 
1459     // Single offset can be more efficiently shuffled.
1460     if (op.offsets().getValue().size() == 1) {
1461       SmallVector<int64_t, 4> offsets;
1462       offsets.reserve(size);
1463       for (int64_t off = offset, e = offset + size * stride; off < e;
1464            off += stride)
1465         offsets.push_back(off);
1466       rewriter.replaceOpWithNewOp<ShuffleOp>(op, dstType, op.vector(),
1467                                              op.vector(),
1468                                              rewriter.getI64ArrayAttr(offsets));
1469       return success();
1470     }
1471 
1472     // Extract/insert on a lower ranked extract strided slice op.
1473     Value zero = rewriter.create<ConstantOp>(loc, elemType,
1474                                              rewriter.getZeroAttr(elemType));
1475     Value res = rewriter.create<SplatOp>(loc, dstType, zero);
1476     for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e;
1477          off += stride, ++idx) {
1478       Value one = extractOne(rewriter, loc, op.vector(), off);
1479       Value extracted = rewriter.create<ExtractStridedSliceOp>(
1480           loc, one, getI64SubArray(op.offsets(), /* dropFront=*/1),
1481           getI64SubArray(op.sizes(), /* dropFront=*/1),
1482           getI64SubArray(op.strides(), /* dropFront=*/1));
1483       res = insertOne(rewriter, loc, extracted, res, idx);
1484     }
1485     rewriter.replaceOp(op, res);
1486     return success();
1487   }
1488   /// This pattern creates recursive ExtractStridedSliceOp, but the recursion is
1489   /// bounded as the rank is strictly decreasing.
1490   bool hasBoundedRewriteRecursion() const final { return true; }
1491 };
1492 
1493 } // namespace
1494 
1495 /// Populate the given list with patterns that convert from Vector to LLVM.
1496 void mlir::populateVectorToLLVMConversionPatterns(
1497     LLVMTypeConverter &converter, OwningRewritePatternList &patterns,
1498     bool reassociateFPReductions, bool enableIndexOptimizations) {
1499   MLIRContext *ctx = converter.getDialect()->getContext();
1500   // clang-format off
1501   patterns.insert<VectorFMAOpNDRewritePattern,
1502                   VectorInsertStridedSliceOpDifferentRankRewritePattern,
1503                   VectorInsertStridedSliceOpSameRankRewritePattern,
1504                   VectorExtractStridedSliceOpConversion>(ctx);
1505   patterns.insert<VectorReductionOpConversion>(
1506       ctx, converter, reassociateFPReductions);
1507   patterns.insert<VectorCreateMaskOpConversion,
1508                   VectorTransferConversion<TransferReadOp>,
1509                   VectorTransferConversion<TransferWriteOp>>(
1510       ctx, converter, enableIndexOptimizations);
1511   patterns
1512       .insert<VectorShuffleOpConversion,
1513               VectorExtractElementOpConversion,
1514               VectorExtractOpConversion,
1515               VectorFMAOp1DConversion,
1516               VectorInsertElementOpConversion,
1517               VectorInsertOpConversion,
1518               VectorPrintOpConversion,
1519               VectorTypeCastOpConversion,
1520               VectorMaskedLoadOpConversion,
1521               VectorMaskedStoreOpConversion,
1522               VectorGatherOpConversion,
1523               VectorScatterOpConversion,
1524               VectorExpandLoadOpConversion,
1525               VectorCompressStoreOpConversion>(ctx, converter);
1526   // clang-format on
1527 }
1528 
1529 void mlir::populateVectorToLLVMMatrixConversionPatterns(
1530     LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
1531   MLIRContext *ctx = converter.getDialect()->getContext();
1532   patterns.insert<VectorMatmulOpConversion>(ctx, converter);
1533   patterns.insert<VectorFlatTransposeOpConversion>(ctx, converter);
1534 }
1535 
1536 namespace {
1537 struct LowerVectorToLLVMPass
1538     : public ConvertVectorToLLVMBase<LowerVectorToLLVMPass> {
1539   LowerVectorToLLVMPass(const LowerVectorToLLVMOptions &options) {
1540     this->reassociateFPReductions = options.reassociateFPReductions;
1541     this->enableIndexOptimizations = options.enableIndexOptimizations;
1542   }
1543   void runOnOperation() override;
1544 };
1545 } // namespace
1546 
1547 void LowerVectorToLLVMPass::runOnOperation() {
1548   // Perform progressive lowering of operations on slices and
1549   // all contraction operations. Also applies folding and DCE.
1550   {
1551     OwningRewritePatternList patterns;
1552     populateVectorToVectorCanonicalizationPatterns(patterns, &getContext());
1553     populateVectorSlicesLoweringPatterns(patterns, &getContext());
1554     populateVectorContractLoweringPatterns(patterns, &getContext());
1555     applyPatternsAndFoldGreedily(getOperation(), patterns);
1556   }
1557 
1558   // Convert to the LLVM IR dialect.
1559   LLVMTypeConverter converter(&getContext());
1560   OwningRewritePatternList patterns;
1561   populateVectorToLLVMMatrixConversionPatterns(converter, patterns);
1562   populateVectorToLLVMConversionPatterns(
1563       converter, patterns, reassociateFPReductions, enableIndexOptimizations);
1564   populateVectorToLLVMMatrixConversionPatterns(converter, patterns);
1565   populateStdToLLVMConversionPatterns(converter, patterns);
1566 
1567   LLVMConversionTarget target(getContext());
1568   if (failed(applyPartialConversion(getOperation(), target, patterns)))
1569     signalPassFailure();
1570 }
1571 
1572 std::unique_ptr<OperationPass<ModuleOp>>
1573 mlir::createConvertVectorToLLVMPass(const LowerVectorToLLVMOptions &options) {
1574   return std::make_unique<LowerVectorToLLVMPass>(options);
1575 }
1576