1 //===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h" 10 11 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h" 12 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h" 13 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 14 #include "mlir/Dialect/StandardOps/IR/Ops.h" 15 #include "mlir/Dialect/VectorOps/VectorOps.h" 16 #include "mlir/IR/Attributes.h" 17 #include "mlir/IR/Builders.h" 18 #include "mlir/IR/MLIRContext.h" 19 #include "mlir/IR/Module.h" 20 #include "mlir/IR/Operation.h" 21 #include "mlir/IR/PatternMatch.h" 22 #include "mlir/IR/StandardTypes.h" 23 #include "mlir/IR/Types.h" 24 #include "mlir/Pass/Pass.h" 25 #include "mlir/Pass/PassManager.h" 26 #include "mlir/Transforms/DialectConversion.h" 27 #include "mlir/Transforms/Passes.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Type.h" 31 #include "llvm/Support/Allocator.h" 32 #include "llvm/Support/ErrorHandling.h" 33 34 using namespace mlir; 35 using namespace mlir::vector; 36 37 template <typename T> 38 static LLVM::LLVMType getPtrToElementType(T containerType, 39 LLVMTypeConverter &typeConverter) { 40 return typeConverter.convertType(containerType.getElementType()) 41 .template cast<LLVM::LLVMType>() 42 .getPointerTo(); 43 } 44 45 // Helper to reduce vector type by one rank at front. 46 static VectorType reducedVectorTypeFront(VectorType tp) { 47 assert((tp.getRank() > 1) && "unlowerable vector type"); 48 return VectorType::get(tp.getShape().drop_front(), tp.getElementType()); 49 } 50 51 // Helper to reduce vector type by *all* but one rank at back. 52 static VectorType reducedVectorTypeBack(VectorType tp) { 53 assert((tp.getRank() > 1) && "unlowerable vector type"); 54 return VectorType::get(tp.getShape().take_back(), tp.getElementType()); 55 } 56 57 // Helper that picks the proper sequence for inserting. 58 static Value insertOne(ConversionPatternRewriter &rewriter, 59 LLVMTypeConverter &typeConverter, Location loc, 60 Value val1, Value val2, Type llvmType, int64_t rank, 61 int64_t pos) { 62 if (rank == 1) { 63 auto idxType = rewriter.getIndexType(); 64 auto constant = rewriter.create<LLVM::ConstantOp>( 65 loc, typeConverter.convertType(idxType), 66 rewriter.getIntegerAttr(idxType, pos)); 67 return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2, 68 constant); 69 } 70 return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2, 71 rewriter.getI64ArrayAttr(pos)); 72 } 73 74 // Helper that picks the proper sequence for inserting. 75 static Value insertOne(PatternRewriter &rewriter, Location loc, Value from, 76 Value into, int64_t offset) { 77 auto vectorType = into.getType().cast<VectorType>(); 78 if (vectorType.getRank() > 1) 79 return rewriter.create<InsertOp>(loc, from, into, offset); 80 return rewriter.create<vector::InsertElementOp>( 81 loc, vectorType, from, into, 82 rewriter.create<ConstantIndexOp>(loc, offset)); 83 } 84 85 // Helper that picks the proper sequence for extracting. 86 static Value extractOne(ConversionPatternRewriter &rewriter, 87 LLVMTypeConverter &typeConverter, Location loc, 88 Value val, Type llvmType, int64_t rank, int64_t pos) { 89 if (rank == 1) { 90 auto idxType = rewriter.getIndexType(); 91 auto constant = rewriter.create<LLVM::ConstantOp>( 92 loc, typeConverter.convertType(idxType), 93 rewriter.getIntegerAttr(idxType, pos)); 94 return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val, 95 constant); 96 } 97 return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, val, 98 rewriter.getI64ArrayAttr(pos)); 99 } 100 101 // Helper that picks the proper sequence for extracting. 102 static Value extractOne(PatternRewriter &rewriter, Location loc, Value vector, 103 int64_t offset) { 104 auto vectorType = vector.getType().cast<VectorType>(); 105 if (vectorType.getRank() > 1) 106 return rewriter.create<ExtractOp>(loc, vector, offset); 107 return rewriter.create<vector::ExtractElementOp>( 108 loc, vectorType.getElementType(), vector, 109 rewriter.create<ConstantIndexOp>(loc, offset)); 110 } 111 112 // Helper that returns a subset of `arrayAttr` as a vector of int64_t. 113 // TODO(rriddle): Better support for attribute subtype forwarding + slicing. 114 static SmallVector<int64_t, 4> getI64SubArray(ArrayAttr arrayAttr, 115 unsigned dropFront = 0, 116 unsigned dropBack = 0) { 117 assert(arrayAttr.size() > dropFront + dropBack && "Out of bounds"); 118 auto range = arrayAttr.getAsRange<IntegerAttr>(); 119 SmallVector<int64_t, 4> res; 120 res.reserve(arrayAttr.size() - dropFront - dropBack); 121 for (auto it = range.begin() + dropFront, eit = range.end() - dropBack; 122 it != eit; ++it) 123 res.push_back((*it).getValue().getSExtValue()); 124 return res; 125 } 126 127 namespace { 128 129 class VectorBroadcastOpConversion : public ConvertToLLVMPattern { 130 public: 131 explicit VectorBroadcastOpConversion(MLIRContext *context, 132 LLVMTypeConverter &typeConverter) 133 : ConvertToLLVMPattern(vector::BroadcastOp::getOperationName(), context, 134 typeConverter) {} 135 136 PatternMatchResult 137 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 138 ConversionPatternRewriter &rewriter) const override { 139 auto broadcastOp = cast<vector::BroadcastOp>(op); 140 VectorType dstVectorType = broadcastOp.getVectorType(); 141 if (typeConverter.convertType(dstVectorType) == nullptr) 142 return matchFailure(); 143 // Rewrite when the full vector type can be lowered (which 144 // implies all 'reduced' types can be lowered too). 145 auto adaptor = vector::BroadcastOpOperandAdaptor(operands); 146 VectorType srcVectorType = 147 broadcastOp.getSourceType().dyn_cast<VectorType>(); 148 rewriter.replaceOp( 149 op, expandRanks(adaptor.source(), // source value to be expanded 150 op->getLoc(), // location of original broadcast 151 srcVectorType, dstVectorType, rewriter)); 152 return matchSuccess(); 153 } 154 155 private: 156 // Expands the given source value over all the ranks, as defined 157 // by the source and destination type (a null source type denotes 158 // expansion from a scalar value into a vector). 159 // 160 // TODO(ajcbik): consider replacing this one-pattern lowering 161 // with a two-pattern lowering using other vector 162 // ops once all insert/extract/shuffle operations 163 // are available with lowering implementation. 164 // 165 Value expandRanks(Value value, Location loc, VectorType srcVectorType, 166 VectorType dstVectorType, 167 ConversionPatternRewriter &rewriter) const { 168 assert((dstVectorType != nullptr) && "invalid result type in broadcast"); 169 // Determine rank of source and destination. 170 int64_t srcRank = srcVectorType ? srcVectorType.getRank() : 0; 171 int64_t dstRank = dstVectorType.getRank(); 172 int64_t curDim = dstVectorType.getDimSize(0); 173 if (srcRank < dstRank) 174 // Duplicate this rank. 175 return duplicateOneRank(value, loc, srcVectorType, dstVectorType, dstRank, 176 curDim, rewriter); 177 // If all trailing dimensions are the same, the broadcast consists of 178 // simply passing through the source value and we are done. Otherwise, 179 // any non-matching dimension forces a stretch along this rank. 180 assert((srcVectorType != nullptr) && (srcRank > 0) && 181 (srcRank == dstRank) && "invalid rank in broadcast"); 182 for (int64_t r = 0; r < dstRank; r++) { 183 if (srcVectorType.getDimSize(r) != dstVectorType.getDimSize(r)) { 184 return stretchOneRank(value, loc, srcVectorType, dstVectorType, dstRank, 185 curDim, rewriter); 186 } 187 } 188 return value; 189 } 190 191 // Picks the best way to duplicate a single rank. For the 1-D case, a 192 // single insert-elt/shuffle is the most efficient expansion. For higher 193 // dimensions, however, we need dim x insert-values on a new broadcast 194 // with one less leading dimension, which will be lowered "recursively" 195 // to matching LLVM IR. 196 // For example: 197 // v = broadcast s : f32 to vector<4x2xf32> 198 // becomes: 199 // x = broadcast s : f32 to vector<2xf32> 200 // v = [x,x,x,x] 201 // becomes: 202 // x = [s,s] 203 // v = [x,x,x,x] 204 Value duplicateOneRank(Value value, Location loc, VectorType srcVectorType, 205 VectorType dstVectorType, int64_t rank, int64_t dim, 206 ConversionPatternRewriter &rewriter) const { 207 Type llvmType = typeConverter.convertType(dstVectorType); 208 assert((llvmType != nullptr) && "unlowerable vector type"); 209 if (rank == 1) { 210 Value undef = rewriter.create<LLVM::UndefOp>(loc, llvmType); 211 Value expand = insertOne(rewriter, typeConverter, loc, undef, value, 212 llvmType, rank, 0); 213 SmallVector<int32_t, 4> zeroValues(dim, 0); 214 return rewriter.create<LLVM::ShuffleVectorOp>( 215 loc, expand, undef, rewriter.getI32ArrayAttr(zeroValues)); 216 } 217 Value expand = expandRanks(value, loc, srcVectorType, 218 reducedVectorTypeFront(dstVectorType), rewriter); 219 Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType); 220 for (int64_t d = 0; d < dim; ++d) { 221 result = insertOne(rewriter, typeConverter, loc, result, expand, llvmType, 222 rank, d); 223 } 224 return result; 225 } 226 227 // Picks the best way to stretch a single rank. For the 1-D case, a 228 // single insert-elt/shuffle is the most efficient expansion when at 229 // a stretch. Otherwise, every dimension needs to be expanded 230 // individually and individually inserted in the resulting vector. 231 // For example: 232 // v = broadcast w : vector<4x1x2xf32> to vector<4x2x2xf32> 233 // becomes: 234 // a = broadcast w[0] : vector<1x2xf32> to vector<2x2xf32> 235 // b = broadcast w[1] : vector<1x2xf32> to vector<2x2xf32> 236 // c = broadcast w[2] : vector<1x2xf32> to vector<2x2xf32> 237 // d = broadcast w[3] : vector<1x2xf32> to vector<2x2xf32> 238 // v = [a,b,c,d] 239 // becomes: 240 // x = broadcast w[0][0] : vector<2xf32> to vector <2x2xf32> 241 // y = broadcast w[1][0] : vector<2xf32> to vector <2x2xf32> 242 // a = [x, y] 243 // etc. 244 Value stretchOneRank(Value value, Location loc, VectorType srcVectorType, 245 VectorType dstVectorType, int64_t rank, int64_t dim, 246 ConversionPatternRewriter &rewriter) const { 247 Type llvmType = typeConverter.convertType(dstVectorType); 248 assert((llvmType != nullptr) && "unlowerable vector type"); 249 Value result = rewriter.create<LLVM::UndefOp>(loc, llvmType); 250 bool atStretch = dim != srcVectorType.getDimSize(0); 251 if (rank == 1) { 252 assert(atStretch); 253 Type redLlvmType = 254 typeConverter.convertType(dstVectorType.getElementType()); 255 Value one = 256 extractOne(rewriter, typeConverter, loc, value, redLlvmType, rank, 0); 257 Value expand = insertOne(rewriter, typeConverter, loc, result, one, 258 llvmType, rank, 0); 259 SmallVector<int32_t, 4> zeroValues(dim, 0); 260 return rewriter.create<LLVM::ShuffleVectorOp>( 261 loc, expand, result, rewriter.getI32ArrayAttr(zeroValues)); 262 } 263 VectorType redSrcType = reducedVectorTypeFront(srcVectorType); 264 VectorType redDstType = reducedVectorTypeFront(dstVectorType); 265 Type redLlvmType = typeConverter.convertType(redSrcType); 266 for (int64_t d = 0; d < dim; ++d) { 267 int64_t pos = atStretch ? 0 : d; 268 Value one = extractOne(rewriter, typeConverter, loc, value, redLlvmType, 269 rank, pos); 270 Value expand = expandRanks(one, loc, redSrcType, redDstType, rewriter); 271 result = insertOne(rewriter, typeConverter, loc, result, expand, llvmType, 272 rank, d); 273 } 274 return result; 275 } 276 }; 277 278 class VectorReductionOpConversion : public ConvertToLLVMPattern { 279 public: 280 explicit VectorReductionOpConversion(MLIRContext *context, 281 LLVMTypeConverter &typeConverter) 282 : ConvertToLLVMPattern(vector::ReductionOp::getOperationName(), context, 283 typeConverter) {} 284 285 PatternMatchResult 286 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 287 ConversionPatternRewriter &rewriter) const override { 288 auto reductionOp = cast<vector::ReductionOp>(op); 289 auto kind = reductionOp.kind(); 290 Type eltType = reductionOp.dest().getType(); 291 Type llvmType = typeConverter.convertType(eltType); 292 if (eltType.isSignlessInteger(32) || eltType.isSignlessInteger(64)) { 293 // Integer reductions: add/mul/min/max/and/or/xor. 294 if (kind == "add") 295 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_add>( 296 op, llvmType, operands[0]); 297 else if (kind == "mul") 298 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_mul>( 299 op, llvmType, operands[0]); 300 else if (kind == "min") 301 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smin>( 302 op, llvmType, operands[0]); 303 else if (kind == "max") 304 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_smax>( 305 op, llvmType, operands[0]); 306 else if (kind == "and") 307 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_and>( 308 op, llvmType, operands[0]); 309 else if (kind == "or") 310 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_or>( 311 op, llvmType, operands[0]); 312 else if (kind == "xor") 313 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_xor>( 314 op, llvmType, operands[0]); 315 else 316 return matchFailure(); 317 return matchSuccess(); 318 319 } else if (eltType.isF32() || eltType.isF64()) { 320 // Floating-point reductions: add/mul/min/max 321 if (kind == "add") { 322 // Optional accumulator (or zero). 323 Value acc = operands.size() > 1 ? operands[1] 324 : rewriter.create<LLVM::ConstantOp>( 325 op->getLoc(), llvmType, 326 rewriter.getZeroAttr(eltType)); 327 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fadd>( 328 op, llvmType, acc, operands[0]); 329 } else if (kind == "mul") { 330 // Optional accumulator (or one). 331 Value acc = operands.size() > 1 332 ? operands[1] 333 : rewriter.create<LLVM::ConstantOp>( 334 op->getLoc(), llvmType, 335 rewriter.getFloatAttr(eltType, 1.0)); 336 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_v2_fmul>( 337 op, llvmType, acc, operands[0]); 338 } else if (kind == "min") 339 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmin>( 340 op, llvmType, operands[0]); 341 else if (kind == "max") 342 rewriter.replaceOpWithNewOp<LLVM::experimental_vector_reduce_fmax>( 343 op, llvmType, operands[0]); 344 else 345 return matchFailure(); 346 return matchSuccess(); 347 } 348 return matchFailure(); 349 } 350 }; 351 352 class VectorShuffleOpConversion : public ConvertToLLVMPattern { 353 public: 354 explicit VectorShuffleOpConversion(MLIRContext *context, 355 LLVMTypeConverter &typeConverter) 356 : ConvertToLLVMPattern(vector::ShuffleOp::getOperationName(), context, 357 typeConverter) {} 358 359 PatternMatchResult 360 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 361 ConversionPatternRewriter &rewriter) const override { 362 auto loc = op->getLoc(); 363 auto adaptor = vector::ShuffleOpOperandAdaptor(operands); 364 auto shuffleOp = cast<vector::ShuffleOp>(op); 365 auto v1Type = shuffleOp.getV1VectorType(); 366 auto v2Type = shuffleOp.getV2VectorType(); 367 auto vectorType = shuffleOp.getVectorType(); 368 Type llvmType = typeConverter.convertType(vectorType); 369 auto maskArrayAttr = shuffleOp.mask(); 370 371 // Bail if result type cannot be lowered. 372 if (!llvmType) 373 return matchFailure(); 374 375 // Get rank and dimension sizes. 376 int64_t rank = vectorType.getRank(); 377 assert(v1Type.getRank() == rank); 378 assert(v2Type.getRank() == rank); 379 int64_t v1Dim = v1Type.getDimSize(0); 380 381 // For rank 1, where both operands have *exactly* the same vector type, 382 // there is direct shuffle support in LLVM. Use it! 383 if (rank == 1 && v1Type == v2Type) { 384 Value shuffle = rewriter.create<LLVM::ShuffleVectorOp>( 385 loc, adaptor.v1(), adaptor.v2(), maskArrayAttr); 386 rewriter.replaceOp(op, shuffle); 387 return matchSuccess(); 388 } 389 390 // For all other cases, insert the individual values individually. 391 Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType); 392 int64_t insPos = 0; 393 for (auto en : llvm::enumerate(maskArrayAttr)) { 394 int64_t extPos = en.value().cast<IntegerAttr>().getInt(); 395 Value value = adaptor.v1(); 396 if (extPos >= v1Dim) { 397 extPos -= v1Dim; 398 value = adaptor.v2(); 399 } 400 Value extract = extractOne(rewriter, typeConverter, loc, value, llvmType, 401 rank, extPos); 402 insert = insertOne(rewriter, typeConverter, loc, insert, extract, 403 llvmType, rank, insPos++); 404 } 405 rewriter.replaceOp(op, insert); 406 return matchSuccess(); 407 } 408 }; 409 410 class VectorExtractElementOpConversion : public ConvertToLLVMPattern { 411 public: 412 explicit VectorExtractElementOpConversion(MLIRContext *context, 413 LLVMTypeConverter &typeConverter) 414 : ConvertToLLVMPattern(vector::ExtractElementOp::getOperationName(), 415 context, typeConverter) {} 416 417 PatternMatchResult 418 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 419 ConversionPatternRewriter &rewriter) const override { 420 auto adaptor = vector::ExtractElementOpOperandAdaptor(operands); 421 auto extractEltOp = cast<vector::ExtractElementOp>(op); 422 auto vectorType = extractEltOp.getVectorType(); 423 auto llvmType = typeConverter.convertType(vectorType.getElementType()); 424 425 // Bail if result type cannot be lowered. 426 if (!llvmType) 427 return matchFailure(); 428 429 rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>( 430 op, llvmType, adaptor.vector(), adaptor.position()); 431 return matchSuccess(); 432 } 433 }; 434 435 class VectorExtractOpConversion : public ConvertToLLVMPattern { 436 public: 437 explicit VectorExtractOpConversion(MLIRContext *context, 438 LLVMTypeConverter &typeConverter) 439 : ConvertToLLVMPattern(vector::ExtractOp::getOperationName(), context, 440 typeConverter) {} 441 442 PatternMatchResult 443 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 444 ConversionPatternRewriter &rewriter) const override { 445 auto loc = op->getLoc(); 446 auto adaptor = vector::ExtractOpOperandAdaptor(operands); 447 auto extractOp = cast<vector::ExtractOp>(op); 448 auto vectorType = extractOp.getVectorType(); 449 auto resultType = extractOp.getResult().getType(); 450 auto llvmResultType = typeConverter.convertType(resultType); 451 auto positionArrayAttr = extractOp.position(); 452 453 // Bail if result type cannot be lowered. 454 if (!llvmResultType) 455 return matchFailure(); 456 457 // One-shot extraction of vector from array (only requires extractvalue). 458 if (resultType.isa<VectorType>()) { 459 Value extracted = rewriter.create<LLVM::ExtractValueOp>( 460 loc, llvmResultType, adaptor.vector(), positionArrayAttr); 461 rewriter.replaceOp(op, extracted); 462 return matchSuccess(); 463 } 464 465 // Potential extraction of 1-D vector from array. 466 auto *context = op->getContext(); 467 Value extracted = adaptor.vector(); 468 auto positionAttrs = positionArrayAttr.getValue(); 469 if (positionAttrs.size() > 1) { 470 auto oneDVectorType = reducedVectorTypeBack(vectorType); 471 auto nMinusOnePositionAttrs = 472 ArrayAttr::get(positionAttrs.drop_back(), context); 473 extracted = rewriter.create<LLVM::ExtractValueOp>( 474 loc, typeConverter.convertType(oneDVectorType), extracted, 475 nMinusOnePositionAttrs); 476 } 477 478 // Remaining extraction of element from 1-D LLVM vector 479 auto position = positionAttrs.back().cast<IntegerAttr>(); 480 auto i64Type = LLVM::LLVMType::getInt64Ty(typeConverter.getDialect()); 481 auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); 482 extracted = 483 rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant); 484 rewriter.replaceOp(op, extracted); 485 486 return matchSuccess(); 487 } 488 }; 489 490 /// Conversion pattern that turns a vector.fma on a 1-D vector 491 /// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion. 492 /// This does not match vectors of n >= 2 rank. 493 /// 494 /// Example: 495 /// ``` 496 /// vector.fma %a, %a, %a : vector<8xf32> 497 /// ``` 498 /// is converted to: 499 /// ``` 500 /// llvm.intr.fma %va, %va, %va: 501 /// (!llvm<"<8 x float>">, !llvm<"<8 x float>">, !llvm<"<8 x float>">) 502 /// -> !llvm<"<8 x float>"> 503 /// ``` 504 class VectorFMAOp1DConversion : public ConvertToLLVMPattern { 505 public: 506 explicit VectorFMAOp1DConversion(MLIRContext *context, 507 LLVMTypeConverter &typeConverter) 508 : ConvertToLLVMPattern(vector::FMAOp::getOperationName(), context, 509 typeConverter) {} 510 511 PatternMatchResult 512 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 513 ConversionPatternRewriter &rewriter) const override { 514 auto adaptor = vector::FMAOpOperandAdaptor(operands); 515 vector::FMAOp fmaOp = cast<vector::FMAOp>(op); 516 VectorType vType = fmaOp.getVectorType(); 517 if (vType.getRank() != 1) 518 return matchFailure(); 519 rewriter.replaceOpWithNewOp<LLVM::FMAOp>(op, adaptor.lhs(), adaptor.rhs(), 520 adaptor.acc()); 521 return matchSuccess(); 522 } 523 }; 524 525 class VectorInsertElementOpConversion : public ConvertToLLVMPattern { 526 public: 527 explicit VectorInsertElementOpConversion(MLIRContext *context, 528 LLVMTypeConverter &typeConverter) 529 : ConvertToLLVMPattern(vector::InsertElementOp::getOperationName(), 530 context, typeConverter) {} 531 532 PatternMatchResult 533 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 534 ConversionPatternRewriter &rewriter) const override { 535 auto adaptor = vector::InsertElementOpOperandAdaptor(operands); 536 auto insertEltOp = cast<vector::InsertElementOp>(op); 537 auto vectorType = insertEltOp.getDestVectorType(); 538 auto llvmType = typeConverter.convertType(vectorType); 539 540 // Bail if result type cannot be lowered. 541 if (!llvmType) 542 return matchFailure(); 543 544 rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( 545 op, llvmType, adaptor.dest(), adaptor.source(), adaptor.position()); 546 return matchSuccess(); 547 } 548 }; 549 550 class VectorInsertOpConversion : public ConvertToLLVMPattern { 551 public: 552 explicit VectorInsertOpConversion(MLIRContext *context, 553 LLVMTypeConverter &typeConverter) 554 : ConvertToLLVMPattern(vector::InsertOp::getOperationName(), context, 555 typeConverter) {} 556 557 PatternMatchResult 558 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 559 ConversionPatternRewriter &rewriter) const override { 560 auto loc = op->getLoc(); 561 auto adaptor = vector::InsertOpOperandAdaptor(operands); 562 auto insertOp = cast<vector::InsertOp>(op); 563 auto sourceType = insertOp.getSourceType(); 564 auto destVectorType = insertOp.getDestVectorType(); 565 auto llvmResultType = typeConverter.convertType(destVectorType); 566 auto positionArrayAttr = insertOp.position(); 567 568 // Bail if result type cannot be lowered. 569 if (!llvmResultType) 570 return matchFailure(); 571 572 // One-shot insertion of a vector into an array (only requires insertvalue). 573 if (sourceType.isa<VectorType>()) { 574 Value inserted = rewriter.create<LLVM::InsertValueOp>( 575 loc, llvmResultType, adaptor.dest(), adaptor.source(), 576 positionArrayAttr); 577 rewriter.replaceOp(op, inserted); 578 return matchSuccess(); 579 } 580 581 // Potential extraction of 1-D vector from array. 582 auto *context = op->getContext(); 583 Value extracted = adaptor.dest(); 584 auto positionAttrs = positionArrayAttr.getValue(); 585 auto position = positionAttrs.back().cast<IntegerAttr>(); 586 auto oneDVectorType = destVectorType; 587 if (positionAttrs.size() > 1) { 588 oneDVectorType = reducedVectorTypeBack(destVectorType); 589 auto nMinusOnePositionAttrs = 590 ArrayAttr::get(positionAttrs.drop_back(), context); 591 extracted = rewriter.create<LLVM::ExtractValueOp>( 592 loc, typeConverter.convertType(oneDVectorType), extracted, 593 nMinusOnePositionAttrs); 594 } 595 596 // Insertion of an element into a 1-D LLVM vector. 597 auto i64Type = LLVM::LLVMType::getInt64Ty(typeConverter.getDialect()); 598 auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position); 599 Value inserted = rewriter.create<LLVM::InsertElementOp>( 600 loc, typeConverter.convertType(oneDVectorType), extracted, 601 adaptor.source(), constant); 602 603 // Potential insertion of resulting 1-D vector into array. 604 if (positionAttrs.size() > 1) { 605 auto nMinusOnePositionAttrs = 606 ArrayAttr::get(positionAttrs.drop_back(), context); 607 inserted = rewriter.create<LLVM::InsertValueOp>(loc, llvmResultType, 608 adaptor.dest(), inserted, 609 nMinusOnePositionAttrs); 610 } 611 612 rewriter.replaceOp(op, inserted); 613 return matchSuccess(); 614 } 615 }; 616 617 /// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1. 618 /// 619 /// Example: 620 /// ``` 621 /// %d = vector.fma %a, %b, %c : vector<2x4xf32> 622 /// ``` 623 /// is rewritten into: 624 /// ``` 625 /// %r = splat %f0: vector<2x4xf32> 626 /// %va = vector.extractvalue %a[0] : vector<2x4xf32> 627 /// %vb = vector.extractvalue %b[0] : vector<2x4xf32> 628 /// %vc = vector.extractvalue %c[0] : vector<2x4xf32> 629 /// %vd = vector.fma %va, %vb, %vc : vector<4xf32> 630 /// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32> 631 /// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32> 632 /// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32> 633 /// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32> 634 /// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32> 635 /// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32> 636 /// // %r3 holds the final value. 637 /// ``` 638 class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> { 639 public: 640 using OpRewritePattern<FMAOp>::OpRewritePattern; 641 642 PatternMatchResult matchAndRewrite(FMAOp op, 643 PatternRewriter &rewriter) const override { 644 auto vType = op.getVectorType(); 645 if (vType.getRank() < 2) 646 return matchFailure(); 647 648 auto loc = op.getLoc(); 649 auto elemType = vType.getElementType(); 650 Value zero = rewriter.create<ConstantOp>(loc, elemType, 651 rewriter.getZeroAttr(elemType)); 652 Value desc = rewriter.create<SplatOp>(loc, vType, zero); 653 for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) { 654 Value extrLHS = rewriter.create<ExtractOp>(loc, op.lhs(), i); 655 Value extrRHS = rewriter.create<ExtractOp>(loc, op.rhs(), i); 656 Value extrACC = rewriter.create<ExtractOp>(loc, op.acc(), i); 657 Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC); 658 desc = rewriter.create<InsertOp>(loc, fma, desc, i); 659 } 660 rewriter.replaceOp(op, desc); 661 return matchSuccess(); 662 } 663 }; 664 665 // When ranks are different, InsertStridedSlice needs to extract a properly 666 // ranked vector from the destination vector into which to insert. This pattern 667 // only takes care of this part and forwards the rest of the conversion to 668 // another pattern that converts InsertStridedSlice for operands of the same 669 // rank. 670 // 671 // RewritePattern for InsertStridedSliceOp where source and destination vectors 672 // have different ranks. In this case: 673 // 1. the proper subvector is extracted from the destination vector 674 // 2. a new InsertStridedSlice op is created to insert the source in the 675 // destination subvector 676 // 3. the destination subvector is inserted back in the proper place 677 // 4. the op is replaced by the result of step 3. 678 // The new InsertStridedSlice from step 2. will be picked up by a 679 // `VectorInsertStridedSliceOpSameRankRewritePattern`. 680 class VectorInsertStridedSliceOpDifferentRankRewritePattern 681 : public OpRewritePattern<InsertStridedSliceOp> { 682 public: 683 using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; 684 685 PatternMatchResult matchAndRewrite(InsertStridedSliceOp op, 686 PatternRewriter &rewriter) const override { 687 auto srcType = op.getSourceVectorType(); 688 auto dstType = op.getDestVectorType(); 689 690 if (op.offsets().getValue().empty()) 691 return matchFailure(); 692 693 auto loc = op.getLoc(); 694 int64_t rankDiff = dstType.getRank() - srcType.getRank(); 695 assert(rankDiff >= 0); 696 if (rankDiff == 0) 697 return matchFailure(); 698 699 int64_t rankRest = dstType.getRank() - rankDiff; 700 // Extract / insert the subvector of matching rank and InsertStridedSlice 701 // on it. 702 Value extracted = 703 rewriter.create<ExtractOp>(loc, op.dest(), 704 getI64SubArray(op.offsets(), /*dropFront=*/0, 705 /*dropFront=*/rankRest)); 706 // A different pattern will kick in for InsertStridedSlice with matching 707 // ranks. 708 auto stridedSliceInnerOp = rewriter.create<InsertStridedSliceOp>( 709 loc, op.source(), extracted, 710 getI64SubArray(op.offsets(), /*dropFront=*/rankDiff), 711 getI64SubArray(op.strides(), /*dropFront=*/0)); 712 rewriter.replaceOpWithNewOp<InsertOp>( 713 op, stridedSliceInnerOp.getResult(), op.dest(), 714 getI64SubArray(op.offsets(), /*dropFront=*/0, 715 /*dropFront=*/rankRest)); 716 return matchSuccess(); 717 } 718 }; 719 720 // RewritePattern for InsertStridedSliceOp where source and destination vectors 721 // have the same rank. In this case, we reduce 722 // 1. the proper subvector is extracted from the destination vector 723 // 2. a new InsertStridedSlice op is created to insert the source in the 724 // destination subvector 725 // 3. the destination subvector is inserted back in the proper place 726 // 4. the op is replaced by the result of step 3. 727 // The new InsertStridedSlice from step 2. will be picked up by a 728 // `VectorInsertStridedSliceOpSameRankRewritePattern`. 729 class VectorInsertStridedSliceOpSameRankRewritePattern 730 : public OpRewritePattern<InsertStridedSliceOp> { 731 public: 732 using OpRewritePattern<InsertStridedSliceOp>::OpRewritePattern; 733 734 PatternMatchResult matchAndRewrite(InsertStridedSliceOp op, 735 PatternRewriter &rewriter) const override { 736 auto srcType = op.getSourceVectorType(); 737 auto dstType = op.getDestVectorType(); 738 739 if (op.offsets().getValue().empty()) 740 return matchFailure(); 741 742 int64_t rankDiff = dstType.getRank() - srcType.getRank(); 743 assert(rankDiff >= 0); 744 if (rankDiff != 0) 745 return matchFailure(); 746 747 if (srcType == dstType) { 748 rewriter.replaceOp(op, op.source()); 749 return matchSuccess(); 750 } 751 752 int64_t offset = 753 op.offsets().getValue().front().cast<IntegerAttr>().getInt(); 754 int64_t size = srcType.getShape().front(); 755 int64_t stride = 756 op.strides().getValue().front().cast<IntegerAttr>().getInt(); 757 758 auto loc = op.getLoc(); 759 Value res = op.dest(); 760 // For each slice of the source vector along the most major dimension. 761 for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e; 762 off += stride, ++idx) { 763 // 1. extract the proper subvector (or element) from source 764 Value extractedSource = extractOne(rewriter, loc, op.source(), idx); 765 if (extractedSource.getType().isa<VectorType>()) { 766 // 2. If we have a vector, extract the proper subvector from destination 767 // Otherwise we are at the element level and no need to recurse. 768 Value extractedDest = extractOne(rewriter, loc, op.dest(), off); 769 // 3. Reduce the problem to lowering a new InsertStridedSlice op with 770 // smaller rank. 771 InsertStridedSliceOp insertStridedSliceOp = 772 rewriter.create<InsertStridedSliceOp>( 773 loc, extractedSource, extractedDest, 774 getI64SubArray(op.offsets(), /* dropFront=*/1), 775 getI64SubArray(op.strides(), /* dropFront=*/1)); 776 // Call matchAndRewrite recursively from within the pattern. This 777 // circumvents the current limitation that a given pattern cannot 778 // be called multiple times by the PatternRewrite infrastructure (to 779 // avoid infinite recursion, but in this case, infinite recursion 780 // cannot happen because the rank is strictly decreasing). 781 // TODO(rriddle, nicolasvasilache) Implement something like a hook for 782 // a potential function that must decrease and allow the same pattern 783 // multiple times. 784 auto success = matchAndRewrite(insertStridedSliceOp, rewriter); 785 (void)success; 786 assert(success && "Unexpected failure"); 787 extractedSource = insertStridedSliceOp; 788 } 789 // 4. Insert the extractedSource into the res vector. 790 res = insertOne(rewriter, loc, extractedSource, res, off); 791 } 792 793 rewriter.replaceOp(op, res); 794 return matchSuccess(); 795 } 796 }; 797 798 class VectorOuterProductOpConversion : public ConvertToLLVMPattern { 799 public: 800 explicit VectorOuterProductOpConversion(MLIRContext *context, 801 LLVMTypeConverter &typeConverter) 802 : ConvertToLLVMPattern(vector::OuterProductOp::getOperationName(), 803 context, typeConverter) {} 804 805 PatternMatchResult 806 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 807 ConversionPatternRewriter &rewriter) const override { 808 auto loc = op->getLoc(); 809 auto adaptor = vector::OuterProductOpOperandAdaptor(operands); 810 auto *ctx = op->getContext(); 811 auto vLHS = adaptor.lhs().getType().cast<LLVM::LLVMType>(); 812 auto vRHS = adaptor.rhs().getType().cast<LLVM::LLVMType>(); 813 auto rankLHS = vLHS.getUnderlyingType()->getVectorNumElements(); 814 auto rankRHS = vRHS.getUnderlyingType()->getVectorNumElements(); 815 auto llvmArrayOfVectType = typeConverter.convertType( 816 cast<vector::OuterProductOp>(op).getResult().getType()); 817 Value desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayOfVectType); 818 Value a = adaptor.lhs(), b = adaptor.rhs(); 819 Value acc = adaptor.acc().empty() ? nullptr : adaptor.acc().front(); 820 SmallVector<Value, 8> lhs, accs; 821 lhs.reserve(rankLHS); 822 accs.reserve(rankLHS); 823 for (unsigned d = 0, e = rankLHS; d < e; ++d) { 824 // shufflevector explicitly requires i32. 825 auto attr = rewriter.getI32IntegerAttr(d); 826 SmallVector<Attribute, 4> bcastAttr(rankRHS, attr); 827 auto bcastArrayAttr = ArrayAttr::get(bcastAttr, ctx); 828 Value aD = nullptr, accD = nullptr; 829 // 1. Broadcast the element a[d] into vector aD. 830 aD = rewriter.create<LLVM::ShuffleVectorOp>(loc, a, a, bcastArrayAttr); 831 // 2. If acc is present, extract 1-d vector acc[d] into accD. 832 if (acc) 833 accD = rewriter.create<LLVM::ExtractValueOp>( 834 loc, vRHS, acc, rewriter.getI64ArrayAttr(d)); 835 // 3. Compute aD outer b (plus accD, if relevant). 836 Value aOuterbD = 837 accD 838 ? rewriter.create<LLVM::FMAOp>(loc, vRHS, aD, b, accD).getResult() 839 : rewriter.create<LLVM::FMulOp>(loc, aD, b).getResult(); 840 // 4. Insert as value `d` in the descriptor. 841 desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayOfVectType, 842 desc, aOuterbD, 843 rewriter.getI64ArrayAttr(d)); 844 } 845 rewriter.replaceOp(op, desc); 846 return matchSuccess(); 847 } 848 }; 849 850 class VectorTypeCastOpConversion : public ConvertToLLVMPattern { 851 public: 852 explicit VectorTypeCastOpConversion(MLIRContext *context, 853 LLVMTypeConverter &typeConverter) 854 : ConvertToLLVMPattern(vector::TypeCastOp::getOperationName(), context, 855 typeConverter) {} 856 857 PatternMatchResult 858 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 859 ConversionPatternRewriter &rewriter) const override { 860 auto loc = op->getLoc(); 861 vector::TypeCastOp castOp = cast<vector::TypeCastOp>(op); 862 MemRefType sourceMemRefType = 863 castOp.getOperand().getType().cast<MemRefType>(); 864 MemRefType targetMemRefType = 865 castOp.getResult().getType().cast<MemRefType>(); 866 867 // Only static shape casts supported atm. 868 if (!sourceMemRefType.hasStaticShape() || 869 !targetMemRefType.hasStaticShape()) 870 return matchFailure(); 871 872 auto llvmSourceDescriptorTy = 873 operands[0].getType().dyn_cast<LLVM::LLVMType>(); 874 if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy()) 875 return matchFailure(); 876 MemRefDescriptor sourceMemRef(operands[0]); 877 878 auto llvmTargetDescriptorTy = typeConverter.convertType(targetMemRefType) 879 .dyn_cast_or_null<LLVM::LLVMType>(); 880 if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy()) 881 return matchFailure(); 882 883 int64_t offset; 884 SmallVector<int64_t, 4> strides; 885 auto successStrides = 886 getStridesAndOffset(sourceMemRefType, strides, offset); 887 bool isContiguous = (strides.back() == 1); 888 if (isContiguous) { 889 auto sizes = sourceMemRefType.getShape(); 890 for (int index = 0, e = strides.size() - 2; index < e; ++index) { 891 if (strides[index] != strides[index + 1] * sizes[index + 1]) { 892 isContiguous = false; 893 break; 894 } 895 } 896 } 897 // Only contiguous source tensors supported atm. 898 if (failed(successStrides) || !isContiguous) 899 return matchFailure(); 900 901 auto int64Ty = LLVM::LLVMType::getInt64Ty(typeConverter.getDialect()); 902 903 // Create descriptor. 904 auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy); 905 Type llvmTargetElementTy = desc.getElementType(); 906 // Set allocated ptr. 907 Value allocated = sourceMemRef.allocatedPtr(rewriter, loc); 908 allocated = 909 rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated); 910 desc.setAllocatedPtr(rewriter, loc, allocated); 911 // Set aligned ptr. 912 Value ptr = sourceMemRef.alignedPtr(rewriter, loc); 913 ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr); 914 desc.setAlignedPtr(rewriter, loc, ptr); 915 // Fill offset 0. 916 auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0); 917 auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr); 918 desc.setOffset(rewriter, loc, zero); 919 920 // Fill size and stride descriptors in memref. 921 for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) { 922 int64_t index = indexedSize.index(); 923 auto sizeAttr = 924 rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value()); 925 auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr); 926 desc.setSize(rewriter, loc, index, size); 927 auto strideAttr = 928 rewriter.getIntegerAttr(rewriter.getIndexType(), strides[index]); 929 auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr); 930 desc.setStride(rewriter, loc, index, stride); 931 } 932 933 rewriter.replaceOp(op, {desc}); 934 return matchSuccess(); 935 } 936 }; 937 938 class VectorPrintOpConversion : public ConvertToLLVMPattern { 939 public: 940 explicit VectorPrintOpConversion(MLIRContext *context, 941 LLVMTypeConverter &typeConverter) 942 : ConvertToLLVMPattern(vector::PrintOp::getOperationName(), context, 943 typeConverter) {} 944 945 // Proof-of-concept lowering implementation that relies on a small 946 // runtime support library, which only needs to provide a few 947 // printing methods (single value for all data types, opening/closing 948 // bracket, comma, newline). The lowering fully unrolls a vector 949 // in terms of these elementary printing operations. The advantage 950 // of this approach is that the library can remain unaware of all 951 // low-level implementation details of vectors while still supporting 952 // output of any shaped and dimensioned vector. Due to full unrolling, 953 // this approach is less suited for very large vectors though. 954 // 955 // TODO(ajcbik): rely solely on libc in future? something else? 956 // 957 PatternMatchResult 958 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 959 ConversionPatternRewriter &rewriter) const override { 960 auto printOp = cast<vector::PrintOp>(op); 961 auto adaptor = vector::PrintOpOperandAdaptor(operands); 962 Type printType = printOp.getPrintType(); 963 964 if (typeConverter.convertType(printType) == nullptr) 965 return matchFailure(); 966 967 // Make sure element type has runtime support (currently just Float/Double). 968 VectorType vectorType = printType.dyn_cast<VectorType>(); 969 Type eltType = vectorType ? vectorType.getElementType() : printType; 970 int64_t rank = vectorType ? vectorType.getRank() : 0; 971 Operation *printer; 972 if (eltType.isSignlessInteger(32)) 973 printer = getPrintI32(op); 974 else if (eltType.isSignlessInteger(64)) 975 printer = getPrintI64(op); 976 else if (eltType.isF32()) 977 printer = getPrintFloat(op); 978 else if (eltType.isF64()) 979 printer = getPrintDouble(op); 980 else 981 return matchFailure(); 982 983 // Unroll vector into elementary print calls. 984 emitRanks(rewriter, op, adaptor.source(), vectorType, printer, rank); 985 emitCall(rewriter, op->getLoc(), getPrintNewline(op)); 986 rewriter.eraseOp(op); 987 return matchSuccess(); 988 } 989 990 private: 991 void emitRanks(ConversionPatternRewriter &rewriter, Operation *op, 992 Value value, VectorType vectorType, Operation *printer, 993 int64_t rank) const { 994 Location loc = op->getLoc(); 995 if (rank == 0) { 996 emitCall(rewriter, loc, printer, value); 997 return; 998 } 999 1000 emitCall(rewriter, loc, getPrintOpen(op)); 1001 Operation *printComma = getPrintComma(op); 1002 int64_t dim = vectorType.getDimSize(0); 1003 for (int64_t d = 0; d < dim; ++d) { 1004 auto reducedType = 1005 rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr; 1006 auto llvmType = typeConverter.convertType( 1007 rank > 1 ? reducedType : vectorType.getElementType()); 1008 Value nestedVal = 1009 extractOne(rewriter, typeConverter, loc, value, llvmType, rank, d); 1010 emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1); 1011 if (d != dim - 1) 1012 emitCall(rewriter, loc, printComma); 1013 } 1014 emitCall(rewriter, loc, getPrintClose(op)); 1015 } 1016 1017 // Helper to emit a call. 1018 static void emitCall(ConversionPatternRewriter &rewriter, Location loc, 1019 Operation *ref, ValueRange params = ValueRange()) { 1020 rewriter.create<LLVM::CallOp>(loc, ArrayRef<Type>{}, 1021 rewriter.getSymbolRefAttr(ref), params); 1022 } 1023 1024 // Helper for printer method declaration (first hit) and lookup. 1025 static Operation *getPrint(Operation *op, LLVM::LLVMDialect *dialect, 1026 StringRef name, ArrayRef<LLVM::LLVMType> params) { 1027 auto module = op->getParentOfType<ModuleOp>(); 1028 auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name); 1029 if (func) 1030 return func; 1031 OpBuilder moduleBuilder(module.getBodyRegion()); 1032 return moduleBuilder.create<LLVM::LLVMFuncOp>( 1033 op->getLoc(), name, 1034 LLVM::LLVMType::getFunctionTy(LLVM::LLVMType::getVoidTy(dialect), 1035 params, /*isVarArg=*/false)); 1036 } 1037 1038 // Helpers for method names. 1039 Operation *getPrintI32(Operation *op) const { 1040 LLVM::LLVMDialect *dialect = typeConverter.getDialect(); 1041 return getPrint(op, dialect, "print_i32", 1042 LLVM::LLVMType::getInt32Ty(dialect)); 1043 } 1044 Operation *getPrintI64(Operation *op) const { 1045 LLVM::LLVMDialect *dialect = typeConverter.getDialect(); 1046 return getPrint(op, dialect, "print_i64", 1047 LLVM::LLVMType::getInt64Ty(dialect)); 1048 } 1049 Operation *getPrintFloat(Operation *op) const { 1050 LLVM::LLVMDialect *dialect = typeConverter.getDialect(); 1051 return getPrint(op, dialect, "print_f32", 1052 LLVM::LLVMType::getFloatTy(dialect)); 1053 } 1054 Operation *getPrintDouble(Operation *op) const { 1055 LLVM::LLVMDialect *dialect = typeConverter.getDialect(); 1056 return getPrint(op, dialect, "print_f64", 1057 LLVM::LLVMType::getDoubleTy(dialect)); 1058 } 1059 Operation *getPrintOpen(Operation *op) const { 1060 return getPrint(op, typeConverter.getDialect(), "print_open", {}); 1061 } 1062 Operation *getPrintClose(Operation *op) const { 1063 return getPrint(op, typeConverter.getDialect(), "print_close", {}); 1064 } 1065 Operation *getPrintComma(Operation *op) const { 1066 return getPrint(op, typeConverter.getDialect(), "print_comma", {}); 1067 } 1068 Operation *getPrintNewline(Operation *op) const { 1069 return getPrint(op, typeConverter.getDialect(), "print_newline", {}); 1070 } 1071 }; 1072 1073 /// Progressive lowering of StridedSliceOp to either: 1074 /// 1. extractelement + insertelement for the 1-D case 1075 /// 2. extract + optional strided_slice + insert for the n-D case. 1076 class VectorStridedSliceOpConversion : public OpRewritePattern<StridedSliceOp> { 1077 public: 1078 using OpRewritePattern<StridedSliceOp>::OpRewritePattern; 1079 1080 PatternMatchResult matchAndRewrite(StridedSliceOp op, 1081 PatternRewriter &rewriter) const override { 1082 auto dstType = op.getResult().getType().cast<VectorType>(); 1083 1084 assert(!op.offsets().getValue().empty() && "Unexpected empty offsets"); 1085 1086 int64_t offset = 1087 op.offsets().getValue().front().cast<IntegerAttr>().getInt(); 1088 int64_t size = op.sizes().getValue().front().cast<IntegerAttr>().getInt(); 1089 int64_t stride = 1090 op.strides().getValue().front().cast<IntegerAttr>().getInt(); 1091 1092 auto loc = op.getLoc(); 1093 auto elemType = dstType.getElementType(); 1094 assert(elemType.isSignlessIntOrIndexOrFloat()); 1095 Value zero = rewriter.create<ConstantOp>(loc, elemType, 1096 rewriter.getZeroAttr(elemType)); 1097 Value res = rewriter.create<SplatOp>(loc, dstType, zero); 1098 for (int64_t off = offset, e = offset + size * stride, idx = 0; off < e; 1099 off += stride, ++idx) { 1100 Value extracted = extractOne(rewriter, loc, op.vector(), off); 1101 if (op.offsets().getValue().size() > 1) { 1102 StridedSliceOp stridedSliceOp = rewriter.create<StridedSliceOp>( 1103 loc, extracted, getI64SubArray(op.offsets(), /* dropFront=*/1), 1104 getI64SubArray(op.sizes(), /* dropFront=*/1), 1105 getI64SubArray(op.strides(), /* dropFront=*/1)); 1106 // Call matchAndRewrite recursively from within the pattern. This 1107 // circumvents the current limitation that a given pattern cannot 1108 // be called multiple times by the PatternRewrite infrastructure (to 1109 // avoid infinite recursion, but in this case, infinite recursion 1110 // cannot happen because the rank is strictly decreasing). 1111 // TODO(rriddle, nicolasvasilache) Implement something like a hook for 1112 // a potential function that must decrease and allow the same pattern 1113 // multiple times. 1114 auto success = matchAndRewrite(stridedSliceOp, rewriter); 1115 (void)success; 1116 assert(success && "Unexpected failure"); 1117 extracted = stridedSliceOp; 1118 } 1119 res = insertOne(rewriter, loc, extracted, res, idx); 1120 } 1121 rewriter.replaceOp(op, {res}); 1122 return matchSuccess(); 1123 } 1124 }; 1125 1126 } // namespace 1127 1128 /// Populate the given list with patterns that convert from Vector to LLVM. 1129 void mlir::populateVectorToLLVMConversionPatterns( 1130 LLVMTypeConverter &converter, OwningRewritePatternList &patterns) { 1131 MLIRContext *ctx = converter.getDialect()->getContext(); 1132 patterns.insert<VectorFMAOpNDRewritePattern, 1133 VectorInsertStridedSliceOpDifferentRankRewritePattern, 1134 VectorInsertStridedSliceOpSameRankRewritePattern, 1135 VectorStridedSliceOpConversion>(ctx); 1136 patterns.insert<VectorBroadcastOpConversion, VectorReductionOpConversion, 1137 VectorShuffleOpConversion, VectorExtractElementOpConversion, 1138 VectorExtractOpConversion, VectorFMAOp1DConversion, 1139 VectorInsertElementOpConversion, VectorInsertOpConversion, 1140 VectorOuterProductOpConversion, VectorTypeCastOpConversion, 1141 VectorPrintOpConversion>(ctx, converter); 1142 } 1143 1144 namespace { 1145 struct LowerVectorToLLVMPass : public ModulePass<LowerVectorToLLVMPass> { 1146 void runOnModule() override; 1147 }; 1148 } // namespace 1149 1150 void LowerVectorToLLVMPass::runOnModule() { 1151 // Perform progressive lowering of operations on "slices" and 1152 // all contraction operations. Also applies folding and DCE. 1153 { 1154 OwningRewritePatternList patterns; 1155 populateVectorSlicesLoweringPatterns(patterns, &getContext()); 1156 populateVectorContractLoweringPatterns(patterns, &getContext()); 1157 applyPatternsGreedily(getModule(), patterns); 1158 } 1159 1160 // Convert to the LLVM IR dialect. 1161 LLVMTypeConverter converter(&getContext()); 1162 OwningRewritePatternList patterns; 1163 populateVectorToLLVMConversionPatterns(converter, patterns); 1164 populateStdToLLVMConversionPatterns(converter, patterns); 1165 1166 LLVMConversionTarget target(getContext()); 1167 target.addDynamicallyLegalOp<FuncOp>( 1168 [&](FuncOp op) { return converter.isSignatureLegal(op.getType()); }); 1169 if (failed( 1170 applyPartialConversion(getModule(), target, patterns, &converter))) { 1171 signalPassFailure(); 1172 } 1173 } 1174 1175 OpPassBase<ModuleOp> *mlir::createLowerVectorToLLVMPass() { 1176 return new LowerVectorToLLVMPass(); 1177 } 1178 1179 static PassRegistration<LowerVectorToLLVMPass> 1180 pass("convert-vector-to-llvm", 1181 "Lower the operations from the vector dialect into the LLVM dialect"); 1182