xref: /llvm-project/mlir/lib/Conversion/SCFToGPU/SCFToGPU.cpp (revision 63022c48101b37a499ff850f96dfc1c65b9593f1)
1 //===- SCFToGPU.cpp - Convert an affine loop nest to a GPU kernel -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements a straightforward conversion of an loop nest into a GPU
10 // kernel.  The caller is expected to guarantee that the conversion is correct
11 // or to further transform the kernel to ensure correctness.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "mlir/Conversion/SCFToGPU/SCFToGPU.h"
16 
17 #include "mlir/Conversion/AffineToStandard/AffineToStandard.h"
18 #include "mlir/Dialect/Affine/IR/AffineOps.h"
19 #include "mlir/Dialect/Arith/IR/Arith.h"
20 #include "mlir/Dialect/GPU/IR/GPUDialect.h"
21 #include "mlir/Dialect/GPU/Transforms/ParallelLoopMapper.h"
22 #include "mlir/Dialect/MemRef/IR/MemRef.h"
23 #include "mlir/Dialect/SCF/IR/SCF.h"
24 #include "mlir/IR/AffineExpr.h"
25 #include "mlir/IR/BlockAndValueMapping.h"
26 #include "mlir/IR/Builders.h"
27 #include "mlir/Pass/Pass.h"
28 #include "mlir/Transforms/DialectConversion.h"
29 #include "mlir/Transforms/Passes.h"
30 #include "mlir/Transforms/RegionUtils.h"
31 #include "llvm/ADT/Sequence.h"
32 #include "llvm/Support/Debug.h"
33 
34 #define DEBUG_TYPE "loops-to-gpu"
35 
36 using namespace mlir;
37 using namespace mlir::scf;
38 
39 // Name of internal attribute to mark visited operations during conversion.
40 //
41 // NOTE: The conversion originally used the following legality criteria:
42 //   `!parallelOp->hasAttr(gpu::getMappingAttrName())`
43 // But the provided pattern might reject some cases based on more detailed
44 // analysis of the `mapping` attribute.
45 // To avoid dialect conversion failure due to non-converted illegal operation
46 // we use this extra Unit attribute as a marker, that the operation was checked
47 // by the pattern and is should be considered as legal in the following legality
48 // checks. The `finalizeParallelLoopToGPUConversion` function performs clean up
49 // of this extra attributes ans is supposed to be called after the dialect
50 // conversion.
51 //
52 // TODO: Implement a cleaner solution, factoring out the "matching" logic
53 // from the pattern and its callees into a separate function that can be called
54 // from both the pattern and the op legality check.
55 static constexpr StringLiteral kVisitedAttrName = "SCFToGPU_visited";
56 
57 // Extract an indexed value from KernelDim3.
58 static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) {
59   switch (pos) {
60   case 0:
61     return dim3.x;
62   case 1:
63     return dim3.y;
64   case 2:
65     return dim3.z;
66   default:
67     llvm_unreachable("dim3 position out of bounds");
68   }
69   return nullptr;
70 }
71 
72 // Get the lower bound-related operands of a loop operation.
73 static Operation::operand_range getLowerBoundOperands(AffineForOp forOp) {
74   return forOp.getLowerBoundOperands();
75 }
76 
77 // Get the upper bound-related operands of a loop operation.
78 static Operation::operand_range getUpperBoundOperands(AffineForOp forOp) {
79   return forOp.getUpperBoundOperands();
80 }
81 
82 // Get a Value that corresponds to the loop step.  If the step is an attribute,
83 // materialize a corresponding constant using builder.
84 static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder) {
85   return builder.create<arith::ConstantIndexOp>(forOp.getLoc(),
86                                                 forOp.getStep());
87 }
88 
89 // Get a Value for the loop lower bound.  If the value requires computation,
90 // materialize the instructions using builder.
91 static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) {
92   return lowerAffineLowerBound(forOp, builder);
93 }
94 
95 // Get a Value for the loop upper bound.  If the value requires computation,
96 // materialize the instructions using builder.
97 static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) {
98   return lowerAffineUpperBound(forOp, builder);
99 }
100 
101 // Check the structure of the loop nest:
102 //   - there are enough loops to map to numDims;
103 //   - the loops are perfectly nested;
104 //   - the loop bounds can be computed above the outermost loop.
105 // This roughly corresponds to the "matcher" part of the pattern-based
106 // rewriting infrastructure.
107 static LogicalResult checkAffineLoopNestMappableImpl(AffineForOp forOp,
108                                                      unsigned numDims) {
109   Region &limit = forOp.getRegion();
110   for (unsigned i = 0, e = numDims; i < e; ++i) {
111     Operation *nested = &forOp.getBody()->front();
112     if (!areValuesDefinedAbove(getLowerBoundOperands(forOp), limit) ||
113         !areValuesDefinedAbove(getUpperBoundOperands(forOp), limit))
114       return forOp.emitError(
115           "loops with bounds depending on other mapped loops "
116           "are not supported");
117 
118     // The innermost loop can have an arbitrary body, skip the perfect nesting
119     // check for it.
120     if (i == e - 1)
121       break;
122 
123     auto begin = forOp.getBody()->begin(), end = forOp.getBody()->end();
124     if (forOp.getBody()->empty() || std::next(begin, 2) != end)
125       return forOp.emitError("expected perfectly nested loops in the body");
126 
127     if (!(forOp = dyn_cast<AffineForOp>(nested)))
128       return nested->emitError("expected a nested loop");
129   }
130   return success();
131 }
132 
133 static LogicalResult checkAffineLoopNestMappable(AffineForOp forOp,
134                                                  unsigned numBlockDims,
135                                                  unsigned numThreadDims) {
136   if (numBlockDims < 1 || numThreadDims < 1) {
137     LLVM_DEBUG(llvm::dbgs() << "nothing to map");
138     return success();
139   }
140 
141   if (numBlockDims > 3) {
142     return forOp.emitError("cannot map to more than 3 block dimensions");
143   }
144   if (numThreadDims > 3) {
145     return forOp.emitError("cannot map to more than 3 thread dimensions");
146   }
147   return checkAffineLoopNestMappableImpl(forOp, numBlockDims + numThreadDims);
148 }
149 
150 namespace {
151 // Helper structure that holds common state of the loop to GPU kernel
152 // conversion.
153 struct AffineLoopToGpuConverter {
154   Optional<AffineForOp> collectBounds(AffineForOp forOp, unsigned numLoops);
155 
156   void createLaunch(AffineForOp rootForOp, AffineForOp innermostForOp,
157                     unsigned numBlockDims, unsigned numThreadDims);
158 
159   // Ranges of the loops mapped to blocks or threads.
160   SmallVector<Value, 6> dims;
161   // Lower bounds of the loops mapped to blocks or threads.
162   SmallVector<Value, 6> lbs;
163   // Induction variables of the loops mapped to blocks or threads.
164   SmallVector<Value, 6> ivs;
165   // Steps of the loops mapped to blocks or threads.
166   SmallVector<Value, 6> steps;
167 };
168 } // namespace
169 
170 // Return true if the value is obviously a constant "one".
171 static bool isConstantOne(Value value) {
172   if (auto def = value.getDefiningOp<arith::ConstantIndexOp>())
173     return def.value() == 1;
174   return false;
175 }
176 
177 // Collect ranges, bounds, steps and induction variables in preparation for
178 // mapping a loop nest of depth "numLoops" rooted at "forOp" to a GPU kernel.
179 // This may fail if the IR for computing loop bounds cannot be constructed, for
180 // example if an affine loop uses semi-affine maps. Return the last loop to be
181 // mapped on success, llvm::None on failure.
182 Optional<AffineForOp>
183 AffineLoopToGpuConverter::collectBounds(AffineForOp forOp, unsigned numLoops) {
184   OpBuilder builder(forOp.getOperation());
185   dims.reserve(numLoops);
186   lbs.reserve(numLoops);
187   ivs.reserve(numLoops);
188   steps.reserve(numLoops);
189   AffineForOp currentLoop = forOp;
190   for (unsigned i = 0; i < numLoops; ++i) {
191     Value lowerBound = getOrEmitLowerBound(currentLoop, builder);
192     Value upperBound = getOrEmitUpperBound(currentLoop, builder);
193     if (!lowerBound || !upperBound) {
194       return llvm::None;
195     }
196 
197     Value range = builder.create<arith::SubIOp>(currentLoop.getLoc(),
198                                                 upperBound, lowerBound);
199     Value step = getOrCreateStep(currentLoop, builder);
200     if (!isConstantOne(step))
201       range = builder.create<arith::DivSIOp>(currentLoop.getLoc(), range, step);
202     dims.push_back(range);
203 
204     lbs.push_back(lowerBound);
205     ivs.push_back(currentLoop.getInductionVar());
206     steps.push_back(step);
207 
208     if (i != numLoops - 1)
209       currentLoop = cast<AffineForOp>(&currentLoop.getBody()->front());
210   }
211   return currentLoop;
212 }
213 
214 // Replace the rooted at "rootForOp" with a GPU launch operation.  This expects
215 // "innermostForOp" to point to the last loop to be transformed to the kernel,
216 // and to have (numBlockDims + numThreadDims) perfectly nested loops between
217 // "rootForOp" and "innermostForOp".
218 void AffineLoopToGpuConverter::createLaunch(AffineForOp rootForOp,
219                                             AffineForOp innermostForOp,
220                                             unsigned numBlockDims,
221                                             unsigned numThreadDims) {
222   OpBuilder builder(rootForOp.getOperation());
223   // Prepare the grid and block sizes for the launch operation.  If there is
224   // no loop mapped to a specific dimension, use constant "1" as its size.
225   Value constOne =
226       (numBlockDims < 3 || numThreadDims < 3)
227           ? builder.create<arith::ConstantIndexOp>(rootForOp.getLoc(), 1)
228           : nullptr;
229   Value gridSizeX = numBlockDims > 0 ? dims[0] : constOne;
230   Value gridSizeY = numBlockDims > 1 ? dims[1] : constOne;
231   Value gridSizeZ = numBlockDims > 2 ? dims[2] : constOne;
232   Value blockSizeX = numThreadDims > 0 ? dims[numBlockDims] : constOne;
233   Value blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne;
234   Value blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne;
235 
236   // Create a launch op and move the body region of the innermost loop to the
237   // launch op.
238   auto launchOp = builder.create<gpu::LaunchOp>(
239       rootForOp.getLoc(), gridSizeX, gridSizeY, gridSizeZ, blockSizeX,
240       blockSizeY, blockSizeZ);
241 
242   // Replace the loop terminator (loops contain only a single block) with the
243   // gpu terminator and move the operations from the loop body block to the gpu
244   // launch body block.  Do not move the entire block because of the difference
245   // in block arguments.
246   Operation &terminator = innermostForOp.getBody()->back();
247   Location terminatorLoc = terminator.getLoc();
248   terminator.erase();
249   builder.setInsertionPointToEnd(innermostForOp.getBody());
250   builder.create<gpu::TerminatorOp>(terminatorLoc, llvm::None);
251   launchOp.getBody().front().getOperations().splice(
252       launchOp.getBody().front().begin(),
253       innermostForOp.getBody()->getOperations());
254 
255   // Remap the loop iterators to use block/thread identifiers instead.  Loops
256   // may iterate from LB with step S whereas GPU thread/block ids always iterate
257   // from 0 to N with step 1.  Therefore, loop induction variables are replaced
258   // with (gpu-thread/block-id * S) + LB.
259   builder.setInsertionPointToStart(&launchOp.getBody().front());
260   auto *lbArgumentIt = lbs.begin();
261   auto *stepArgumentIt = steps.begin();
262   for (const auto &en : llvm::enumerate(ivs)) {
263     Value id =
264         en.index() < numBlockDims
265             ? getDim3Value(launchOp.getBlockIds(), en.index())
266             : getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims);
267     Value step = steps[en.index()];
268     if (!isConstantOne(step))
269       id = builder.create<arith::MulIOp>(rootForOp.getLoc(), step, id);
270 
271     Value ivReplacement =
272         builder.create<arith::AddIOp>(rootForOp.getLoc(), *lbArgumentIt, id);
273     en.value().replaceAllUsesWith(ivReplacement);
274     std::advance(lbArgumentIt, 1);
275     std::advance(stepArgumentIt, 1);
276   }
277 
278   // We are done and can erase the original outermost loop.
279   rootForOp.erase();
280 }
281 
282 // Generic loop to GPU kernel conversion function.
283 static LogicalResult convertAffineLoopNestToGPULaunch(AffineForOp forOp,
284                                                       unsigned numBlockDims,
285                                                       unsigned numThreadDims) {
286   if (failed(checkAffineLoopNestMappable(forOp, numBlockDims, numThreadDims)))
287     return failure();
288 
289   AffineLoopToGpuConverter converter;
290   auto maybeInnerLoop =
291       converter.collectBounds(forOp, numBlockDims + numThreadDims);
292   if (!maybeInnerLoop)
293     return failure();
294   converter.createLaunch(forOp, *maybeInnerLoop, numBlockDims, numThreadDims);
295 
296   return success();
297 }
298 
299 LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp,
300                                                      unsigned numBlockDims,
301                                                      unsigned numThreadDims) {
302   return ::convertAffineLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
303 }
304 
305 namespace {
306 struct ParallelToGpuLaunchLowering : public OpRewritePattern<ParallelOp> {
307   using OpRewritePattern<ParallelOp>::OpRewritePattern;
308 
309   LogicalResult matchAndRewrite(ParallelOp parallelOp,
310                                 PatternRewriter &rewriter) const override;
311 };
312 } // namespace
313 
314 /// Tries to derive a static upper bound from the defining operation of
315 /// `upperBound`.
316 static Value deriveStaticUpperBound(Value upperBound,
317                                     PatternRewriter &rewriter) {
318   if (auto op = upperBound.getDefiningOp<arith::ConstantIndexOp>()) {
319     return op;
320   }
321 
322   if (auto minOp = upperBound.getDefiningOp<AffineMinOp>()) {
323     for (const AffineExpr &result : minOp.getMap().getResults()) {
324       if (auto constExpr = result.dyn_cast<AffineConstantExpr>()) {
325         return rewriter.create<arith::ConstantIndexOp>(minOp.getLoc(),
326                                                        constExpr.getValue());
327       }
328     }
329   }
330 
331   if (auto minOp = upperBound.getDefiningOp<arith::MinSIOp>()) {
332     for (Value operand : {minOp.getLhs(), minOp.getRhs()}) {
333       if (auto staticBound = deriveStaticUpperBound(operand, rewriter))
334         return staticBound;
335     }
336   }
337 
338   if (auto multiplyOp = upperBound.getDefiningOp<arith::MulIOp>()) {
339     if (auto lhs = dyn_cast_or_null<arith::ConstantIndexOp>(
340             deriveStaticUpperBound(multiplyOp.getOperand(0), rewriter)
341                 .getDefiningOp()))
342       if (auto rhs = dyn_cast_or_null<arith::ConstantIndexOp>(
343               deriveStaticUpperBound(multiplyOp.getOperand(1), rewriter)
344                   .getDefiningOp())) {
345         // Assumptions about the upper bound of minimum computations no longer
346         // work if multiplied by mixed signs, so abort in this case.
347         if ((lhs.value() < 0) != (rhs.value() < 0))
348           return {};
349 
350         return rewriter.create<arith::ConstantIndexOp>(
351             multiplyOp.getLoc(), lhs.value() * rhs.value());
352       }
353   }
354 
355   return {};
356 }
357 
358 static bool isMappedToProcessor(gpu::Processor processor) {
359   return processor != gpu::Processor::Sequential;
360 }
361 
362 static unsigned getLaunchOpArgumentNum(gpu::Processor processor) {
363   switch (processor) {
364   case gpu::Processor::BlockX:
365     return 0;
366   case gpu::Processor::BlockY:
367     return 1;
368   case gpu::Processor::BlockZ:
369     return 2;
370   case gpu::Processor::ThreadX:
371     return 3;
372   case gpu::Processor::ThreadY:
373     return 4;
374   case gpu::Processor::ThreadZ:
375     return 5;
376   default:;
377   }
378   llvm_unreachable(
379       "invalid processor type while retrieving launch op argument number");
380 }
381 
382 /// Modifies the current transformation state to capture the effect of the given
383 /// `scf.parallel` operation on index substitutions and the operations to be
384 /// inserted.
385 /// Specifically, if a dimension of a parallel loop is mapped to a hardware id,
386 /// this function will
387 /// - compute the loop index based on the hardware id and affine map from the
388 ///   mapping and update `cloningMap` to substitute all uses.
389 /// - derive a new upper bound for the hardware id and augment the provided
390 ///   `gpu.launch operation` accordingly.
391 /// - if the upper bound is imprecise, insert a conditional in the `gpu.launch`
392 ///   and update the rewriter to insert into the conditional's body.
393 /// If the dimension is mapped to sequential,
394 /// - insert a for loop into the body and update the rewriter to insert into
395 ///   the for loop's body.
396 /// - update the `cloningMap` to replace uses of the index with the index of
397 ///   the new for loop.
398 /// In either case,
399 /// - append the instructions from the loops body to worklist, in reverse order.
400 /// To note the end of the current scope in case a loop or conditional was
401 /// inserted, a sentinel (the `gpu.launch` operation) is inserted into the
402 /// worklist. This signals the processor of the worklist to pop the rewriter
403 /// one scope-level up.
404 static LogicalResult processParallelLoop(
405     ParallelOp parallelOp, gpu::LaunchOp launchOp,
406     BlockAndValueMapping &cloningMap, SmallVectorImpl<Operation *> &worklist,
407     DenseMap<gpu::Processor, Value> &bounds, PatternRewriter &rewriter) {
408   // TODO: Verify that this is a valid GPU mapping.
409   // processor ids: 0-2 block [x/y/z], 3-5 -> thread [x/y/z], 6-> sequential
410   ArrayAttr mapping =
411       parallelOp->getAttrOfType<ArrayAttr>(gpu::getMappingAttrName());
412 
413   // TODO: Support reductions.
414   if (!mapping || parallelOp.getNumResults() != 0)
415     return failure();
416 
417   Location loc = parallelOp.getLoc();
418 
419   auto launchIndependent = [&launchOp](Value val) {
420     return val.getParentRegion()->isAncestor(launchOp->getParentRegion());
421   };
422 
423   auto ensureLaunchIndependent = [&rewriter,
424                                   launchIndependent](Value val) -> Value {
425     if (launchIndependent(val))
426       return val;
427     if (auto constOp = val.getDefiningOp<arith::ConstantOp>())
428       return rewriter.create<arith::ConstantOp>(constOp.getLoc(),
429                                                 constOp.getValue());
430     return {};
431   };
432 
433   for (auto config : llvm::zip(
434            mapping, parallelOp.getInductionVars(), parallelOp.getLowerBound(),
435            parallelOp.getUpperBound(), parallelOp.getStep())) {
436     Attribute mappingAttribute;
437     Value iv, lowerBound, upperBound, step;
438     std::tie(mappingAttribute, iv, lowerBound, upperBound, step) = config;
439     auto annotation =
440         mappingAttribute.dyn_cast<gpu::ParallelLoopDimMappingAttr>();
441     if (!annotation)
442       return parallelOp.emitOpError()
443              << "expected mapping attribute for lowering to GPU";
444     Value newIndex;
445     gpu::Processor processor = annotation.getProcessor();
446 
447     if (isMappedToProcessor(processor)) {
448       // Use the corresponding thread/grid index as replacement for the loop iv.
449       Value operand =
450           launchOp.getBody().getArgument(getLaunchOpArgumentNum(processor));
451       // Take the indexmap and add the lower bound and step computations in.
452       // This computes operand * step + lowerBound.
453       // Use an affine map here so that it composes nicely with the provided
454       // annotation.
455       AffineMap lowerAndStep = AffineMap::get(
456           1, 2,
457           rewriter.getAffineDimExpr(0) * rewriter.getAffineSymbolExpr(0) +
458               rewriter.getAffineSymbolExpr(1));
459       newIndex = rewriter.create<AffineApplyOp>(
460           loc, annotation.getMap().compose(lowerAndStep),
461           ValueRange{operand, step, lowerBound});
462       // If there was also a bound, insert that, too.
463       // TODO: Check that we do not assign bounds twice.
464       if (annotation.getBound()) {
465         // We pass as the single operand to the bound-map the number of
466         // iterations, which is (upperBound - lowerBound) ceilDiv step. To
467         // support inner loops with dynamic upper bounds (as generated by e.g.
468         // tiling), try to derive a max for the bounds. If the used bound for
469         // the hardware id is imprecise, wrap the contained code into a
470         // conditional. If the lower-bound is constant or defined before the
471         // launch, we can use it in the launch bounds. Otherwise fail.
472         if (!launchIndependent(lowerBound) &&
473             !isa_and_nonnull<arith::ConstantOp>(lowerBound.getDefiningOp()))
474           return failure();
475         // The step must also be constant or defined outside of the loop nest.
476         if (!launchIndependent(step) &&
477             !isa_and_nonnull<arith::ConstantOp>(step.getDefiningOp()))
478           return failure();
479         // If the upper-bound is constant or defined before the launch, we can
480         // use it in the launch bounds directly. Otherwise try derive a bound.
481         bool boundIsPrecise =
482             launchIndependent(upperBound) ||
483             isa_and_nonnull<arith::ConstantOp>(upperBound.getDefiningOp());
484         {
485           PatternRewriter::InsertionGuard guard(rewriter);
486           rewriter.setInsertionPoint(launchOp);
487           if (!boundIsPrecise) {
488             upperBound = deriveStaticUpperBound(upperBound, rewriter);
489             if (!upperBound) {
490               return rewriter.notifyMatchFailure(
491                   parallelOp,
492                   "cannot derive loop-invariant upper bound for number of"
493                   "iterations");
494             }
495           }
496           // Compute the number of iterations needed. We compute this as an
497           // affine expression ceilDiv (upperBound - lowerBound) step. We use
498           // affine.apply here so that it composes nicely with the provided map.
499           AffineMap stepMap = AffineMap::get(
500               1, 2,
501               ((rewriter.getAffineDimExpr(0) - rewriter.getAffineSymbolExpr(0))
502                    .ceilDiv(rewriter.getAffineSymbolExpr(1))));
503           Value launchBound = rewriter.create<AffineApplyOp>(
504               loc, annotation.getBound().compose(stepMap),
505               ValueRange{
506                   ensureLaunchIndependent(
507                       cloningMap.lookupOrDefault(upperBound)),
508                   ensureLaunchIndependent(
509                       cloningMap.lookupOrDefault(lowerBound)),
510                   ensureLaunchIndependent(cloningMap.lookupOrDefault(step))});
511           // todo(herhut,ravishankarm): Update the behavior of setMappingAttr
512           // when this condition is relaxed.
513           if (bounds.find(processor) != bounds.end()) {
514             return rewriter.notifyMatchFailure(
515                 parallelOp, "cannot redefine the bound for processor " +
516                                 Twine(static_cast<int64_t>(processor)));
517           }
518           bounds[processor] = launchBound;
519         }
520         if (!boundIsPrecise) {
521           // We are using an approximation, create a surrounding conditional.
522           Value originalBound = std::get<3>(config);
523           arith::CmpIOp pred = rewriter.create<arith::CmpIOp>(
524               loc, arith::CmpIPredicate::slt, newIndex,
525               cloningMap.lookupOrDefault(originalBound));
526           scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, pred, false);
527           rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
528           // Put a sentinel into the worklist so we know when to pop out of the
529           // if body again. We use the launchOp here, as that cannot be part of
530           // the bodies instruction.
531           worklist.push_back(launchOp.getOperation());
532         }
533       }
534     } else {
535       // Create a sequential for loop.
536       auto loopOp = rewriter.create<scf::ForOp>(
537           loc, cloningMap.lookupOrDefault(lowerBound),
538           cloningMap.lookupOrDefault(upperBound),
539           cloningMap.lookupOrDefault(step));
540       newIndex = loopOp.getInductionVar();
541       rewriter.setInsertionPointToStart(loopOp.getBody());
542       // Put a sentinel into the worklist so we know when to pop out of the loop
543       // body again. We use the launchOp here, as that cannot be part of the
544       // bodies instruction.
545       worklist.push_back(launchOp.getOperation());
546     }
547     cloningMap.map(iv, newIndex);
548   }
549 
550   // Propagate custom user defined optional attributes, that can be used at
551   // later stage, such as extension data for GPU kernel dispatch
552   for (const auto &namedAttr : parallelOp->getAttrs()) {
553     if (namedAttr.getName() == gpu::getMappingAttrName() ||
554         namedAttr.getName() == ParallelOp::getOperandSegmentSizeAttr())
555       continue;
556     launchOp->setAttr(namedAttr.getName(), namedAttr.getValue());
557   }
558 
559   Block *body = parallelOp.getBody();
560   worklist.reserve(worklist.size() + body->getOperations().size());
561   for (Operation &op : llvm::reverse(body->without_terminator()))
562     worklist.push_back(&op);
563   return success();
564 }
565 
566 /// Lower a `scf.parallel` operation into a corresponding `gpu.launch`
567 /// operation.
568 ///
569 /// This essentially transforms a loop nest into a corresponding SIMT function.
570 /// The conversion is driven by mapping annotations on the `scf.parallel`
571 /// operations. The mapping is provided via a `DictionaryAttribute` named
572 /// `mapping`, which has three entries:
573 ///  - processor: the hardware id to map to. 0-2 are block dimensions, 3-5 are
574 ///               thread dimensions and 6 is sequential.
575 ///  - map : An affine map that is used to pre-process hardware ids before
576 ///          substitution.
577 ///  - bound : An affine map that is used to compute the bound of the hardware
578 ///            id based on an upper bound of the number of iterations.
579 /// If the `scf.parallel` contains nested `scf.parallel` operations, those
580 /// need to be annotated, as well. Structurally, the transformation works by
581 /// splicing all operations from nested `scf.parallel` operations into a single
582 /// sequence. Indices mapped to hardware ids are substituted with those ids,
583 /// wheras sequential mappings result in a sequential for-loop. To have more
584 /// flexibility when mapping code to hardware ids, the transform supports two
585 /// affine maps. The first `map` is used to compute the actual index for
586 /// substitution from the hardware id. The second `bound` is used to compute the
587 /// launch dimension for the hardware id from the number of iterations the
588 /// mapped loop is performing. Note that the number of iterations might be
589 /// imprecise if the corresponding loop-bounds are loop-dependent. In such case,
590 /// the hardware id might iterate over additional indices. The transformation
591 /// caters for this by predicating the created sequence of instructions on
592 /// the actual loop bound. This only works if an static upper bound for the
593 /// dynamic loop bound can be derived, currently via analyzing `affine.min`
594 /// operations.
595 LogicalResult
596 ParallelToGpuLaunchLowering::matchAndRewrite(ParallelOp parallelOp,
597                                              PatternRewriter &rewriter) const {
598   // Mark the operation as visited for recursive legality check.
599   parallelOp->setAttr(kVisitedAttrName, rewriter.getUnitAttr());
600 
601   // We can only transform starting at the outer-most loop. Launches inside of
602   // parallel loops are not supported.
603   if (auto parentLoop = parallelOp->getParentOfType<ParallelOp>())
604     return failure();
605   // Create a launch operation. We start with bound one for all grid/block
606   // sizes. Those will be refined later as we discover them from mappings.
607   Location loc = parallelOp.getLoc();
608   Value constantOne =
609       rewriter.create<arith::ConstantIndexOp>(parallelOp.getLoc(), 1);
610   gpu::LaunchOp launchOp = rewriter.create<gpu::LaunchOp>(
611       parallelOp.getLoc(), constantOne, constantOne, constantOne, constantOne,
612       constantOne, constantOne);
613   rewriter.setInsertionPointToEnd(&launchOp.getBody().front());
614   rewriter.create<gpu::TerminatorOp>(loc);
615   rewriter.setInsertionPointToStart(&launchOp.getBody().front());
616 
617   BlockAndValueMapping cloningMap;
618   llvm::DenseMap<gpu::Processor, Value> launchBounds;
619   SmallVector<Operation *, 16> worklist;
620   if (failed(processParallelLoop(parallelOp, launchOp, cloningMap, worklist,
621                                  launchBounds, rewriter)))
622     return failure();
623 
624   // Whether we have seen any side-effects. Reset when leaving an inner scope.
625   bool seenSideeffects = false;
626   // Whether we have left a nesting scope (and hence are no longer innermost).
627   bool leftNestingScope = false;
628   while (!worklist.empty()) {
629     Operation *op = worklist.pop_back_val();
630     // Now walk over the body and clone it.
631     // TODO: This is only correct if there either is no further scf.parallel
632     //       nested or this code is side-effect free. Otherwise we might need
633     //       predication. We are overly conservative for now and only allow
634     //       side-effects in the innermost scope.
635     if (auto nestedParallel = dyn_cast<ParallelOp>(op)) {
636       // Before entering a nested scope, make sure there have been no
637       // sideeffects until now.
638       if (seenSideeffects)
639         return failure();
640       // A nested scf.parallel needs insertion of code to compute indices.
641       // Insert that now. This will also update the worklist with the loops
642       // body.
643       if (failed(processParallelLoop(nestedParallel, launchOp, cloningMap,
644                                      worklist, launchBounds, rewriter)))
645         return failure();
646     } else if (op == launchOp.getOperation()) {
647       // Found our sentinel value. We have finished the operations from one
648       // nesting level, pop one level back up.
649       auto *parent = rewriter.getInsertionPoint()->getParentOp();
650       rewriter.setInsertionPointAfter(parent);
651       leftNestingScope = true;
652       seenSideeffects = false;
653     } else {
654       // Otherwise we copy it over.
655       Operation *clone = rewriter.clone(*op, cloningMap);
656       cloningMap.map(op->getResults(), clone->getResults());
657       // Check for side effects.
658       // TODO: Handle region side effects properly.
659       seenSideeffects |= !MemoryEffectOpInterface::hasNoEffect(clone) ||
660                          clone->getNumRegions() != 0;
661       // If we are no longer in the innermost scope, sideeffects are disallowed.
662       if (seenSideeffects && leftNestingScope)
663         return failure();
664     }
665   }
666 
667   // Now that we succeeded creating the launch operation, also update the
668   // bounds.
669   for (auto bound : launchBounds)
670     launchOp.setOperand(getLaunchOpArgumentNum(std::get<0>(bound)),
671                         std::get<1>(bound));
672 
673   rewriter.eraseOp(parallelOp);
674   return success();
675 }
676 
677 void mlir::populateParallelLoopToGPUPatterns(RewritePatternSet &patterns) {
678   patterns.add<ParallelToGpuLaunchLowering>(patterns.getContext());
679 }
680 
681 void mlir::configureParallelLoopToGPULegality(ConversionTarget &target) {
682   target.addLegalDialect<memref::MemRefDialect>();
683   target.addDynamicallyLegalOp<scf::ParallelOp>([](scf::ParallelOp parallelOp) {
684     return !parallelOp->hasAttr(gpu::getMappingAttrName()) ||
685            parallelOp->hasAttr(kVisitedAttrName);
686   });
687 }
688 
689 void mlir::finalizeParallelLoopToGPUConversion(Operation *op) {
690   op->walk([](scf::ParallelOp parallelOp) {
691     parallelOp->removeAttr(kVisitedAttrName);
692   });
693 }
694