1 //===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h" 10 11 #include "../PassDetail.h" 12 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h" 13 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h" 14 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 15 #include "mlir/Dialect/StandardOps/IR/Ops.h" 16 #include "mlir/Dialect/Vector/VectorOps.h" 17 #include "mlir/IR/AffineMap.h" 18 #include "mlir/IR/Attributes.h" 19 #include "mlir/IR/Builders.h" 20 #include "mlir/IR/MLIRContext.h" 21 #include "mlir/IR/Module.h" 22 #include "mlir/IR/Operation.h" 23 #include "mlir/IR/PatternMatch.h" 24 #include "mlir/IR/StandardTypes.h" 25 #include "mlir/IR/Types.h" 26 #include "mlir/Target/LLVMIR/TypeTranslation.h" 27 #include "mlir/Transforms/DialectConversion.h" 28 #include "mlir/Transforms/Passes.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/Support/Allocator.h" 33 #include "llvm/Support/ErrorHandling.h" 34 35 using namespace mlir; 36 using namespace mlir::vector; 37 38 // Helper to reduce vector type by one rank at front. 39 static VectorType reducedVectorTypeFront(VectorType tp) { 40 assert((tp.getRank() > 1) && "unlowerable vector type"); 41 return VectorType::get(tp.getShape().drop_front(), tp.getElementType()); 42 } 43 44 // Helper to reduce vector type by *all* but one rank at back. 45 static VectorType reducedVectorTypeBack(VectorType tp) { 46 assert((tp.getRank() > 1) && "unlowerable vector type"); 47 return VectorType::get(tp.getShape().take_back(), tp.getElementType()); 48 } 49 50 // Helper that picks the proper sequence for inserting. 51 static Value insertOne(ConversionPatternRewriter &rewriter, 52 LLVMTypeConverter &typeConverter, Location loc, 53 Value val1, Value val2, Type llvmType, int64_t rank, 54 int64_t pos) { 55 if (rank == 1) { 56 auto idxType = rewriter.getIndexType(); 57 auto constant = rewriter.create<LLVM::ConstantOp>( 58 loc, typeConverter.convertType(idxType), 59 rewriter.getIntegerAttr(idxType, pos)); 60 return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2, 61 constant); 62 } 63 return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2, 64 rewriter.getI64ArrayAttr(pos)); 65 } 66 67 // Helper that picks the proper sequence for inserting. 68 static Value insertOne(PatternRewriter &rewriter, Location loc, Value from, 69 Value into, int64_t offset) { 70 auto vectorType = into.getType().cast<VectorType>(); 71 if (vectorType.getRank() > 1) 72 return rewriter.create<InsertOp>(loc, from, into, offset); 73 return rewriter.create<vector::InsertElementOp>( 74 loc, vectorType, from, into, 75 rewriter.create<ConstantIndexOp>(loc, offset)); 76 } 77 78 // Helper that picks the proper sequence for extracting. 79 static Value extractOne(ConversionPatternRewriter &rewriter, 80 LLVMTypeConverter &typeConverter, Location loc, 81 Value val, Type llvmType, int64_t rank, int64_t pos) { 82 if (rank == 1) { 83 auto idxType = rewriter.getIndexType(); 84 auto constant = rewriter.create<LLVM::ConstantOp>( 85 loc, typeConverter.convertType(idxType), 86 rewriter.getIntegerAttr(idxType, pos)); 87 return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val, 88 constant); 89 } 90 return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val, 91 rewriter.getI64ArrayAttr(pos)); 92 } 93 94 // Helper that picks the proper sequence for extracting. 95 static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector, 96 int64_t offset) { 97 auto vectorType = vector.getType().cast<VectorType>(); 98 if (vectorType.getRank() > 1) 99 return rewriter.create<ExtractOp>(loc, vector, offset); 100 return rewriter.create<vector::ExtractElementOp>( 101 loc, vectorType.getElementType(), vector, 102 rewriter.create<ConstantIndexOp>(loc, offset)); 103 } 104 105 // Helper that returns a subset of `arrayAttr` as a vector of int64_t. 106 // TODO: Better support for attribute subtype forwarding + slicing. 107 static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr, 108 unsigned dropFront = 0, 109 unsigned dropBack = 0) { 110 assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds"); 111 auto range = arrayAttr.getAsRange<IntegerAttr>(); 112 SmallVector<int64_t, 4> res; 113 res.reserve(arrayAttr.size() - dropFront - dropBack); 114 for (auto it = range.begin() + dropFront, eit = range.end() - dropBack; 115 it != eit; ++it) 116 res.push_back((*it).getValue().getSExtValue()); 117 return res; 118 } 119 120 // Helper that returns a vector comparison that constructs a mask: 121 // mask = [0,1,..,n-1] + [o,o,..,o] < [b,b,..,b] 122 // 123 // NOTE: The LLVM::GetActiveLaneMaskOp intrinsic would provide an alternative, 124 // much more compact, IR for this operation, but LLVM eventually 125 // generates more elaborate instructions for this intrinsic since it 126 // is very conservative on the boundary conditions. 127 static Value buildVectorComparison(ConversionPatternRewriter &rewriter, 128 Operation *op, bool enableIndexOptimizations, 129 int64_t dim, Value b, Value *off = nullptr) { 130 auto loc = op->getLoc(); 131 // If we can assume all indices fit in 32-bit, we perform the vector 132 // comparison in 32-bit to get a higher degree of SIMD parallelism. 133 // Otherwise we perform the vector comparison using 64-bit indices. 134 Value indices; 135 Type idxType; 136 if (enableIndexOptimizations) { 137 indices = rewriter.create<ConstantOp>( 138 loc, rewriter.getI32VectorAttr( 139 llvm::to_vector<4>(llvm::seq<int32_t>(0, dim)))); 140 idxType = rewriter.getI32Type(); 141 } else { 142 indices = rewriter.create<ConstantOp>( 143 loc, rewriter.getI64VectorAttr( 144 llvm::to_vector<4>(llvm::seq<int64_t>(0, dim)))); 145 idxType = rewriter.getI64Type(); 146 } 147 // Add in an offset if requested. 148 if (off) { 149 Value o = rewriter.create<IndexCastOp>(loc, idxType, *off); 150 Value ov = rewriter.create<SplatOp>(loc, indices.getType(), o); 151 indices = rewriter.create<AddIOp>(loc, ov, indices); 152 } 153 // Construct the vector comparison. 154 Value bound = rewriter.create<IndexCastOp>(loc, idxType, b); 155 Value bounds = rewriter.create<SplatOp>(loc, indices.getType(), bound); 156 return rewriter.create<CmpIOp>(loc, CmpIPredicate::slt, indices, bounds); 157 } 158 159 // Helper that returns data layout alignment of an operation with memref. 160 template <typename T> 161 LogicalResult getMemRefAlignment(LLVMTypeConverter &typeConverter, T op, 162 unsigned &align) { 163 Type elementTy = 164 typeConverter.convertType(op.getMemRefType().getElementType()); 165 if (!elementTy) 166 return failure(); 167 168 // TODO: this should use the MLIR data layout when it becomes available and 169 // stop depending on translation. 170 llvm::LLVMContext llvmContext; 171 align = LLVM::TypeToLLVMIRTranslator(llvmContext) 172 .getPreferredAlignment(elementTy.cast<LLVM::LLVMType>(), 173 typeConverter.getDataLayout()); 174 return success(); 175 } 176 177 // Helper that returns the base address of a memref. 178 static LogicalResult getBase(ConversionPatternRewriter &rewriter, Location loc, 179 Value memref, MemRefType memRefType, Value &base) { 180 // Inspect stride and offset structure. 181 // 182 // TODO: flat memory only for now, generalize 183 // 184 int64_t offset; 185 SmallVector<int64_t, 4> strides; 186 auto successStrides = getStridesAndOffset(memRefType, strides, offset); 187 if (failed(successStrides) || strides.size() != 1 || strides[0] != 1 || 188 offset != 0 || memRefType.getMemorySpace() != 0) 189 return failure(); 190 base = MemRefDescriptor(memref).alignedPtr(rewriter, loc); 191 return success(); 192 } 193 194 // Helper that returns a pointer given a memref base. 195 static LogicalResult getBasePtr(ConversionPatternRewriter &rewriter, 196 Location loc, Value memref, 197 MemRefType memRefType, Value &ptr) { 198 Value base; 199 if (failed(getBase(rewriter, loc, memref, memRefType, base))) 200 return failure(); 201 auto pType = MemRefDescriptor(memref).getElementType(); 202 ptr = rewriter.create<LLVM::GEPOp>(loc, pType, base); 203 return success(); 204 } 205 206 // Helper that returns a bit-casted pointer given a memref base. 207 static LogicalResult getBasePtr(ConversionPatternRewriter &rewriter, 208 Location loc, Value memref, 209 MemRefType memRefType, Type type, Value &ptr) { 210 Value base; 211 if (failed(getBase(rewriter, loc, memref, memRefType, base))) 212 return failure(); 213 auto pType = type.template cast<LLVM::LLVMType>().getPointerTo(); 214 base = rewriter.create<LLVM::BitcastOp>(loc, pType, base); 215 ptr = rewriter.create<LLVM::GEPOp>(loc, pType, base); 216 return success(); 217 } 218 219 // Helper that returns vector of pointers given a memref base and an index 220 // vector. 221 static LogicalResult getIndexedPtrs(ConversionPatternRewriter &rewriter, 222 Location loc, Value memref, Value indices, 223 MemRefType memRefType, VectorType vType, 224 Type iType, Value &ptrs) { 225 Value base; 226 if (failed(getBase(rewriter, loc, memref, memRefType, base))) 227 return failure(); 228 auto pType = MemRefDescriptor(memref).getElementType(); 229 auto ptrsType = LLVM::LLVMType::getVectorTy(pType, vType.getDimSize(0)); 230 ptrs = rewriter.create<LLVM::GEPOp>(loc, ptrsType, base, indices); 231 return success(); 232 } 233 234 static LogicalResult 235 replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter, 236 LLVMTypeConverter &typeConverter, Location loc, 237 TransferReadOp xferOp, 238 ArrayRef<Value> operands, Value dataPtr) { 239 unsigned align; 240 if (failed(getMemRefAlignment(typeConverter, xferOp, align))) 241 return failure(); 242 rewriter.replaceOpWithNewOp<LLVM::LoadOp>(xferOp, dataPtr, align); 243 return success(); 244 } 245 246 static LogicalResult 247 replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter, 248 LLVMTypeConverter &typeConverter, Location loc, 249 TransferReadOp xferOp, ArrayRef<Value> operands, 250 Value dataPtr, Value mask) { 251 auto toLLVMTy = [&](Type t) { return typeConverter.convertType(t); }; 252 VectorType fillType = xferOp.getVectorType(); 253 Value fill = rewriter.create<SplatOp>(loc, fillType, xferOp.padding()); 254 fill = rewriter.create<LLVM::DialectCastOp>(loc, toLLVMTy(fillType), fill); 255 256 Type vecTy = typeConverter.convertType(xferOp.getVectorType()); 257 if (!vecTy) 258 return failure(); 259 260 unsigned align; 261 if (failed(getMemRefAlignment(typeConverter, xferOp, align))) 262 return failure(); 263 264 rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>( 265 xferOp, vecTy, dataPtr, mask, ValueRange{fill}, 266 rewriter.getI32IntegerAttr(align)); 267 return success(); 268 } 269 270 static LogicalResult 271 replaceTransferOpWithLoadOrStore(ConversionPatternRewriter &rewriter, 272 LLVMTypeConverter &typeConverter, Location loc, 273 TransferWriteOp xferOp, 274 ArrayRef<Value> operands, Value dataPtr) { 275 unsigned align; 276 if (failed(getMemRefAlignment(typeConverter, xferOp, align))) 277 return failure(); 278 auto adaptor = TransferWriteOpAdaptor(operands); 279 rewriter.replaceOpWithNewOp<LLVM::StoreOp>(xferOp, adaptor.vector(), dataPtr, 280 align); 281 return success(); 282 } 283 284 static LogicalResult 285 replaceTransferOpWithMasked(ConversionPatternRewriter &rewriter, 286 LLVMTypeConverter &typeConverter, Location loc, 287 TransferWriteOp xferOp, ArrayRef<Value> operands, 288 Value dataPtr, Value mask) { 289 unsigned align; 290 if (failed(getMemRefAlignment(typeConverter, xferOp, align))) 291 return failure(); 292 293 auto adaptor = TransferWriteOpAdaptor(operands); 294 rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>( 295 xferOp, adaptor.vector(), dataPtr, mask, 296 rewriter.getI32IntegerAttr(align)); 297 return success(); 298 } 299 300 static TransferReadOpAdaptor getTransferOpAdapter(TransferReadOp xferOp, 301 ArrayRef<Value> operands) { 302 return TransferReadOpAdaptor(operands); 303 } 304 305 static TransferWriteOpAdaptor getTransferOpAdapter(TransferWriteOp xferOp, 306 ArrayRef<Value> operands) { 307 return TransferWriteOpAdaptor(operands); 308 } 309 310 namespace { 311 312 /// Conversion pattern for a vector.matrix_multiply. 313 /// This is lowered directly to the proper llvm.intr.matrix.multiply. 314 class VectorMatmulOpConversion : public ConvertToLLVMPattern { 315 public: 316 explicit VectorMatmulOpConversion(MLIRContext *context, 317 LLVMTypeConverter &typeConverter) 318 : ConvertToLLVMPattern(vector::MatmulOp::getOperationName(), context, 319 typeConverter) {} 320 321 LogicalResult 322 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 323 ConversionPatternRewriter &rewriter) const override { 324 auto matmulOp = cast<vector::MatmulOp>(op); 325 auto adaptor = vector::MatmulOpAdaptor(operands); 326 rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>( 327 op, typeConverter.convertType(matmulOp.res().getType()), adaptor.lhs(), 328 adaptor.rhs(), matmulOp.lhs_rows(), matmulOp.lhs_columns(), 329 matmulOp.rhs_columns()); 330 return success(); 331 } 332 }; 333 334 /// Conversion pattern for a vector.flat_transpose. 335 /// This is lowered directly to the proper llvm.intr.matrix.transpose. 336 class VectorFlatTransposeOpConversion : public ConvertToLLVMPattern { 337 public: 338 explicit VectorFlatTransposeOpConversion(MLIRContext *context, 339 LLVMTypeConverter &typeConverter) 340 : ConvertToLLVMPattern(vector::FlatTransposeOp::getOperationName(), 341 context, typeConverter) {} 342 343 LogicalResult 344 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 345 ConversionPatternRewriter &rewriter) const override { 346 auto transOp = cast<vector::FlatTransposeOp>(op); 347 auto adaptor = vector::FlatTransposeOpAdaptor(operands); 348 rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>( 349 transOp, typeConverter.convertType(transOp.res().getType()), 350 adaptor.matrix(), transOp.rows(), transOp.columns()); 351 return success(); 352 } 353 }; 354 355 /// Conversion pattern for a vector.maskedload. 356 class VectorMaskedLoadOpConversion : public ConvertToLLVMPattern { 357 public: 358 explicit VectorMaskedLoadOpConversion(MLIRContext *context, 359 LLVMTypeConverter &typeConverter) 360 : ConvertToLLVMPattern(vector::MaskedLoadOp::getOperationName(), context, 361 typeConverter) {} 362 363 LogicalResult 364 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 365 ConversionPatternRewriter &rewriter) const override { 366 auto loc = op->getLoc(); 367 auto load = cast<vector::MaskedLoadOp>(op); 368 auto adaptor = vector::MaskedLoadOpAdaptor(operands); 369 370 // Resolve alignment. 371 unsigned align; 372 if (failed(getMemRefAlignment(typeConverter, load, align))) 373 return failure(); 374 375 auto vtype = typeConverter.convertType(load.getResultVectorType()); 376 Value ptr; 377 if (failed(getBasePtr(rewriter, loc, adaptor.base(), load.getMemRefType(), 378 vtype, ptr))) 379 return failure(); 380 381 rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>( 382 load, vtype, ptr, adaptor.mask(), adaptor.pass_thru(), 383 rewriter.getI32IntegerAttr(align)); 384 return success(); 385 } 386 }; 387 388 /// Conversion pattern for a vector.maskedstore. 389 class VectorMaskedStoreOpConversion : public ConvertToLLVMPattern { 390 public: 391 explicit VectorMaskedStoreOpConversion(MLIRContext *context, 392 LLVMTypeConverter &typeConverter) 393 : ConvertToLLVMPattern(vector::MaskedStoreOp::getOperationName(), context, 394 typeConverter) {} 395 396 LogicalResult 397 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 398 ConversionPatternRewriter &rewriter) const override { 399 auto loc = op->getLoc(); 400 auto store = cast<vector::MaskedStoreOp>(op); 401 auto adaptor = vector::MaskedStoreOpAdaptor(operands); 402 403 // Resolve alignment. 404 unsigned align; 405 if (failed(getMemRefAlignment(typeConverter, store, align))) 406 return failure(); 407 408 auto vtype = typeConverter.convertType(store.getValueVectorType()); 409 Value ptr; 410 if (failed(getBasePtr(rewriter, loc, adaptor.base(), store.getMemRefType(), 411 vtype, ptr))) 412 return failure(); 413 414 rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>( 415 store, adaptor.value(), ptr, adaptor.mask(), 416 rewriter.getI32IntegerAttr(align)); 417 return success(); 418 } 419 }; 420 421 /// Conversion pattern for a vector.gather. 422 class VectorGatherOpConversion : public ConvertToLLVMPattern { 423 public: 424 explicit VectorGatherOpConversion(MLIRContext *context, 425 LLVMTypeConverter &typeConverter) 426 : ConvertToLLVMPattern(vector::GatherOp::getOperationName(), context, 427 typeConverter) {} 428 429 LogicalResult 430 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 431 ConversionPatternRewriter &rewriter) const override { 432 auto loc = op->getLoc(); 433 auto gather = cast<vector::GatherOp>(op); 434 auto adaptor = vector::GatherOpAdaptor(operands); 435 436 // Resolve alignment. 437 unsigned align; 438 if (failed(getMemRefAlignment(typeConverter, gather, align))) 439 return failure(); 440 441 // Get index ptrs. 442 VectorType vType = gather.getResultVectorType(); 443 Type iType = gather.getIndicesVectorType().getElementType(); 444 Value ptrs; 445 if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), adaptor.indices(), 446 gather.getMemRefType(), vType, iType, ptrs))) 447 return failure(); 448 449 // Replace with the gather intrinsic. 450 rewriter.replaceOpWithNewOp<LLVM::masked_gather>( 451 gather, typeConverter.convertType(vType), ptrs, adaptor.mask(), 452 adaptor.pass_thru(), rewriter.getI32IntegerAttr(align)); 453 return success(); 454 } 455 }; 456 457 /// Conversion pattern for a vector.scatter. 458 class VectorScatterOpConversion : public ConvertToLLVMPattern { 459 public: 460 explicit VectorScatterOpConversion(MLIRContext *context, 461 LLVMTypeConverter &typeConverter) 462 : ConvertToLLVMPattern(vector::ScatterOp::getOperationName(), context, 463 typeConverter) {} 464 465 LogicalResult 466 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 467 ConversionPatternRewriter &rewriter) const override { 468 auto loc = op->getLoc(); 469 auto scatter = cast<vector::ScatterOp>(op); 470 auto adaptor = vector::ScatterOpAdaptor(operands); 471 472 // Resolve alignment. 473 unsigned align; 474 if (failed(getMemRefAlignment(typeConverter, scatter, align))) 475 return failure(); 476 477 // Get index ptrs. 478 VectorType vType = scatter.getValueVectorType(); 479 Type iType = scatter.getIndicesVectorType().getElementType(); 480 Value ptrs; 481 if (failed(getIndexedPtrs(rewriter, loc, adaptor.base(), adaptor.indices(), 482 scatter.getMemRefType(), vType, iType, ptrs))) 483 return failure(); 484 485 // Replace with the scatter intrinsic. 486 rewriter.replaceOpWithNewOp<LLVM::masked_scatter>( 487 scatter, adaptor.value(), ptrs, adaptor.mask(), 488 rewriter.getI32IntegerAttr(align)); 489 return success(); 490 } 491 }; 492 493 /// Conversion pattern for a vector.expandload. 494 class VectorExpandLoadOpConversion : public ConvertToLLVMPattern { 495 public: 496 explicit VectorExpandLoadOpConversion(MLIRContext *context, 497 LLVMTypeConverter &typeConverter) 498 : ConvertToLLVMPattern(vector::ExpandLoadOp::getOperationName(), context, 499 typeConverter) {} 500 501 LogicalResult 502 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 503 ConversionPatternRewriter &rewriter) const override { 504 auto loc = op->getLoc(); 505 auto expand = cast<vector::ExpandLoadOp>(op); 506 auto adaptor = vector::ExpandLoadOpAdaptor(operands); 507 508 Value ptr; 509 if (failed(getBasePtr(rewriter, loc, adaptor.base(), expand.getMemRefType(), 510 ptr))) 511 return failure(); 512 513 auto vType = expand.getResultVectorType(); 514 rewriter.replaceOpWithNewOp<LLVM::masked_expandload>( 515 op, typeConverter.convertType(vType), ptr, adaptor.mask(), 516 adaptor.pass_thru()); 517 return success(); 518 } 519 }; 520 521 /// Conversion pattern for a vector.compressstore. 522 class VectorCompressStoreOpConversion : public ConvertToLLVMPattern { 523 public: 524 explicit VectorCompressStoreOpConversion(MLIRContext *context, 525 LLVMTypeConverter &typeConverter) 526 : ConvertToLLVMPattern(vector::CompressStoreOp::getOperationName(), 527 context, typeConverter) {} 528 529 LogicalResult 530 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 531 ConversionPatternRewriter &rewriter) const override { 532 auto loc = op->getLoc(); 533 auto compress = cast<vector::CompressStoreOp>(op); 534 auto adaptor = vector::CompressStoreOpAdaptor(operands); 535 536 Value ptr; 537 if (failed(getBasePtr(rewriter, loc, adaptor.base(), 538 compress.getMemRefType(), ptr))) 539 return failure(); 540 541 rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>( 542 op, adaptor.value(), ptr, adaptor.mask()); 543 return success(); 544 } 545 }; 546 547 /// Conversion pattern for all vector reductions. 548 class VectorReductionOpConversion : public ConvertToLLVMPattern { 549 public: 550 explicit VectorReductionOpConversion(MLIRContext *context, 551 LLVMTypeConverter &typeConverter, 552 bool reassociateFPRed) 553 : ConvertToLLVMPattern(vector::ReductionOp::getOperationName(), context, 554 typeConverter), 555 reassociateFPReductions(reassociateFPRed) {} 556 557 LogicalResult 558 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 559 ConversionPatternRewriter &rewriter) const override { 560 auto reductionOp = cast<vector::ReductionOp>(op); 561 auto kind = reductionOp.kind(); 562 Type eltType = reductionOp.dest().getType(); 563 Type llvmType = typeConverter.convertType(eltType); 564 if (eltType.isSignlessInteger(32) || eltType.isSignlessInteger(64)) { 565 // Integer reductions: add/mul/min/max/and/or/xor. 566 if (kind == "add") 567 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_add>( 568 op, llvmType, operands[0]); 569 else if (kind == "mul") 570 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_mul>( 571 op, llvmType, operands[0]); 572 else if (kind == "min") 573 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smin>( 574 op, llvmType, operands[0]); 575 else if (kind == "max") 576 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smax>( 577 op, llvmType, operands[0]); 578 else if (kind == "and") 579 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_and>( 580 op, llvmType, operands[0]); 581 else if (kind == "or") 582 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_or>( 583 op, llvmType, operands[0]); 584 else if (kind == "xor") 585 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_xor>( 586 op, llvmType, operands[0]); 587 else 588 return failure(); 589 return success(); 590 591 } else if (eltType.isF32() || eltType.isF64()) { 592 // Floating-point reductions: add/mul/min/max 593 if (kind == "add") { 594 // Optional accumulator (or zero). 595 Value acc = operands.size() > 1 ? operands[1] 596 : rewriter.create<LLVM::ConstantOp>( 597 op->getLoc(), llvmType, 598 rewriter.getZeroAttr(eltType)); 599 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fadd>( 600 op, llvmType, acc, operands[0], 601 rewriter.getBoolAttr(reassociateFPReductions)); 602 } else if (kind == "mul") { 603 // Optional accumulator (or one). 604 Value acc = operands.size() > 1 605 ? operands[1] 606 : rewriter.create<LLVM::ConstantOp>( 607 op->getLoc(), llvmType, 608 rewriter.getFloatAttr(eltType, 1.0)); 609 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fmul>( 610 op, llvmType, acc, operands[0], 611 rewriter.getBoolAttr(reassociateFPReductions)); 612 } else if (kind == "min") 613 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmin>( 614 op, llvmType, operands[0]); 615 else if (kind == "max") 616 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmax>( 617 op, llvmType, operands[0]); 618 else 619 return failure(); 620 return success(); 621 } 622 return failure(); 623 } 624 625 private: 626 const bool reassociateFPReductions; 627 }; 628 629 /// Conversion pattern for a vector.create_mask (1-D only). 630 class VectorCreateMaskOpConversion : public ConvertToLLVMPattern { 631 public: 632 explicit VectorCreateMaskOpConversion(MLIRContext *context, 633 LLVMTypeConverter &typeConverter, 634 bool enableIndexOpt) 635 : ConvertToLLVMPattern(vector::CreateMaskOp::getOperationName(), context, 636 typeConverter), 637 enableIndexOptimizations(enableIndexOpt) {} 638 639 LogicalResult 640 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 641 ConversionPatternRewriter &rewriter) const override { 642 auto dstType = op->getResult(0).getType().cast<VectorType>(); 643 int64_t rank = dstType.getRank(); 644 if (rank == 1) { 645 rewriter.replaceOp( 646 op, buildVectorComparison(rewriter, op, enableIndexOptimizations, 647 dstType.getDimSize(0), operands[0])); 648 return success(); 649 } 650 return failure(); 651 } 652 653 private: 654 const bool enableIndexOptimizations; 655 }; 656 657 class VectorShuffleOpConversion : public ConvertToLLVMPattern { 658 public: 659 explicit VectorShuffleOpConversion(MLIRContext *context, 660 LLVMTypeConverter &typeConverter) 661 : ConvertToLLVMPattern(vector::ShuffleOp::getOperationName(), context, 662 typeConverter) {} 663 664 LogicalResult 665 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 666 ConversionPatternRewriter &rewriter) const override { 667 auto loc = op->getLoc(); 668 auto adaptor = vector::ShuffleOpAdaptor(operands); 669 auto shuffleOp = cast<vector::ShuffleOp>(op); 670 auto v1Type = shuffleOp.getV1VectorType(); 671 auto v2Type = shuffleOp.getV2VectorType(); 672 auto vectorType = shuffleOp.getVectorType(); 673 Type llvmType = typeConverter.convertType(vectorType); 674 auto maskArrayAttr = shuffleOp.mask(); 675 676 // Bail if result type cannot be lowered. 677 if (!llvmType) 678 return failure(); 679 680 // Get rank and dimension sizes. 681 int64_t rank = vectorType.getRank(); 682 assert(v1Type.getRank() == rank); 683 assert(v2Type.getRank() == rank); 684 int64_t v1Dim = v1Type.getDimSize(0); 685 686 // For rank 1, where both operands have *exactly* the same vector type, 687 // there is direct shuffle support in LLVM. Use it! 688 if (rank == 1 && v1Type == v2Type) { 689 Value shuffle = rewriter.create<LLVM::ShuffleVectorOp>( 690 loc, adaptor.v1(), adaptor.v2(), maskArrayAttr); 691 rewriter.replaceOp(op, shuffle); 692 return success(); 693 } 694 695 // For all other cases, insert the individual values individually. 696 Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType); 697 int64_t insPos = 0; 698 for (auto en : llvm::enumerate(maskArrayAttr)) { 699 int64_t extPos = en.value().cast<IntegerAttr>().getInt(); 700 Value value = adaptor.v1(); 701 if (extPos >= v1Dim) { 702 extPos -= v1Dim; 703 value = adaptor.v2(); 704 } 705 Value extract = extractOne(rewriter, typeConverter, loc, value, llvmType, 706 rank, extPos); 707 insert = insertOne(rewriter, typeConverter, loc, insert, extract, 708 llvmType, rank, insPos++); 709 } 710 rewriter.replaceOp(op, insert); 711 return success(); 712 } 713 }; 714 715 class VectorExtractElementOpConversion : public ConvertToLLVMPattern { 716 public: 717 explicit VectorExtractElementOpConversion(MLIRContext *context, 718 LLVMTypeConverter &typeConverter) 719 : ConvertToLLVMPattern(vector::ExtractElementOp::getOperationName(), 720 context, typeConverter) {} 721 722 LogicalResult 723 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 724 ConversionPatternRewriter &rewriter) const override { 725 auto adaptor = vector::ExtractElementOpAdaptor(operands); 726 auto extractEltOp = cast<vector::ExtractElementOp>(op); 727 auto vectorType = extractEltOp.getVectorType(); 728 auto llvmType = typeConverter.convertType(vectorType.getElementType()); 729 730 // Bail if result type cannot be lowered. 731 if (!llvmType) 732 return failure(); 733 734 rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>( 735 op, llvmType, adaptor.vector(), adaptor.position()); 736 return success(); 737 } 738 }; 739 740 class VectorExtractOpConversion : public ConvertToLLVMPattern { 741 public: 742 explicit VectorExtractOpConversion(MLIRContext *context, 743 LLVMTypeConverter &typeConverter) 744 : ConvertToLLVMPattern(vector::ExtractOp::getOperationName(), context, 745 typeConverter) {} 746 747 LogicalResult 748 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 749 ConversionPatternRewriter &rewriter) const override { 750 auto loc = op->getLoc(); 751 auto adaptor = vector::ExtractOpAdaptor(operands); 752 auto extractOp = cast<vector::ExtractOp>(op); 753 auto vectorType = extractOp.getVectorType(); 754 auto resultType = extractOp.getResult().getType(); 755 auto llvmResultType = typeConverter.convertType(resultType); 756 auto positionArrayAttr = extractOp.position(); 757 758 // Bail if result type cannot be lowered. 759 if (!llvmResultType) 760 return failure(); 761 762 // One-shot extraction of vector from array (only requires extractvalue). 763 if (resultType.isa<VectorType>()) { 764 Value extracted = rewriter.create<LLVM::ExtractValueOp>( 765 loc, llvmResultType, adaptor.vector(), positionArrayAttr); 766 rewriter.replaceOp(op, extracted); 767 return success(); 768 } 769 770 // Potential extraction of 1-D vector from array. 771 auto *context = op->getContext(); 772 Value extracted = adaptor.vector(); 773 auto positionAttrs = positionArrayAttr.getValue(); 774 if (positionAttrs.size() > 1) { 775 auto oneDVectorType = reducedVectorTypeBack(vectorType); 776 auto nMinusOnePositionAttrs = 777 ArrayAttr::get(positionAttrs.drop_back(), context); 778 extracted = rewriter.create<LLVM::ExtractValueOp>( 779 loc, typeConverter.convertType(oneDVectorType), extracted, 780 nMinusOnePositionAttrs); 781 } 782 783 // Remaining extraction of element from 1-D LLVM vector 784 auto position = positionAttrs.back().cast<IntegerAttr>(); 785 auto i64Type = LLVM::LLVMType::getInt64Ty(rewriter.getContext()); 786 auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); 787 extracted = 788 rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant); 789 rewriter.replaceOp(op, extracted); 790 791 return success(); 792 } 793 }; 794 795 /// Conversion pattern that turns a vector.fma on a 1-D vector 796 /// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion. 797 /// This does not match vectors of n >= 2 rank. 798 /// 799 /// Example: 800 /// ``` 801 /// vector.fma %a, %a, %a : vector<8xf32> 802 /// ``` 803 /// is converted to: 804 /// ``` 805 /// llvm.intr.fmuladd %va, %va, %va: 806 /// (!llvm<"<8 x float>">, !llvm<"<8 x float>">, !llvm<"<8 x float>">) 807 /// -> !llvm<"<8 x float>"> 808 /// ``` 809 class VectorFMAOp1DConversion : public ConvertToLLVMPattern { 810 public: 811 explicit VectorFMAOp1DConversion(MLIRContext *context, 812 LLVMTypeConverter &typeConverter) 813 : ConvertToLLVMPattern(vector::FMAOp::getOperationName(), context, 814 typeConverter) {} 815 816 LogicalResult 817 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 818 ConversionPatternRewriter &rewriter) const override { 819 auto adaptor = vector::FMAOpAdaptor(operands); 820 vector::FMAOp fmaOp = cast<vector::FMAOp>(op); 821 VectorType vType = fmaOp.getVectorType(); 822 if (vType.getRank() != 1) 823 return failure(); 824 rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>(op, adaptor.lhs(), 825 adaptor.rhs(), adaptor.acc()); 826 return success(); 827 } 828 }; 829 830 class VectorInsertElementOpConversion : public ConvertToLLVMPattern { 831 public: 832 explicit VectorInsertElementOpConversion(MLIRContext *context, 833 LLVMTypeConverter &typeConverter) 834 : ConvertToLLVMPattern(vector::InsertElementOp::getOperationName(), 835 context, typeConverter) {} 836 837 LogicalResult 838 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 839 ConversionPatternRewriter &rewriter) const override { 840 auto adaptor = vector::InsertElementOpAdaptor(operands); 841 auto insertEltOp = cast<vector::InsertElementOp>(op); 842 auto vectorType = insertEltOp.getDestVectorType(); 843 auto llvmType = typeConverter.convertType(vectorType); 844 845 // Bail if result type cannot be lowered. 846 if (!llvmType) 847 return failure(); 848 849 rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( 850 op, llvmType, adaptor.dest(), adaptor.source(), adaptor.position()); 851 return success(); 852 } 853 }; 854 855 class VectorInsertOpConversion : public ConvertToLLVMPattern { 856 public: 857 explicit VectorInsertOpConversion(MLIRContext *context, 858 LLVMTypeConverter &typeConverter) 859 : ConvertToLLVMPattern(vector::InsertOp::getOperationName(), context, 860 typeConverter) {} 861 862 LogicalResult 863 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 864 ConversionPatternRewriter &rewriter) const override { 865 auto loc = op->getLoc(); 866 auto adaptor = vector::InsertOpAdaptor(operands); 867 auto insertOp = cast<vector::InsertOp>(op); 868 auto sourceType = insertOp.getSourceType(); 869 auto destVectorType = insertOp.getDestVectorType(); 870 auto llvmResultType = typeConverter.convertType(destVectorType); 871 auto positionArrayAttr = insertOp.position(); 872 873 // Bail if result type cannot be lowered. 874 if (!llvmResultType) 875 return failure(); 876 877 // One-shot insertion of a vector into an array (only requires insertvalue). 878 if (sourceType.isa<VectorType>()) { 879 Value inserted = rewriter.create<LLVM::InsertValueOp>( 880 loc, llvmResultType, adaptor.dest(), adaptor.source(), 881 positionArrayAttr); 882 rewriter.replaceOp(op, inserted); 883 return success(); 884 } 885 886 // Potential extraction of 1-D vector from array. 887 auto *context = op->getContext(); 888 Value extracted = adaptor.dest(); 889 auto positionAttrs = positionArrayAttr.getValue(); 890 auto position = positionAttrs.back().cast<IntegerAttr>(); 891 auto oneDVectorType = destVectorType; 892 if (positionAttrs.size() > 1) { 893 oneDVectorType = reducedVectorTypeBack(destVectorType); 894 auto nMinusOnePositionAttrs = 895 ArrayAttr::get(positionAttrs.drop_back(), context); 896 extracted = rewriter.create<LLVM::ExtractValueOp>( 897 loc, typeConverter.convertType(oneDVectorType), extracted, 898 nMinusOnePositionAttrs); 899 } 900 901 // Insertion of an element into a 1-D LLVM vector. 902 auto i64Type = LLVM::LLVMType::getInt64Ty(rewriter.getContext()); 903 auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); 904 Value inserted = rewriter.create<LLVM::InsertElementOp>( 905 loc, typeConverter.convertType(oneDVectorType), extracted, 906 adaptor.source(), constant); 907 908 // Potential insertion of resulting 1-D vector into array. 909 if (positionAttrs.size() > 1) { 910 auto nMinusOnePositionAttrs = 911 ArrayAttr::get(positionAttrs.drop_back(), context); 912 inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType, 913 adaptor.dest(), inserted, 914 nMinusOnePositionAttrs); 915 } 916 917 rewriter.replaceOp(op, inserted); 918 return success(); 919 } 920 }; 921 922 /// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1. 923 /// 924 /// Example: 925 /// ``` 926 /// %d = vector.fma %a, %b, %c : vector<2x4xf32> 927 /// ``` 928 /// is rewritten into: 929 /// ``` 930 /// %r = splat %f0: vector<2x4xf32> 931 /// %va = vector.extractvalue %a[0] : vector<2x4xf32> 932 /// %vb = vector.extractvalue %b[0] : vector<2x4xf32> 933 /// %vc = vector.extractvalue %c[0] : vector<2x4xf32> 934 /// %vd = vector.fma %va, %vb, %vc : vector<4xf32> 935 /// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32> 936 /// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32> 937 /// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32> 938 /// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32> 939 /// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32> 940 /// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32> 941 /// // %r3 holds the final value. 942 /// ``` 943 class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> { 944 public: 945 using OpRewritePattern<FMAOp>::OpRewritePattern; 946 947 LogicalResult matchAndRewrite(FMAOp op, 948 PatternRewriter &rewriter) const override { 949 auto vType = op.getVectorType(); 950 if (vType.getRank() < 2) 951 return failure(); 952 953 auto loc = op.getLoc(); 954 auto elemType = vType.getElementType(); 955 Value zero = rewriter.create<ConstantOp>(loc, elemType, 956 rewriter.getZeroAttr(elemType)); 957 Value desc = rewriter.create<SplatOp>(loc, vType, zero); 958 for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) { 959 Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i); 960 Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i); 961 Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i); 962 Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC); 963 desc = rewriter.create<InsertOp>(loc, fma, desc, i); 964 } 965 rewriter.replaceOp(op, desc); 966 return success(); 967 } 968 }; 969 970 // When ranks are different, InsertStridedSlice needs to extract a properly 971 // ranked vector from the destination vector into which to insert. This pattern 972 // only takes care of this part and forwards the rest of the conversion to 973 // another pattern that converts InsertStridedSlice for operands of the same 974 // rank. 975 // 976 // RewritePattern for InsertStridedSliceOp where source and destination vectors 977 // have different ranks. In this case: 978 // 1. the proper subvector is extracted from the destination vector 979 // 2. a new InsertStridedSlice op is created to insert the source in the 980 // destination subvector 981 // 3. the destination subvector is inserted back in the proper place 982 // 4. the op is replaced by the result of step 3. 983 // The new InsertStridedSlice from step 2. will be picked up by a 984 // `VectorInsertStridedSliceOpSameRankRewritePattern`. 985 class VectorInsertStridedSliceOpDifferentRankRewritePattern 986 : public OpRewritePattern<InsertStridedSliceOp> { 987 public: 988 using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; 989 990 LogicalResult matchAndRewrite(InsertStridedSliceOp op, 991 PatternRewriter &rewriter) const override { 992 auto srcType = op.getSourceVectorType(); 993 auto dstType = op.getDestVectorType(); 994 995 if (op.offsets().getValue().empty()) 996 return failure(); 997 998 auto loc = op.getLoc(); 999 int64_t rankDiff = dstType.getRank() - srcType.getRank(); 1000 assert(rankDiff >= 0); 1001 if (rankDiff == 0) 1002 return failure(); 1003 1004 int64_t rankRest = dstType.getRank() - rankDiff; 1005 // Extract / insert the subvector of matching rank and InsertStridedSlice 1006 // on it. 1007 Value extracted = 1008 rewriter.create<ExtractOp>(loc, op.dest(), 1009 getI64SubArray(op.offsets(), /*dropFront=*/0, 1010 /*dropFront=*/rankRest)); 1011 // A different pattern will kick in for InsertStridedSlice with matching 1012 // ranks. 1013 auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>( 1014 loc, op.source(), extracted, 1015 getI64SubArray(op.offsets(), /*dropFront=*/rankDiff), 1016 getI64SubArray(op.strides(), /*dropFront=*/0)); 1017 rewriter.replaceOpWithNewOp<InsertOp>( 1018 op, stridedSliceInnerOp.getResult(), op.dest(), 1019 getI64SubArray(op.offsets(), /*dropFront=*/0, 1020 /*dropFront=*/rankRest)); 1021 return success(); 1022 } 1023 }; 1024 1025 // RewritePattern for InsertStridedSliceOp where source and destination vectors 1026 // have the same rank. In this case, we reduce 1027 // 1. the proper subvector is extracted from the destination vector 1028 // 2. a new InsertStridedSlice op is created to insert the source in the 1029 // destination subvector 1030 // 3. the destination subvector is inserted back in the proper place 1031 // 4. the op is replaced by the result of step 3. 1032 // The new InsertStridedSlice from step 2. will be picked up by a 1033 // `VectorInsertStridedSliceOpSameRankRewritePattern`. 1034 class VectorInsertStridedSliceOpSameRankRewritePattern 1035 : public OpRewritePattern<InsertStridedSliceOp> { 1036 public: 1037 using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; 1038 1039 LogicalResult matchAndRewrite(InsertStridedSliceOp op, 1040 PatternRewriter &rewriter) const override { 1041 auto srcType = op.getSourceVectorType(); 1042 auto dstType = op.getDestVectorType(); 1043 1044 if (op.offsets().getValue().empty()) 1045 return failure(); 1046 1047 int64_t rankDiff = dstType.getRank() - srcType.getRank(); 1048 assert(rankDiff >= 0); 1049 if (rankDiff != 0) 1050 return failure(); 1051 1052 if (srcType == dstType) { 1053 rewriter.replaceOp(op, op.source()); 1054 return success(); 1055 } 1056 1057 int64_t offset = 1058 op.offsets().getValue().front().cast<IntegerAttr>().getInt(); 1059 int64_t size = srcType.getShape().front(); 1060 int64_t stride = 1061 op.strides().getValue().front().cast<IntegerAttr>().getInt(); 1062 1063 auto loc = op.getLoc(); 1064 Value res = op.dest(); 1065 // For each slice of the source vector along the most major dimension. 1066 for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e; 1067 off += stride, ++idx) { 1068 // 1. extract the proper subvector (or element) from source 1069 Value extractedSource = extractOne(rewriter, loc, op.source(), idx); 1070 if (extractedSource.getType().isa<VectorType>()) { 1071 // 2. If we have a vector, extract the proper subvector from destination 1072 // Otherwise we are at the element level and no need to recurse. 1073 Value extractedDest = extractOne(rewriter, loc, op.dest(), off); 1074 // 3. Reduce the problem to lowering a new InsertStridedSlice op with 1075 // smaller rank. 1076 extractedSource = rewriter.create<InsertStridedSliceOp>( 1077 loc, extractedSource, extractedDest, 1078 getI64SubArray(op.offsets(), /* dropFront=*/1), 1079 getI64SubArray(op.strides(), /* dropFront=*/1)); 1080 } 1081 // 4. Insert the extractedSource into the res vector. 1082 res = insertOne(rewriter, loc, extractedSource, res, off); 1083 } 1084 1085 rewriter.replaceOp(op, res); 1086 return success(); 1087 } 1088 /// This pattern creates recursive InsertStridedSliceOp, but the recursion is 1089 /// bounded as the rank is strictly decreasing. 1090 bool hasBoundedRewriteRecursion() const final { return true; } 1091 }; 1092 1093 /// Returns true if the memory underlying `memRefType` has a contiguous layout. 1094 /// Strides are written to `strides`. 1095 static bool isContiguous(MemRefType memRefType, 1096 SmallVectorImpl<int64_t> &strides) { 1097 int64_t offset; 1098 auto successStrides = getStridesAndOffset(memRefType, strides, offset); 1099 bool isContiguous = strides.empty() || strides.back() == 1; 1100 if (isContiguous) { 1101 auto sizes = memRefType.getShape(); 1102 for (int index = 0, e = strides.size() - 2; index < e; ++index) { 1103 if (strides[index] != strides[index + 1] * sizes[index + 1]) { 1104 isContiguous = false; 1105 break; 1106 } 1107 } 1108 } 1109 return succeeded(successStrides) && isContiguous; 1110 } 1111 1112 class VectorTypeCastOpConversion : public ConvertToLLVMPattern { 1113 public: 1114 explicit VectorTypeCastOpConversion(MLIRContext *context, 1115 LLVMTypeConverter &typeConverter) 1116 : ConvertToLLVMPattern(vector::TypeCastOp::getOperationName(), context, 1117 typeConverter) {} 1118 1119 LogicalResult 1120 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 1121 ConversionPatternRewriter &rewriter) const override { 1122 auto loc = op->getLoc(); 1123 vector::TypeCastOp castOp = cast<vector::TypeCastOp>(op); 1124 MemRefType sourceMemRefType = 1125 castOp.getOperand().getType().cast<MemRefType>(); 1126 MemRefType targetMemRefType = 1127 castOp.getResult().getType().cast<MemRefType>(); 1128 1129 // Only static shape casts supported atm. 1130 if (!sourceMemRefType.hasStaticShape() || 1131 !targetMemRefType.hasStaticShape()) 1132 return failure(); 1133 1134 auto llvmSourceDescriptorTy = 1135 operands[0].getType().dyn_cast<LLVM::LLVMType>(); 1136 if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy()) 1137 return failure(); 1138 MemRefDescriptor sourceMemRef(operands[0]); 1139 1140 auto llvmTargetDescriptorTy = typeConverter.convertType(targetMemRefType) 1141 .dyn_cast_or_null<LLVM::LLVMType>(); 1142 if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy()) 1143 return failure(); 1144 1145 // Only contiguous source tensors supported atm. 1146 SmallVector<int64_t, 4> strides; 1147 if (!isContiguous(sourceMemRefType, strides)) 1148 return failure(); 1149 1150 auto int64Ty = LLVM::LLVMType::getInt64Ty(rewriter.getContext()); 1151 1152 // Create descriptor. 1153 auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy); 1154 Type llvmTargetElementTy = desc.getElementType(); 1155 // Set allocated ptr. 1156 Value allocated = sourceMemRef.allocatedPtr(rewriter, loc); 1157 allocated = 1158 rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated); 1159 desc.setAllocatedPtr(rewriter, loc, allocated); 1160 // Set aligned ptr. 1161 Value ptr = sourceMemRef.alignedPtr(rewriter, loc); 1162 ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr); 1163 desc.setAlignedPtr(rewriter, loc, ptr); 1164 // Fill offset 0. 1165 auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0); 1166 auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr); 1167 desc.setOffset(rewriter, loc, zero); 1168 1169 // Fill size and stride descriptors in memref. 1170 for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) { 1171 int64_t index = indexedSize.index(); 1172 auto sizeAttr = 1173 rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value()); 1174 auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr); 1175 desc.setSize(rewriter, loc, index, size); 1176 auto strideAttr = 1177 rewriter.getIntegerAttr(rewriter.getIndexType(), strides[index]); 1178 auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr); 1179 desc.setStride(rewriter, loc, index, stride); 1180 } 1181 1182 rewriter.replaceOp(op, {desc}); 1183 return success(); 1184 } 1185 }; 1186 1187 /// Conversion pattern that converts a 1-D vector transfer read/write op in a 1188 /// sequence of: 1189 /// 1. Get the source/dst address as an LLVM vector pointer. 1190 /// 2. Create a vector with linear indices [ 0 .. vector_length - 1 ]. 1191 /// 3. Create an offsetVector = [ offset + 0 .. offset + vector_length - 1 ]. 1192 /// 4. Create a mask where offsetVector is compared against memref upper bound. 1193 /// 5. Rewrite op as a masked read or write. 1194 template <typename ConcreteOp> 1195 class VectorTransferConversion : public ConvertToLLVMPattern { 1196 public: 1197 explicit VectorTransferConversion(MLIRContext *context, 1198 LLVMTypeConverter &typeConv, 1199 bool enableIndexOpt) 1200 : ConvertToLLVMPattern(ConcreteOp::getOperationName(), context, typeConv), 1201 enableIndexOptimizations(enableIndexOpt) {} 1202 1203 LogicalResult 1204 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 1205 ConversionPatternRewriter &rewriter) const override { 1206 auto xferOp = cast<ConcreteOp>(op); 1207 auto adaptor = getTransferOpAdapter(xferOp, operands); 1208 1209 if (xferOp.getVectorType().getRank() > 1 || 1210 llvm::size(xferOp.indices()) == 0) 1211 return failure(); 1212 if (xferOp.permutation_map() != 1213 AffineMap::getMinorIdentityMap(xferOp.permutation_map().getNumInputs(), 1214 xferOp.getVectorType().getRank(), 1215 op->getContext())) 1216 return failure(); 1217 // Only contiguous source tensors supported atm. 1218 SmallVector<int64_t, 4> strides; 1219 if (!isContiguous(xferOp.getMemRefType(), strides)) 1220 return failure(); 1221 1222 auto toLLVMTy = [&](Type t) { return typeConverter.convertType(t); }; 1223 1224 Location loc = op->getLoc(); 1225 MemRefType memRefType = xferOp.getMemRefType(); 1226 1227 if (auto memrefVectorElementType = 1228 memRefType.getElementType().dyn_cast<VectorType>()) { 1229 // Memref has vector element type. 1230 if (memrefVectorElementType.getElementType() != 1231 xferOp.getVectorType().getElementType()) 1232 return failure(); 1233 #ifndef NDEBUG 1234 // Check that memref vector type is a suffix of 'vectorType. 1235 unsigned memrefVecEltRank = memrefVectorElementType.getRank(); 1236 unsigned resultVecRank = xferOp.getVectorType().getRank(); 1237 assert(memrefVecEltRank <= resultVecRank); 1238 // TODO: Move this to isSuffix in Vector/Utils.h. 1239 unsigned rankOffset = resultVecRank - memrefVecEltRank; 1240 auto memrefVecEltShape = memrefVectorElementType.getShape(); 1241 auto resultVecShape = xferOp.getVectorType().getShape(); 1242 for (unsigned i = 0; i < memrefVecEltRank; ++i) 1243 assert(memrefVecEltShape[i] != resultVecShape[rankOffset + i] && 1244 "memref vector element shape should match suffix of vector " 1245 "result shape."); 1246 #endif // ifndef NDEBUG 1247 } 1248 1249 // 1. Get the source/dst address as an LLVM vector pointer. 1250 // The vector pointer would always be on address space 0, therefore 1251 // addrspacecast shall be used when source/dst memrefs are not on 1252 // address space 0. 1253 // TODO: support alignment when possible. 1254 Value dataPtr = getDataPtr(loc, memRefType, adaptor.memref(), 1255 adaptor.indices(), rewriter); 1256 auto vecTy = 1257 toLLVMTy(xferOp.getVectorType()).template cast<LLVM::LLVMType>(); 1258 Value vectorDataPtr; 1259 if (memRefType.getMemorySpace() == 0) 1260 vectorDataPtr = 1261 rewriter.create<LLVM::BitcastOp>(loc, vecTy.getPointerTo(), dataPtr); 1262 else 1263 vectorDataPtr = rewriter.create<LLVM::AddrSpaceCastOp>( 1264 loc, vecTy.getPointerTo(), dataPtr); 1265 1266 if (!xferOp.isMaskedDim(0)) 1267 return replaceTransferOpWithLoadOrStore(rewriter, typeConverter, loc, 1268 xferOp, operands, vectorDataPtr); 1269 1270 // 2. Create a vector with linear indices [ 0 .. vector_length - 1 ]. 1271 // 3. Create offsetVector = [ offset + 0 .. offset + vector_length - 1 ]. 1272 // 4. Let dim the memref dimension, compute the vector comparison mask: 1273 // [ offset + 0 .. offset + vector_length - 1 ] < [ dim .. dim ] 1274 // 1275 // TODO: when the leaf transfer rank is k > 1, we need the last `k` 1276 // dimensions here. 1277 unsigned vecWidth = vecTy.getVectorNumElements(); 1278 unsigned lastIndex = llvm::size(xferOp.indices()) - 1; 1279 Value off = xferOp.indices()[lastIndex]; 1280 Value dim = rewriter.create<DimOp>(loc, xferOp.memref(), lastIndex); 1281 Value mask = buildVectorComparison(rewriter, op, enableIndexOptimizations, 1282 vecWidth, dim, &off); 1283 1284 // 5. Rewrite as a masked read / write. 1285 return replaceTransferOpWithMasked(rewriter, typeConverter, loc, xferOp, 1286 operands, vectorDataPtr, mask); 1287 } 1288 1289 private: 1290 const bool enableIndexOptimizations; 1291 }; 1292 1293 class VectorPrintOpConversion : public ConvertToLLVMPattern { 1294 public: 1295 explicit VectorPrintOpConversion(MLIRContext *context, 1296 LLVMTypeConverter &typeConverter) 1297 : ConvertToLLVMPattern(vector::PrintOp::getOperationName(), context, 1298 typeConverter) {} 1299 1300 // Proof-of-concept lowering implementation that relies on a small 1301 // runtime support library, which only needs to provide a few 1302 // printing methods (single value for all data types, opening/closing 1303 // bracket, comma, newline). The lowering fully unrolls a vector 1304 // in terms of these elementary printing operations. The advantage 1305 // of this approach is that the library can remain unaware of all 1306 // low-level implementation details of vectors while still supporting 1307 // output of any shaped and dimensioned vector. Due to full unrolling, 1308 // this approach is less suited for very large vectors though. 1309 // 1310 // TODO: rely solely on libc in future? something else? 1311 // 1312 LogicalResult 1313 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 1314 ConversionPatternRewriter &rewriter) const override { 1315 auto printOp = cast<vector::PrintOp>(op); 1316 auto adaptor = vector::PrintOpAdaptor(operands); 1317 Type printType = printOp.getPrintType(); 1318 1319 if (typeConverter.convertType(printType) == nullptr) 1320 return failure(); 1321 1322 // Make sure element type has runtime support (currently just Float/Double). 1323 VectorType vectorType = printType.dyn_cast<VectorType>(); 1324 Type eltType = vectorType ? vectorType.getElementType() : printType; 1325 int64_t rank = vectorType ? vectorType.getRank() : 0; 1326 Operation *printer; 1327 if (eltType.isSignlessInteger(1) || eltType.isSignlessInteger(32)) 1328 printer = getPrintI32(op); 1329 else if (eltType.isSignlessInteger(64)) 1330 printer = getPrintI64(op); 1331 else if (eltType.isF32()) 1332 printer = getPrintFloat(op); 1333 else if (eltType.isF64()) 1334 printer = getPrintDouble(op); 1335 else 1336 return failure(); 1337 1338 // Unroll vector into elementary print calls. 1339 emitRanks(rewriter, op, adaptor.source(), vectorType, printer, rank); 1340 emitCall(rewriter, op->getLoc(), getPrintNewline(op)); 1341 rewriter.eraseOp(op); 1342 return success(); 1343 } 1344 1345 private: 1346 void emitRanks(ConversionPatternRewriter &rewriter, Operation *op, 1347 Value value, VectorType vectorType, Operation *printer, 1348 int64_t rank) const { 1349 Location loc = op->getLoc(); 1350 if (rank == 0) { 1351 if (value.getType() == LLVM::LLVMType::getInt1Ty(rewriter.getContext())) { 1352 // Convert i1 (bool) to i32 so we can use the print_i32 method. 1353 // This avoids the need for a print_i1 method with an unclear ABI. 1354 auto i32Type = LLVM::LLVMType::getInt32Ty(rewriter.getContext()); 1355 auto trueVal = rewriter.create<ConstantOp>( 1356 loc, i32Type, rewriter.getI32IntegerAttr(1)); 1357 auto falseVal = rewriter.create<ConstantOp>( 1358 loc, i32Type, rewriter.getI32IntegerAttr(0)); 1359 value = rewriter.create<SelectOp>(loc, value, trueVal, falseVal); 1360 } 1361 emitCall(rewriter, loc, printer, value); 1362 return; 1363 } 1364 1365 emitCall(rewriter, loc, getPrintOpen(op)); 1366 Operation *printComma = getPrintComma(op); 1367 int64_t dim = vectorType.getDimSize(0); 1368 for (int64_t d = 0; d < dim; ++d) { 1369 auto reducedType = 1370 rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr; 1371 auto llvmType = typeConverter.convertType( 1372 rank > 1 ? reducedType : vectorType.getElementType()); 1373 Value nestedVal = 1374 extractOne(rewriter, typeConverter, loc, value, llvmType, rank, d); 1375 emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1); 1376 if (d != dim - 1) 1377 emitCall(rewriter, loc, printComma); 1378 } 1379 emitCall(rewriter, loc, getPrintClose(op)); 1380 } 1381 1382 // Helper to emit a call. 1383 static void emitCall(ConversionPatternRewriter &rewriter, Location loc, 1384 Operation *ref, ValueRange params = ValueRange()) { 1385 rewriter.create<LLVM::CallOp>(loc, ArrayRef<Type>{}, 1386 rewriter.getSymbolRefAttr(ref), params); 1387 } 1388 1389 // Helper for printer method declaration (first hit) and lookup. 1390 static Operation *getPrint(Operation *op, StringRef name, 1391 ArrayRef<LLVM::LLVMType> params) { 1392 auto module = op->getParentOfType<ModuleOp>(); 1393 auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name); 1394 if (func) 1395 return func; 1396 OpBuilder moduleBuilder(module.getBodyRegion()); 1397 return moduleBuilder.create<LLVM::LLVMFuncOp>( 1398 op->getLoc(), name, 1399 LLVM::LLVMType::getFunctionTy( 1400 LLVM::LLVMType::getVoidTy(op->getContext()), params, 1401 /*isVarArg=*/false)); 1402 } 1403 1404 // Helpers for method names. 1405 Operation *getPrintI32(Operation *op) const { 1406 return getPrint(op, "print_i32", 1407 LLVM::LLVMType::getInt32Ty(op->getContext())); 1408 } 1409 Operation *getPrintI64(Operation *op) const { 1410 return getPrint(op, "print_i64", 1411 LLVM::LLVMType::getInt64Ty(op->getContext())); 1412 } 1413 Operation *getPrintFloat(Operation *op) const { 1414 return getPrint(op, "print_f32", 1415 LLVM::LLVMType::getFloatTy(op->getContext())); 1416 } 1417 Operation *getPrintDouble(Operation *op) const { 1418 return getPrint(op, "print_f64", 1419 LLVM::LLVMType::getDoubleTy(op->getContext())); 1420 } 1421 Operation *getPrintOpen(Operation *op) const { 1422 return getPrint(op, "print_open", {}); 1423 } 1424 Operation *getPrintClose(Operation *op) const { 1425 return getPrint(op, "print_close", {}); 1426 } 1427 Operation *getPrintComma(Operation *op) const { 1428 return getPrint(op, "print_comma", {}); 1429 } 1430 Operation *getPrintNewline(Operation *op) const { 1431 return getPrint(op, "print_newline", {}); 1432 } 1433 }; 1434 1435 /// Progressive lowering of ExtractStridedSliceOp to either: 1436 /// 1. express single offset extract as a direct shuffle. 1437 /// 2. extract + lower rank strided_slice + insert for the n-D case. 1438 class VectorExtractStridedSliceOpConversion 1439 : public OpRewritePattern<ExtractStridedSliceOp> { 1440 public: 1441 using OpRewritePattern<ExtractStridedSliceOp>::OpRewritePattern; 1442 1443 LogicalResult matchAndRewrite(ExtractStridedSliceOp op, 1444 PatternRewriter &rewriter) const override { 1445 auto dstType = op.getResult().getType().cast<VectorType>(); 1446 1447 assert(!op.offsets().getValue().empty() && "Unexpected empty offsets"); 1448 1449 int64_t offset = 1450 op.offsets().getValue().front().cast<IntegerAttr>().getInt(); 1451 int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt(); 1452 int64_t stride = 1453 op.strides().getValue().front().cast<IntegerAttr>().getInt(); 1454 1455 auto loc = op.getLoc(); 1456 auto elemType = dstType.getElementType(); 1457 assert(elemType.isSignlessIntOrIndexOrFloat()); 1458 1459 // Single offset can be more efficiently shuffled. 1460 if (op.offsets().getValue().size() == 1) { 1461 SmallVector<int64_t, 4> offsets; 1462 offsets.reserve(size); 1463 for (int64_t off = offset, e = offset + size * stride; off < e; 1464 off += stride) 1465 offsets.push_back(off); 1466 rewriter.replaceOpWithNewOp<ShuffleOp>(op, dstType, op.vector(), 1467 op.vector(), 1468 rewriter.getI64ArrayAttr(offsets)); 1469 return success(); 1470 } 1471 1472 // Extract/insert on a lower ranked extract strided slice op. 1473 Value zero = rewriter.create<ConstantOp>(loc, elemType, 1474 rewriter.getZeroAttr(elemType)); 1475 Value res = rewriter.create<SplatOp>(loc, dstType, zero); 1476 for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e; 1477 off += stride, ++idx) { 1478 Value one = extractOne(rewriter, loc, op.vector(), off); 1479 Value extracted = rewriter.create<ExtractStridedSliceOp>( 1480 loc, one, getI64SubArray(op.offsets(), /* dropFront=*/1), 1481 getI64SubArray(op.sizes(), /* dropFront=*/1), 1482 getI64SubArray(op.strides(), /* dropFront=*/1)); 1483 res = insertOne(rewriter, loc, extracted, res, idx); 1484 } 1485 rewriter.replaceOp(op, res); 1486 return success(); 1487 } 1488 /// This pattern creates recursive ExtractStridedSliceOp, but the recursion is 1489 /// bounded as the rank is strictly decreasing. 1490 bool hasBoundedRewriteRecursion() const final { return true; } 1491 }; 1492 1493 } // namespace 1494 1495 /// Populate the given list with patterns that convert from Vector to LLVM. 1496 void mlir::populateVectorToLLVMConversionPatterns( 1497 LLVMTypeConverter &converter, OwningRewritePatternList &patterns, 1498 bool reassociateFPReductions, bool enableIndexOptimizations) { 1499 MLIRContext *ctx = converter.getDialect()->getContext(); 1500 // clang-format off 1501 patterns.insert<VectorFMAOpNDRewritePattern, 1502 VectorInsertStridedSliceOpDifferentRankRewritePattern, 1503 VectorInsertStridedSliceOpSameRankRewritePattern, 1504 VectorExtractStridedSliceOpConversion>(ctx); 1505 patterns.insert<VectorReductionOpConversion>( 1506 ctx, converter, reassociateFPReductions); 1507 patterns.insert<VectorCreateMaskOpConversion, 1508 VectorTransferConversion<TransferReadOp>, 1509 VectorTransferConversion<TransferWriteOp>>( 1510 ctx, converter, enableIndexOptimizations); 1511 patterns 1512 .insert<VectorShuffleOpConversion, 1513 VectorExtractElementOpConversion, 1514 VectorExtractOpConversion, 1515 VectorFMAOp1DConversion, 1516 VectorInsertElementOpConversion, 1517 VectorInsertOpConversion, 1518 VectorPrintOpConversion, 1519 VectorTypeCastOpConversion, 1520 VectorMaskedLoadOpConversion, 1521 VectorMaskedStoreOpConversion, 1522 VectorGatherOpConversion, 1523 VectorScatterOpConversion, 1524 VectorExpandLoadOpConversion, 1525 VectorCompressStoreOpConversion>(ctx, converter); 1526 // clang-format on 1527 } 1528 1529 void mlir::populateVectorToLLVMMatrixConversionPatterns( 1530 LLVMTypeConverter &converter, OwningRewritePatternList &patterns) { 1531 MLIRContext *ctx = converter.getDialect()->getContext(); 1532 patterns.insert<VectorMatmulOpConversion>(ctx, converter); 1533 patterns.insert<VectorFlatTransposeOpConversion>(ctx, converter); 1534 } 1535 1536 namespace { 1537 struct LowerVectorToLLVMPass 1538 : public ConvertVectorToLLVMBase<LowerVectorToLLVMPass> { 1539 LowerVectorToLLVMPass(const LowerVectorToLLVMOptions &options) { 1540 this->reassociateFPReductions = options.reassociateFPReductions; 1541 this->enableIndexOptimizations = options.enableIndexOptimizations; 1542 } 1543 void runOnOperation() override; 1544 }; 1545 } // namespace 1546 1547 void LowerVectorToLLVMPass::runOnOperation() { 1548 // Perform progressive lowering of operations on slices and 1549 // all contraction operations. Also applies folding and DCE. 1550 { 1551 OwningRewritePatternList patterns; 1552 populateVectorToVectorCanonicalizationPatterns(patterns, &getContext()); 1553 populateVectorSlicesLoweringPatterns(patterns, &getContext()); 1554 populateVectorContractLoweringPatterns(patterns, &getContext()); 1555 applyPatternsAndFoldGreedily(getOperation(), patterns); 1556 } 1557 1558 // Convert to the LLVM IR dialect. 1559 LLVMTypeConverter converter(&getContext()); 1560 OwningRewritePatternList patterns; 1561 populateVectorToLLVMMatrixConversionPatterns(converter, patterns); 1562 populateVectorToLLVMConversionPatterns( 1563 converter, patterns, reassociateFPReductions, enableIndexOptimizations); 1564 populateVectorToLLVMMatrixConversionPatterns(converter, patterns); 1565 populateStdToLLVMConversionPatterns(converter, patterns); 1566 1567 LLVMConversionTarget target(getContext()); 1568 if (failed(applyPartialConversion(getOperation(), target, patterns))) 1569 signalPassFailure(); 1570 } 1571 1572 std::unique_ptr<OperationPass<ModuleOp>> 1573 mlir::createConvertVectorToLLVMPass(const LowerVectorToLLVMOptions &options) { 1574 return std::make_unique<LowerVectorToLLVMPass>(options); 1575 } 1576