1 //===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===// 2 // 3 // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h" 10 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h" 11 #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h" 12 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 13 #include "mlir/Dialect/VectorOps/VectorOps.h" 14 #include "mlir/IR/Attributes.h" 15 #include "mlir/IR/Builders.h" 16 #include "mlir/IR/MLIRContext.h" 17 #include "mlir/IR/Module.h" 18 #include "mlir/IR/Operation.h" 19 #include "mlir/IR/PatternMatch.h" 20 #include "mlir/IR/StandardTypes.h" 21 #include "mlir/IR/Types.h" 22 #include "mlir/Pass/Pass.h" 23 #include "mlir/Pass/PassManager.h" 24 #include "mlir/Transforms/DialectConversion.h" 25 #include "mlir/Transforms/Passes.h" 26 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/Support/Allocator.h" 31 #include "llvm/Support/ErrorHandling.h" 32 33 using namespace mlir; 34 35 template <typename T> 36 static LLVM::LLVMType getPtrToElementType(T containerType, 37 LLVMTypeConverter &lowering) { 38 return lowering.convertType(containerType.getElementType()) 39 .template cast<LLVM::LLVMType>() 40 .getPointerTo(); 41 } 42 43 // Helper to reduce vector type by one rank at front. 44 static VectorType reducedVectorTypeFront(VectorType tp) { 45 assert((tp.getRank() > 1) && "unlowerable vector type"); 46 return VectorType::get(tp.getShape().drop_front(), tp.getElementType()); 47 } 48 49 // Helper to reduce vector type by *all* but one rank at back. 50 static VectorType reducedVectorTypeBack(VectorType tp) { 51 assert((tp.getRank() > 1) && "unlowerable vector type"); 52 return VectorType::get(tp.getShape().take_back(), tp.getElementType()); 53 } 54 55 // Helper that picks the proper sequence for inserting. 56 static Value insertOne(ConversionPatternRewriter &rewriter, 57 LLVMTypeConverter &lowering, Location loc, Value val1, 58 Value val2, Type llvmType, int64_t rank, int64_t pos) { 59 if (rank == 1) { 60 auto idxType = rewriter.getIndexType(); 61 auto constant = rewriter.create<LLVM::ConstantOp>( 62 loc, lowering.convertType(idxType), 63 rewriter.getIntegerAttr(idxType, pos)); 64 return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2, 65 constant); 66 } 67 return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2, 68 rewriter.getI64ArrayAttr(pos)); 69 } 70 71 // Helper that picks the proper sequence for extracting. 72 static Value extractOne(ConversionPatternRewriter &rewriter, 73 LLVMTypeConverter &lowering, Location loc, Value val, 74 Type llvmType, int64_t rank, int64_t pos) { 75 if (rank == 1) { 76 auto idxType = rewriter.getIndexType(); 77 auto constant = rewriter.create<LLVM::ConstantOp>( 78 loc, lowering.convertType(idxType), 79 rewriter.getIntegerAttr(idxType, pos)); 80 return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val, 81 constant); 82 } 83 return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val, 84 rewriter.getI64ArrayAttr(pos)); 85 } 86 87 class VectorBroadcastOpConversion : public LLVMOpLowering { 88 public: 89 explicit VectorBroadcastOpConversion(MLIRContext *context, 90 LLVMTypeConverter &typeConverter) 91 : LLVMOpLowering(vector::BroadcastOp::getOperationName(), context, 92 typeConverter) {} 93 94 PatternMatchResult 95 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 96 ConversionPatternRewriter &rewriter) const override { 97 auto broadcastOp = cast<vector::BroadcastOp>(op); 98 VectorType dstVectorType = broadcastOp.getVectorType(); 99 if (lowering.convertType(dstVectorType) == nullptr) 100 return matchFailure(); 101 // Rewrite when the full vector type can be lowered (which 102 // implies all 'reduced' types can be lowered too). 103 auto adaptor = vector::BroadcastOpOperandAdaptor(operands); 104 VectorType srcVectorType = 105 broadcastOp.getSourceType().dyn_cast<VectorType>(); 106 rewriter.replaceOp( 107 op, expandRanks(adaptor.source(), // source value to be expanded 108 op->getLoc(), // location of original broadcast 109 srcVectorType, dstVectorType, rewriter)); 110 return matchSuccess(); 111 } 112 113 private: 114 // Expands the given source value over all the ranks, as defined 115 // by the source and destination type (a null source type denotes 116 // expansion from a scalar value into a vector). 117 // 118 // TODO(ajcbik): consider replacing this one-pattern lowering 119 // with a two-pattern lowering using other vector 120 // ops once all insert/extract/shuffle operations 121 // are available with lowering implemention. 122 // 123 Value expandRanks(Value value, Location loc, VectorType srcVectorType, 124 VectorType dstVectorType, 125 ConversionPatternRewriter &rewriter) const { 126 assert((dstVectorType != nullptr) && "invalid result type in broadcast"); 127 // Determine rank of source and destination. 128 int64_t srcRank = srcVectorType ? srcVectorType.getRank() : 0; 129 int64_t dstRank = dstVectorType.getRank(); 130 int64_t curDim = dstVectorType.getDimSize(0); 131 if (srcRank < dstRank) 132 // Duplicate this rank. 133 return duplicateOneRank(value, loc, srcVectorType, dstVectorType, dstRank, 134 curDim, rewriter); 135 // If all trailing dimensions are the same, the broadcast consists of 136 // simply passing through the source value and we are done. Otherwise, 137 // any non-matching dimension forces a stretch along this rank. 138 assert((srcVectorType != nullptr) && (srcRank > 0) && 139 (srcRank == dstRank) && "invalid rank in broadcast"); 140 for (int64_t r = 0; r < dstRank; r++) { 141 if (srcVectorType.getDimSize(r) != dstVectorType.getDimSize(r)) { 142 return stretchOneRank(value, loc, srcVectorType, dstVectorType, dstRank, 143 curDim, rewriter); 144 } 145 } 146 return value; 147 } 148 149 // Picks the best way to duplicate a single rank. For the 1-D case, a 150 // single insert-elt/shuffle is the most efficient expansion. For higher 151 // dimensions, however, we need dim x insert-values on a new broadcast 152 // with one less leading dimension, which will be lowered "recursively" 153 // to matching LLVM IR. 154 // For example: 155 // v = broadcast s : f32 to vector<4x2xf32> 156 // becomes: 157 // x = broadcast s : f32 to vector<2xf32> 158 // v = [x,x,x,x] 159 // becomes: 160 // x = [s,s] 161 // v = [x,x,x,x] 162 Value duplicateOneRank(Value value, Location loc, VectorType srcVectorType, 163 VectorType dstVectorType, int64_t rank, int64_t dim, 164 ConversionPatternRewriter &rewriter) const { 165 Type llvmType = lowering.convertType(dstVectorType); 166 assert((llvmType != nullptr) && "unlowerable vector type"); 167 if (rank == 1) { 168 Value undef = rewriter.create<LLVM::UndefOp>(loc, llvmType); 169 Value expand = 170 insertOne(rewriter, lowering, loc, undef, value, llvmType, rank, 0); 171 SmallVector<int32_t, 4> zeroValues(dim, 0); 172 return rewriter.create<LLVM::ShuffleVectorOp>( 173 loc, expand, undef, rewriter.getI32ArrayAttr(zeroValues)); 174 } 175 Value expand = expandRanks(value, loc, srcVectorType, 176 reducedVectorTypeFront(dstVectorType), rewriter); 177 Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType); 178 for (int64_t d = 0; d < dim; ++d) { 179 result = 180 insertOne(rewriter, lowering, loc, result, expand, llvmType, rank, d); 181 } 182 return result; 183 } 184 185 // Picks the best way to stretch a single rank. For the 1-D case, a 186 // single insert-elt/shuffle is the most efficient expansion when at 187 // a stretch. Otherwise, every dimension needs to be expanded 188 // individually and individually inserted in the resulting vector. 189 // For example: 190 // v = broadcast w : vector<4x1x2xf32> to vector<4x2x2xf32> 191 // becomes: 192 // a = broadcast w[0] : vector<1x2xf32> to vector<2x2xf32> 193 // b = broadcast w[1] : vector<1x2xf32> to vector<2x2xf32> 194 // c = broadcast w[2] : vector<1x2xf32> to vector<2x2xf32> 195 // d = broadcast w[3] : vector<1x2xf32> to vector<2x2xf32> 196 // v = [a,b,c,d] 197 // becomes: 198 // x = broadcast w[0][0] : vector<2xf32> to vector <2x2xf32> 199 // y = broadcast w[1][0] : vector<2xf32> to vector <2x2xf32> 200 // a = [x, y] 201 // etc. 202 Value stretchOneRank(Value value, Location loc, VectorType srcVectorType, 203 VectorType dstVectorType, int64_t rank, int64_t dim, 204 ConversionPatternRewriter &rewriter) const { 205 Type llvmType = lowering.convertType(dstVectorType); 206 assert((llvmType != nullptr) && "unlowerable vector type"); 207 Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType); 208 bool atStretch = dim != srcVectorType.getDimSize(0); 209 if (rank == 1) { 210 assert(atStretch); 211 Type redLlvmType = lowering.convertType(dstVectorType.getElementType()); 212 Value one = 213 extractOne(rewriter, lowering, loc, value, redLlvmType, rank, 0); 214 Value expand = 215 insertOne(rewriter, lowering, loc, result, one, llvmType, rank, 0); 216 SmallVector<int32_t, 4> zeroValues(dim, 0); 217 return rewriter.create<LLVM::ShuffleVectorOp>( 218 loc, expand, result, rewriter.getI32ArrayAttr(zeroValues)); 219 } 220 VectorType redSrcType = reducedVectorTypeFront(srcVectorType); 221 VectorType redDstType = reducedVectorTypeFront(dstVectorType); 222 Type redLlvmType = lowering.convertType(redSrcType); 223 for (int64_t d = 0; d < dim; ++d) { 224 int64_t pos = atStretch ? 0 : d; 225 Value one = 226 extractOne(rewriter, lowering, loc, value, redLlvmType, rank, pos); 227 Value expand = expandRanks(one, loc, redSrcType, redDstType, rewriter); 228 result = 229 insertOne(rewriter, lowering, loc, result, expand, llvmType, rank, d); 230 } 231 return result; 232 } 233 }; 234 235 class VectorShuffleOpConversion : public LLVMOpLowering { 236 public: 237 explicit VectorShuffleOpConversion(MLIRContext *context, 238 LLVMTypeConverter &typeConverter) 239 : LLVMOpLowering(vector::ShuffleOp::getOperationName(), context, 240 typeConverter) {} 241 242 PatternMatchResult 243 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 244 ConversionPatternRewriter &rewriter) const override { 245 auto loc = op->getLoc(); 246 auto adaptor = vector::ShuffleOpOperandAdaptor(operands); 247 auto shuffleOp = cast<vector::ShuffleOp>(op); 248 auto v1Type = shuffleOp.getV1VectorType(); 249 auto v2Type = shuffleOp.getV2VectorType(); 250 auto vectorType = shuffleOp.getVectorType(); 251 Type llvmType = lowering.convertType(vectorType); 252 auto maskArrayAttr = shuffleOp.mask(); 253 254 // Bail if result type cannot be lowered. 255 if (!llvmType) 256 return matchFailure(); 257 258 // Get rank and dimension sizes. 259 int64_t rank = vectorType.getRank(); 260 assert(v1Type.getRank() == rank); 261 assert(v2Type.getRank() == rank); 262 int64_t v1Dim = v1Type.getDimSize(0); 263 264 // For rank 1, where both operands have *exactly* the same vector type, 265 // there is direct shuffle support in LLVM. Use it! 266 if (rank == 1 && v1Type == v2Type) { 267 Value shuffle = rewriter.create<LLVM::ShuffleVectorOp>( 268 loc, adaptor.v1(), adaptor.v2(), maskArrayAttr); 269 rewriter.replaceOp(op, shuffle); 270 return matchSuccess(); 271 } 272 273 // For all other cases, insert the individual values individually. 274 Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType); 275 int64_t insPos = 0; 276 for (auto en : llvm::enumerate(maskArrayAttr)) { 277 int64_t extPos = en.value().cast<IntegerAttr>().getInt(); 278 Value value = adaptor.v1(); 279 if (extPos >= v1Dim) { 280 extPos -= v1Dim; 281 value = adaptor.v2(); 282 } 283 Value extract = 284 extractOne(rewriter, lowering, loc, value, llvmType, rank, extPos); 285 insert = insertOne(rewriter, lowering, loc, insert, extract, llvmType, 286 rank, insPos++); 287 } 288 rewriter.replaceOp(op, insert); 289 return matchSuccess(); 290 } 291 }; 292 293 class VectorExtractElementOpConversion : public LLVMOpLowering { 294 public: 295 explicit VectorExtractElementOpConversion(MLIRContext *context, 296 LLVMTypeConverter &typeConverter) 297 : LLVMOpLowering(vector::ExtractElementOp::getOperationName(), context, 298 typeConverter) {} 299 300 PatternMatchResult 301 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 302 ConversionPatternRewriter &rewriter) const override { 303 auto adaptor = vector::ExtractElementOpOperandAdaptor(operands); 304 auto extractEltOp = cast<vector::ExtractElementOp>(op); 305 auto vectorType = extractEltOp.getVectorType(); 306 auto llvmType = lowering.convertType(vectorType.getElementType()); 307 308 // Bail if result type cannot be lowered. 309 if (!llvmType) 310 return matchFailure(); 311 312 rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>( 313 op, llvmType, adaptor.vector(), adaptor.position()); 314 return matchSuccess(); 315 } 316 }; 317 318 class VectorExtractOpConversion : public LLVMOpLowering { 319 public: 320 explicit VectorExtractOpConversion(MLIRContext *context, 321 LLVMTypeConverter &typeConverter) 322 : LLVMOpLowering(vector::ExtractOp::getOperationName(), context, 323 typeConverter) {} 324 325 PatternMatchResult 326 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 327 ConversionPatternRewriter &rewriter) const override { 328 auto loc = op->getLoc(); 329 auto adaptor = vector::ExtractOpOperandAdaptor(operands); 330 auto extractOp = cast<vector::ExtractOp>(op); 331 auto vectorType = extractOp.getVectorType(); 332 auto resultType = extractOp.getResult()->getType(); 333 auto llvmResultType = lowering.convertType(resultType); 334 auto positionArrayAttr = extractOp.position(); 335 336 // Bail if result type cannot be lowered. 337 if (!llvmResultType) 338 return matchFailure(); 339 340 // One-shot extraction of vector from array (only requires extractvalue). 341 if (resultType.isa<VectorType>()) { 342 Value extracted = rewriter.create<LLVM::ExtractValueOp>( 343 loc, llvmResultType, adaptor.vector(), positionArrayAttr); 344 rewriter.replaceOp(op, extracted); 345 return matchSuccess(); 346 } 347 348 // Potential extraction of 1-D vector from array. 349 auto *context = op->getContext(); 350 Value extracted = adaptor.vector(); 351 auto positionAttrs = positionArrayAttr.getValue(); 352 if (positionAttrs.size() > 1) { 353 auto oneDVectorType = reducedVectorTypeBack(vectorType); 354 auto nMinusOnePositionAttrs = 355 ArrayAttr::get(positionAttrs.drop_back(), context); 356 extracted = rewriter.create<LLVM::ExtractValueOp>( 357 loc, lowering.convertType(oneDVectorType), extracted, 358 nMinusOnePositionAttrs); 359 } 360 361 // Remaining extraction of element from 1-D LLVM vector 362 auto position = positionAttrs.back().cast<IntegerAttr>(); 363 auto i64Type = LLVM::LLVMType::getInt64Ty(lowering.getDialect()); 364 auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); 365 extracted = 366 rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant); 367 rewriter.replaceOp(op, extracted); 368 369 return matchSuccess(); 370 } 371 }; 372 373 class VectorInsertElementOpConversion : public LLVMOpLowering { 374 public: 375 explicit VectorInsertElementOpConversion(MLIRContext *context, 376 LLVMTypeConverter &typeConverter) 377 : LLVMOpLowering(vector::InsertElementOp::getOperationName(), context, 378 typeConverter) {} 379 380 PatternMatchResult 381 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 382 ConversionPatternRewriter &rewriter) const override { 383 auto adaptor = vector::InsertElementOpOperandAdaptor(operands); 384 auto insertEltOp = cast<vector::InsertElementOp>(op); 385 auto vectorType = insertEltOp.getDestVectorType(); 386 auto llvmType = lowering.convertType(vectorType); 387 388 // Bail if result type cannot be lowered. 389 if (!llvmType) 390 return matchFailure(); 391 392 rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( 393 op, llvmType, adaptor.dest(), adaptor.source(), adaptor.position()); 394 return matchSuccess(); 395 } 396 }; 397 398 class VectorInsertOpConversion : public LLVMOpLowering { 399 public: 400 explicit VectorInsertOpConversion(MLIRContext *context, 401 LLVMTypeConverter &typeConverter) 402 : LLVMOpLowering(vector::InsertOp::getOperationName(), context, 403 typeConverter) {} 404 405 PatternMatchResult 406 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 407 ConversionPatternRewriter &rewriter) const override { 408 auto loc = op->getLoc(); 409 auto adaptor = vector::InsertOpOperandAdaptor(operands); 410 auto insertOp = cast<vector::InsertOp>(op); 411 auto sourceType = insertOp.getSourceType(); 412 auto destVectorType = insertOp.getDestVectorType(); 413 auto llvmResultType = lowering.convertType(destVectorType); 414 auto positionArrayAttr = insertOp.position(); 415 416 // Bail if result type cannot be lowered. 417 if (!llvmResultType) 418 return matchFailure(); 419 420 // One-shot insertion of a vector into an array (only requires insertvalue). 421 if (sourceType.isa<VectorType>()) { 422 Value inserted = rewriter.create<LLVM::InsertValueOp>( 423 loc, llvmResultType, adaptor.dest(), adaptor.source(), 424 positionArrayAttr); 425 rewriter.replaceOp(op, inserted); 426 return matchSuccess(); 427 } 428 429 // Potential extraction of 1-D vector from array. 430 auto *context = op->getContext(); 431 Value extracted = adaptor.dest(); 432 auto positionAttrs = positionArrayAttr.getValue(); 433 auto position = positionAttrs.back().cast<IntegerAttr>(); 434 auto oneDVectorType = destVectorType; 435 if (positionAttrs.size() > 1) { 436 oneDVectorType = reducedVectorTypeBack(destVectorType); 437 auto nMinusOnePositionAttrs = 438 ArrayAttr::get(positionAttrs.drop_back(), context); 439 extracted = rewriter.create<LLVM::ExtractValueOp>( 440 loc, lowering.convertType(oneDVectorType), extracted, 441 nMinusOnePositionAttrs); 442 } 443 444 // Insertion of an element into a 1-D LLVM vector. 445 auto i64Type = LLVM::LLVMType::getInt64Ty(lowering.getDialect()); 446 auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); 447 Value inserted = rewriter.create<LLVM::InsertElementOp>( 448 loc, lowering.convertType(oneDVectorType), extracted, adaptor.source(), 449 constant); 450 451 // Potential insertion of resulting 1-D vector into array. 452 if (positionAttrs.size() > 1) { 453 auto nMinusOnePositionAttrs = 454 ArrayAttr::get(positionAttrs.drop_back(), context); 455 inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType, 456 adaptor.dest(), inserted, 457 nMinusOnePositionAttrs); 458 } 459 460 rewriter.replaceOp(op, inserted); 461 return matchSuccess(); 462 } 463 }; 464 465 class VectorOuterProductOpConversion : public LLVMOpLowering { 466 public: 467 explicit VectorOuterProductOpConversion(MLIRContext *context, 468 LLVMTypeConverter &typeConverter) 469 : LLVMOpLowering(vector::OuterProductOp::getOperationName(), context, 470 typeConverter) {} 471 472 PatternMatchResult 473 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 474 ConversionPatternRewriter &rewriter) const override { 475 auto loc = op->getLoc(); 476 auto adaptor = vector::OuterProductOpOperandAdaptor(operands); 477 auto *ctx = op->getContext(); 478 auto vLHS = adaptor.lhs()->getType().cast<LLVM::LLVMType>(); 479 auto vRHS = adaptor.rhs()->getType().cast<LLVM::LLVMType>(); 480 auto rankLHS = vLHS.getUnderlyingType()->getVectorNumElements(); 481 auto rankRHS = vRHS.getUnderlyingType()->getVectorNumElements(); 482 auto llvmArrayOfVectType = lowering.convertType( 483 cast<vector::OuterProductOp>(op).getResult()->getType()); 484 Value desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayOfVectType); 485 Value a = adaptor.lhs(), b = adaptor.rhs(); 486 Value acc = adaptor.acc().empty() ? nullptr : adaptor.acc().front(); 487 SmallVector<Value, 8> lhs, accs; 488 lhs.reserve(rankLHS); 489 accs.reserve(rankLHS); 490 for (unsigned d = 0, e = rankLHS; d < e; ++d) { 491 // shufflevector explicitly requires i32. 492 auto attr = rewriter.getI32IntegerAttr(d); 493 SmallVector<Attribute, 4> bcastAttr(rankRHS, attr); 494 auto bcastArrayAttr = ArrayAttr::get(bcastAttr, ctx); 495 Value aD = nullptr, accD = nullptr; 496 // 1. Broadcast the element a[d] into vector aD. 497 aD = rewriter.create<LLVM::ShuffleVectorOp>(loc, a, a, bcastArrayAttr); 498 // 2. If acc is present, extract 1-d vector acc[d] into accD. 499 if (acc) 500 accD = rewriter.create<LLVM::ExtractValueOp>( 501 loc, vRHS, acc, rewriter.getI64ArrayAttr(d)); 502 // 3. Compute aD outer b (plus accD, if relevant). 503 Value aOuterbD = 504 accD ? rewriter.create<LLVM::FMulAddOp>(loc, vRHS, aD, b, accD) 505 .getResult() 506 : rewriter.create<LLVM::FMulOp>(loc, aD, b).getResult(); 507 // 4. Insert as value `d` in the descriptor. 508 desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayOfVectType, 509 desc, aOuterbD, 510 rewriter.getI64ArrayAttr(d)); 511 } 512 rewriter.replaceOp(op, desc); 513 return matchSuccess(); 514 } 515 }; 516 517 class VectorTypeCastOpConversion : public LLVMOpLowering { 518 public: 519 explicit VectorTypeCastOpConversion(MLIRContext *context, 520 LLVMTypeConverter &typeConverter) 521 : LLVMOpLowering(vector::TypeCastOp::getOperationName(), context, 522 typeConverter) {} 523 524 PatternMatchResult 525 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 526 ConversionPatternRewriter &rewriter) const override { 527 auto loc = op->getLoc(); 528 vector::TypeCastOp castOp = cast<vector::TypeCastOp>(op); 529 MemRefType sourceMemRefType = 530 castOp.getOperand()->getType().cast<MemRefType>(); 531 MemRefType targetMemRefType = 532 castOp.getResult()->getType().cast<MemRefType>(); 533 534 // Only static shape casts supported atm. 535 if (!sourceMemRefType.hasStaticShape() || 536 !targetMemRefType.hasStaticShape()) 537 return matchFailure(); 538 539 auto llvmSourceDescriptorTy = 540 operands[0]->getType().dyn_cast<LLVM::LLVMType>(); 541 if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy()) 542 return matchFailure(); 543 MemRefDescriptor sourceMemRef(operands[0]); 544 545 auto llvmTargetDescriptorTy = lowering.convertType(targetMemRefType) 546 .dyn_cast_or_null<LLVM::LLVMType>(); 547 if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy()) 548 return matchFailure(); 549 550 int64_t offset; 551 SmallVector<int64_t, 4> strides; 552 auto successStrides = 553 getStridesAndOffset(sourceMemRefType, strides, offset); 554 bool isContiguous = (strides.back() == 1); 555 if (isContiguous) { 556 auto sizes = sourceMemRefType.getShape(); 557 for (int index = 0, e = strides.size() - 2; index < e; ++index) { 558 if (strides[index] != strides[index + 1] * sizes[index + 1]) { 559 isContiguous = false; 560 break; 561 } 562 } 563 } 564 // Only contiguous source tensors supported atm. 565 if (failed(successStrides) || !isContiguous) 566 return matchFailure(); 567 568 auto int64Ty = LLVM::LLVMType::getInt64Ty(lowering.getDialect()); 569 570 // Create descriptor. 571 auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy); 572 Type llvmTargetElementTy = desc.getElementType(); 573 // Set allocated ptr. 574 Value allocated = sourceMemRef.allocatedPtr(rewriter, loc); 575 allocated = 576 rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated); 577 desc.setAllocatedPtr(rewriter, loc, allocated); 578 // Set aligned ptr. 579 Value ptr = sourceMemRef.alignedPtr(rewriter, loc); 580 ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr); 581 desc.setAlignedPtr(rewriter, loc, ptr); 582 // Fill offset 0. 583 auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0); 584 auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr); 585 desc.setOffset(rewriter, loc, zero); 586 587 // Fill size and stride descriptors in memref. 588 for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) { 589 int64_t index = indexedSize.index(); 590 auto sizeAttr = 591 rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value()); 592 auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr); 593 desc.setSize(rewriter, loc, index, size); 594 auto strideAttr = 595 rewriter.getIntegerAttr(rewriter.getIndexType(), strides[index]); 596 auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr); 597 desc.setStride(rewriter, loc, index, stride); 598 } 599 600 rewriter.replaceOp(op, {desc}); 601 return matchSuccess(); 602 } 603 }; 604 605 class VectorPrintOpConversion : public LLVMOpLowering { 606 public: 607 explicit VectorPrintOpConversion(MLIRContext *context, 608 LLVMTypeConverter &typeConverter) 609 : LLVMOpLowering(vector::PrintOp::getOperationName(), context, 610 typeConverter) {} 611 612 // Proof-of-concept lowering implementation that relies on a small 613 // runtime support library, which only needs to provide a few 614 // printing methods (single value for all data types, opening/closing 615 // bracket, comma, newline). The lowering fully unrolls a vector 616 // in terms of these elementary printing operations. The advantage 617 // of this approach is that the library can remain unaware of all 618 // low-level implementation details of vectors while still supporting 619 // output of any shaped and dimensioned vector. Due to full unrolling, 620 // this approach is less suited for very large vectors though. 621 // 622 // TODO(ajcbik): rely solely on libc in future? something else? 623 // 624 PatternMatchResult 625 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 626 ConversionPatternRewriter &rewriter) const override { 627 auto printOp = cast<vector::PrintOp>(op); 628 auto adaptor = vector::PrintOpOperandAdaptor(operands); 629 Type printType = printOp.getPrintType(); 630 631 if (lowering.convertType(printType) == nullptr) 632 return matchFailure(); 633 634 // Make sure element type has runtime support (currently just Float/Double). 635 VectorType vectorType = printType.dyn_cast<VectorType>(); 636 Type eltType = vectorType ? vectorType.getElementType() : printType; 637 int64_t rank = vectorType ? vectorType.getRank() : 0; 638 Operation *printer; 639 if (eltType.isF32()) 640 printer = getPrintFloat(op); 641 else if (eltType.isF64()) 642 printer = getPrintDouble(op); 643 else 644 return matchFailure(); 645 646 // Unroll vector into elementary print calls. 647 emitRanks(rewriter, op, adaptor.source(), vectorType, printer, rank); 648 emitCall(rewriter, op->getLoc(), getPrintNewline(op)); 649 rewriter.eraseOp(op); 650 return matchSuccess(); 651 } 652 653 private: 654 void emitRanks(ConversionPatternRewriter &rewriter, Operation *op, 655 Value value, VectorType vectorType, Operation *printer, 656 int64_t rank) const { 657 Location loc = op->getLoc(); 658 if (rank == 0) { 659 emitCall(rewriter, loc, printer, value); 660 return; 661 } 662 663 emitCall(rewriter, loc, getPrintOpen(op)); 664 Operation *printComma = getPrintComma(op); 665 int64_t dim = vectorType.getDimSize(0); 666 for (int64_t d = 0; d < dim; ++d) { 667 auto reducedType = 668 rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr; 669 auto llvmType = lowering.convertType( 670 rank > 1 ? reducedType : vectorType.getElementType()); 671 Value nestedVal = 672 extractOne(rewriter, lowering, loc, value, llvmType, rank, d); 673 emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1); 674 if (d != dim - 1) 675 emitCall(rewriter, loc, printComma); 676 } 677 emitCall(rewriter, loc, getPrintClose(op)); 678 } 679 680 // Helper to emit a call. 681 static void emitCall(ConversionPatternRewriter &rewriter, Location loc, 682 Operation *ref, ValueRange params = ValueRange()) { 683 rewriter.create<LLVM::CallOp>(loc, ArrayRef<Type>{}, 684 rewriter.getSymbolRefAttr(ref), params); 685 } 686 687 // Helper for printer method declaration (first hit) and lookup. 688 static Operation *getPrint(Operation *op, LLVM::LLVMDialect *dialect, 689 StringRef name, ArrayRef<LLVM::LLVMType> params) { 690 auto module = op->getParentOfType<ModuleOp>(); 691 auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name); 692 if (func) 693 return func; 694 OpBuilder moduleBuilder(module.getBodyRegion()); 695 return moduleBuilder.create<LLVM::LLVMFuncOp>( 696 op->getLoc(), name, 697 LLVM::LLVMType::getFunctionTy(LLVM::LLVMType::getVoidTy(dialect), 698 params, /*isVarArg=*/false)); 699 } 700 701 // Helpers for method names. 702 Operation *getPrintFloat(Operation *op) const { 703 LLVM::LLVMDialect *dialect = lowering.getDialect(); 704 return getPrint(op, dialect, "print_f32", 705 LLVM::LLVMType::getFloatTy(dialect)); 706 } 707 Operation *getPrintDouble(Operation *op) const { 708 LLVM::LLVMDialect *dialect = lowering.getDialect(); 709 return getPrint(op, dialect, "print_f64", 710 LLVM::LLVMType::getDoubleTy(dialect)); 711 } 712 Operation *getPrintOpen(Operation *op) const { 713 return getPrint(op, lowering.getDialect(), "print_open", {}); 714 } 715 Operation *getPrintClose(Operation *op) const { 716 return getPrint(op, lowering.getDialect(), "print_close", {}); 717 } 718 Operation *getPrintComma(Operation *op) const { 719 return getPrint(op, lowering.getDialect(), "print_comma", {}); 720 } 721 Operation *getPrintNewline(Operation *op) const { 722 return getPrint(op, lowering.getDialect(), "print_newline", {}); 723 } 724 }; 725 726 /// Populate the given list with patterns that convert from Vector to LLVM. 727 void mlir::populateVectorToLLVMConversionPatterns( 728 LLVMTypeConverter &converter, OwningRewritePatternList &patterns) { 729 patterns.insert<VectorBroadcastOpConversion, VectorShuffleOpConversion, 730 VectorExtractElementOpConversion, VectorExtractOpConversion, 731 VectorInsertElementOpConversion, VectorInsertOpConversion, 732 VectorOuterProductOpConversion, VectorTypeCastOpConversion, 733 VectorPrintOpConversion>(converter.getDialect()->getContext(), 734 converter); 735 } 736 737 namespace { 738 struct LowerVectorToLLVMPass : public ModulePass<LowerVectorToLLVMPass> { 739 void runOnModule() override; 740 }; 741 } // namespace 742 743 void LowerVectorToLLVMPass::runOnModule() { 744 // Convert to the LLVM IR dialect using the converter defined above. 745 OwningRewritePatternList patterns; 746 LLVMTypeConverter converter(&getContext()); 747 populateVectorToLLVMConversionPatterns(converter, patterns); 748 populateStdToLLVMConversionPatterns(converter, patterns); 749 750 ConversionTarget target(getContext()); 751 target.addLegalDialect<LLVM::LLVMDialect>(); 752 target.addDynamicallyLegalOp<FuncOp>( 753 [&](FuncOp op) { return converter.isSignatureLegal(op.getType()); }); 754 if (failed( 755 applyPartialConversion(getModule(), target, patterns, &converter))) { 756 signalPassFailure(); 757 } 758 } 759 760 OpPassBase<ModuleOp> *mlir::createLowerVectorToLLVMPass() { 761 return new LowerVectorToLLVMPass(); 762 } 763 764 static PassRegistration<LowerVectorToLLVMPass> 765 pass("convert-vector-to-llvm", 766 "Lower the operations from the vector dialect into the LLVM dialect"); 767