1 //===- SCFToGPU.cpp - Convert an affine loop nest to a GPU kernel -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements a straightforward conversion of an loop nest into a GPU 10 // kernel. The caller is expected to guarantee that the conversion is correct 11 // or to further transform the kernel to ensure correctness. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "mlir/Conversion/SCFToGPU/SCFToGPU.h" 16 17 #include "mlir/Conversion/AffineToStandard/AffineToStandard.h" 18 #include "mlir/Dialect/Affine/IR/AffineOps.h" 19 #include "mlir/Dialect/GPU/GPUDialect.h" 20 #include "mlir/Dialect/GPU/ParallelLoopMapper.h" 21 #include "mlir/Dialect/SCF/SCF.h" 22 #include "mlir/Dialect/StandardOps/IR/Ops.h" 23 #include "mlir/IR/AffineExpr.h" 24 #include "mlir/IR/BlockAndValueMapping.h" 25 #include "mlir/IR/Builders.h" 26 #include "mlir/Pass/Pass.h" 27 #include "mlir/Transforms/DialectConversion.h" 28 #include "mlir/Transforms/LoopUtils.h" 29 #include "mlir/Transforms/Passes.h" 30 #include "mlir/Transforms/RegionUtils.h" 31 #include "llvm/ADT/Sequence.h" 32 #include "llvm/Support/Debug.h" 33 34 #define DEBUG_TYPE "loops-to-gpu" 35 36 using namespace mlir; 37 using namespace mlir::scf; 38 39 // Extract an indexed value from KernelDim3. 40 static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) { 41 switch (pos) { 42 case 0: 43 return dim3.x; 44 case 1: 45 return dim3.y; 46 case 2: 47 return dim3.z; 48 default: 49 llvm_unreachable("dim3 position out of bounds"); 50 } 51 return nullptr; 52 } 53 54 // Get the lower bound-related operands of a loop operation. 55 static Operation::operand_range getLowerBoundOperands(AffineForOp forOp) { 56 return forOp.getLowerBoundOperands(); 57 } 58 59 // Get the upper bound-related operands of a loop operation. 60 static Operation::operand_range getUpperBoundOperands(AffineForOp forOp) { 61 return forOp.getUpperBoundOperands(); 62 } 63 64 // Get a Value that corresponds to the loop step. If the step is an attribute, 65 // materialize a corresponding constant using builder. 66 static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder) { 67 return builder.create<ConstantIndexOp>(forOp.getLoc(), forOp.getStep()); 68 } 69 70 // Get a Value for the loop lower bound. If the value requires computation, 71 // materialize the instructions using builder. 72 static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) { 73 return lowerAffineLowerBound(forOp, builder); 74 } 75 76 // Get a Value for the loop upper bound. If the value requires computation, 77 // materialize the instructions using builder. 78 static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) { 79 return lowerAffineUpperBound(forOp, builder); 80 } 81 82 // Check the structure of the loop nest: 83 // - there are enough loops to map to numDims; 84 // - the loops are perfectly nested; 85 // - the loop bounds can be computed above the outermost loop. 86 // This roughly corresponds to the "matcher" part of the pattern-based 87 // rewriting infrastructure. 88 static LogicalResult checkAffineLoopNestMappableImpl(AffineForOp forOp, 89 unsigned numDims) { 90 Region &limit = forOp.region(); 91 for (unsigned i = 0, e = numDims; i < e; ++i) { 92 Operation *nested = &forOp.getBody()->front(); 93 if (!areValuesDefinedAbove(getLowerBoundOperands(forOp), limit) || 94 !areValuesDefinedAbove(getUpperBoundOperands(forOp), limit)) 95 return forOp.emitError( 96 "loops with bounds depending on other mapped loops " 97 "are not supported"); 98 99 // The innermost loop can have an arbitrary body, skip the perfect nesting 100 // check for it. 101 if (i == e - 1) 102 break; 103 104 auto begin = forOp.getBody()->begin(), end = forOp.getBody()->end(); 105 if (forOp.getBody()->empty() || std::next(begin, 2) != end) 106 return forOp.emitError("expected perfectly nested loops in the body"); 107 108 if (!(forOp = dyn_cast<AffineForOp>(nested))) 109 return nested->emitError("expected a nested loop"); 110 } 111 return success(); 112 } 113 114 static LogicalResult checkAffineLoopNestMappable(AffineForOp forOp, 115 unsigned numBlockDims, 116 unsigned numThreadDims) { 117 if (numBlockDims < 1 || numThreadDims < 1) { 118 LLVM_DEBUG(llvm::dbgs() << "nothing to map"); 119 return success(); 120 } 121 122 if (numBlockDims > 3) { 123 return forOp.emitError("cannot map to more than 3 block dimensions"); 124 } 125 if (numThreadDims > 3) { 126 return forOp.emitError("cannot map to more than 3 thread dimensions"); 127 } 128 return checkAffineLoopNestMappableImpl(forOp, numBlockDims + numThreadDims); 129 } 130 131 namespace { 132 // Helper structure that holds common state of the loop to GPU kernel 133 // conversion. 134 struct AffineLoopToGpuConverter { 135 Optional<AffineForOp> collectBounds(AffineForOp forOp, unsigned numLoops); 136 137 void createLaunch(AffineForOp rootForOp, AffineForOp innermostForOp, 138 unsigned numBlockDims, unsigned numThreadDims); 139 140 // Ranges of the loops mapped to blocks or threads. 141 SmallVector<Value, 6> dims; 142 // Lower bounds of the loops mapped to blocks or threads. 143 SmallVector<Value, 6> lbs; 144 // Induction variables of the loops mapped to blocks or threads. 145 SmallVector<Value, 6> ivs; 146 // Steps of the loops mapped to blocks or threads. 147 SmallVector<Value, 6> steps; 148 }; 149 } // namespace 150 151 // Return true if the value is obviously a constant "one". 152 static bool isConstantOne(Value value) { 153 if (auto def = value.getDefiningOp<ConstantIndexOp>()) 154 return def.getValue() == 1; 155 return false; 156 } 157 158 // Collect ranges, bounds, steps and induction variables in preparation for 159 // mapping a loop nest of depth "numLoops" rooted at "forOp" to a GPU kernel. 160 // This may fail if the IR for computing loop bounds cannot be constructed, for 161 // example if an affine loop uses semi-affine maps. Return the last loop to be 162 // mapped on success, llvm::None on failure. 163 Optional<AffineForOp> 164 AffineLoopToGpuConverter::collectBounds(AffineForOp forOp, unsigned numLoops) { 165 OpBuilder builder(forOp.getOperation()); 166 dims.reserve(numLoops); 167 lbs.reserve(numLoops); 168 ivs.reserve(numLoops); 169 steps.reserve(numLoops); 170 AffineForOp currentLoop = forOp; 171 for (unsigned i = 0; i < numLoops; ++i) { 172 Value lowerBound = getOrEmitLowerBound(currentLoop, builder); 173 Value upperBound = getOrEmitUpperBound(currentLoop, builder); 174 if (!lowerBound || !upperBound) { 175 return llvm::None; 176 } 177 178 Value range = 179 builder.create<SubIOp>(currentLoop.getLoc(), upperBound, lowerBound); 180 Value step = getOrCreateStep(currentLoop, builder); 181 if (!isConstantOne(step)) 182 range = builder.create<SignedDivIOp>(currentLoop.getLoc(), range, step); 183 dims.push_back(range); 184 185 lbs.push_back(lowerBound); 186 ivs.push_back(currentLoop.getInductionVar()); 187 steps.push_back(step); 188 189 if (i != numLoops - 1) 190 currentLoop = cast<AffineForOp>(¤tLoop.getBody()->front()); 191 } 192 return currentLoop; 193 } 194 195 // Replace the rooted at "rootForOp" with a GPU launch operation. This expects 196 // "innermostForOp" to point to the last loop to be transformed to the kernel, 197 // and to have (numBlockDims + numThreadDims) perfectly nested loops between 198 // "rootForOp" and "innermostForOp". 199 void AffineLoopToGpuConverter::createLaunch(AffineForOp rootForOp, 200 AffineForOp innermostForOp, 201 unsigned numBlockDims, 202 unsigned numThreadDims) { 203 OpBuilder builder(rootForOp.getOperation()); 204 // Prepare the grid and block sizes for the launch operation. If there is 205 // no loop mapped to a specific dimension, use constant "1" as its size. 206 Value constOne = (numBlockDims < 3 || numThreadDims < 3) 207 ? builder.create<ConstantIndexOp>(rootForOp.getLoc(), 1) 208 : nullptr; 209 Value gridSizeX = numBlockDims > 0 ? dims[0] : constOne; 210 Value gridSizeY = numBlockDims > 1 ? dims[1] : constOne; 211 Value gridSizeZ = numBlockDims > 2 ? dims[2] : constOne; 212 Value blockSizeX = numThreadDims > 0 ? dims[numBlockDims] : constOne; 213 Value blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne; 214 Value blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne; 215 216 // Create a launch op and move the body region of the innermost loop to the 217 // launch op. 218 auto launchOp = builder.create<gpu::LaunchOp>( 219 rootForOp.getLoc(), gridSizeX, gridSizeY, gridSizeZ, blockSizeX, 220 blockSizeY, blockSizeZ); 221 222 // Replace the loop terminator (loops contain only a single block) with the 223 // gpu terminator and move the operations from the loop body block to the gpu 224 // launch body block. Do not move the entire block because of the difference 225 // in block arguments. 226 Operation &terminator = innermostForOp.getBody()->back(); 227 Location terminatorLoc = terminator.getLoc(); 228 terminator.erase(); 229 builder.setInsertionPointToEnd(innermostForOp.getBody()); 230 builder.create<gpu::TerminatorOp>(terminatorLoc, llvm::None); 231 launchOp.body().front().getOperations().splice( 232 launchOp.body().front().begin(), 233 innermostForOp.getBody()->getOperations()); 234 235 // Remap the loop iterators to use block/thread identifiers instead. Loops 236 // may iterate from LB with step S whereas GPU thread/block ids always iterate 237 // from 0 to N with step 1. Therefore, loop induction variables are replaced 238 // with (gpu-thread/block-id * S) + LB. 239 builder.setInsertionPointToStart(&launchOp.body().front()); 240 auto lbArgumentIt = lbs.begin(); 241 auto stepArgumentIt = steps.begin(); 242 for (auto en : llvm::enumerate(ivs)) { 243 Value id = 244 en.index() < numBlockDims 245 ? getDim3Value(launchOp.getBlockIds(), en.index()) 246 : getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims); 247 Value step = steps[en.index()]; 248 if (!isConstantOne(step)) 249 id = builder.create<MulIOp>(rootForOp.getLoc(), step, id); 250 251 Value ivReplacement = 252 builder.create<AddIOp>(rootForOp.getLoc(), *lbArgumentIt, id); 253 en.value().replaceAllUsesWith(ivReplacement); 254 std::advance(lbArgumentIt, 1); 255 std::advance(stepArgumentIt, 1); 256 } 257 258 // We are done and can erase the original outermost loop. 259 rootForOp.erase(); 260 } 261 262 // Generic loop to GPU kernel conversion function. 263 static LogicalResult convertAffineLoopNestToGPULaunch(AffineForOp forOp, 264 unsigned numBlockDims, 265 unsigned numThreadDims) { 266 if (failed(checkAffineLoopNestMappable(forOp, numBlockDims, numThreadDims))) 267 return failure(); 268 269 AffineLoopToGpuConverter converter; 270 auto maybeInnerLoop = 271 converter.collectBounds(forOp, numBlockDims + numThreadDims); 272 if (!maybeInnerLoop) 273 return failure(); 274 converter.createLaunch(forOp, *maybeInnerLoop, numBlockDims, numThreadDims); 275 276 return success(); 277 } 278 279 LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp, 280 unsigned numBlockDims, 281 unsigned numThreadDims) { 282 return ::convertAffineLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims); 283 } 284 285 namespace { 286 struct ParallelToGpuLaunchLowering : public OpRewritePattern<ParallelOp> { 287 using OpRewritePattern<ParallelOp>::OpRewritePattern; 288 289 LogicalResult matchAndRewrite(ParallelOp parallelOp, 290 PatternRewriter &rewriter) const override; 291 }; 292 } // namespace 293 294 /// Tries to derive a static upper bound from the defining operation of 295 /// `upperBound`. 296 static Value deriveStaticUpperBound(Value upperBound, 297 PatternRewriter &rewriter) { 298 if (auto op = upperBound.getDefiningOp<ConstantIndexOp>()) { 299 return op; 300 } 301 302 if (auto minOp = upperBound.getDefiningOp<AffineMinOp>()) { 303 for (const AffineExpr &result : minOp.map().getResults()) { 304 if (auto constExpr = result.dyn_cast<AffineConstantExpr>()) { 305 return rewriter.create<ConstantIndexOp>(minOp.getLoc(), 306 constExpr.getValue()); 307 } 308 } 309 } 310 311 if (auto multiplyOp = upperBound.getDefiningOp<MulIOp>()) { 312 if (auto lhs = dyn_cast_or_null<ConstantIndexOp>( 313 deriveStaticUpperBound(multiplyOp.getOperand(0), rewriter) 314 .getDefiningOp())) 315 if (auto rhs = dyn_cast_or_null<ConstantIndexOp>( 316 deriveStaticUpperBound(multiplyOp.getOperand(1), rewriter) 317 .getDefiningOp())) { 318 // Assumptions about the upper bound of minimum computations no longer 319 // work if multiplied by a negative value, so abort in this case. 320 if (lhs.getValue() < 0 || rhs.getValue() < 0) 321 return {}; 322 323 return rewriter.create<ConstantIndexOp>( 324 multiplyOp.getLoc(), lhs.getValue() * rhs.getValue()); 325 } 326 } 327 328 return {}; 329 } 330 331 static bool isMappedToProcessor(gpu::Processor processor) { 332 return processor != gpu::Processor::Sequential; 333 } 334 335 static unsigned getLaunchOpArgumentNum(gpu::Processor processor) { 336 switch (processor) { 337 case gpu::Processor::BlockX: 338 return 0; 339 case gpu::Processor::BlockY: 340 return 1; 341 case gpu::Processor::BlockZ: 342 return 2; 343 case gpu::Processor::ThreadX: 344 return 3; 345 case gpu::Processor::ThreadY: 346 return 4; 347 case gpu::Processor::ThreadZ: 348 return 5; 349 default:; 350 } 351 llvm_unreachable( 352 "invalid processor type while retrieving launch op argument number"); 353 } 354 355 /// Modifies the current transformation state to capture the effect of the given 356 /// `scf.parallel` operation on index substitutions and the operations to be 357 /// inserted. 358 /// Specifically, if a dimension of a parallel loop is mapped to a hardware id, 359 /// this function will 360 /// - compute the loop index based on the hardware id and affine map from the 361 /// mapping and update `cloningMap` to substitute all uses. 362 /// - derive a new upper bound for the hardware id and augment the provided 363 /// `gpu.launch operation` accordingly. 364 /// - if the upper bound is imprecise, insert a conditional in the `gpu.launch` 365 /// and update the rewriter to insert into the conditional's body. 366 /// If the dimension is mapped to sequential, 367 /// - insert a for loop into the body and update the rewriter to insert into 368 /// the for loop's body. 369 /// - update the `cloningMap` to replace uses of the index with the index of 370 /// the new for loop. 371 /// In either case, 372 /// - append the instructions from the loops body to worklist, in reverse order. 373 /// To note the end of the current scope in case a loop or conditional was 374 /// inserted, a sentinel (the `gpu.launch` operation) is inserted into the 375 /// worklist. This signals the processor of the worklist to pop the rewriter 376 /// one scope-level up. 377 static LogicalResult processParallelLoop( 378 ParallelOp parallelOp, gpu::LaunchOp launchOp, 379 BlockAndValueMapping &cloningMap, SmallVectorImpl<Operation *> &worklist, 380 DenseMap<gpu::Processor, Value> &bounds, PatternRewriter &rewriter) { 381 // TODO: Verify that this is a valid GPU mapping. 382 // processor ids: 0-2 block [x/y/z], 3-5 -> thread [x/y/z], 6-> sequential 383 ArrayAttr mapping = 384 parallelOp->getAttrOfType<ArrayAttr>(gpu::getMappingAttrName()); 385 386 // TODO: Support reductions. 387 if (!mapping || parallelOp.getNumResults() != 0) 388 return failure(); 389 390 Location loc = parallelOp.getLoc(); 391 392 auto launchIndependent = [&launchOp](Value val) { 393 return val.getParentRegion()->isAncestor(launchOp->getParentRegion()); 394 }; 395 396 auto ensureLaunchIndependent = [&rewriter, 397 launchIndependent](Value val) -> Value { 398 if (launchIndependent(val)) 399 return val; 400 if (ConstantOp constOp = val.getDefiningOp<ConstantOp>()) 401 return rewriter.create<ConstantOp>(constOp.getLoc(), constOp.getValue()); 402 return {}; 403 }; 404 405 for (auto config : llvm::zip(mapping, parallelOp.getInductionVars(), 406 parallelOp.lowerBound(), parallelOp.upperBound(), 407 parallelOp.step())) { 408 Attribute mappingAttribute; 409 Value iv, lowerBound, upperBound, step; 410 std::tie(mappingAttribute, iv, lowerBound, upperBound, step) = config; 411 auto annotation = mappingAttribute.dyn_cast<gpu::ParallelLoopDimMapping>(); 412 if (!annotation) 413 return parallelOp.emitOpError() 414 << "expected mapping attribute for lowering to GPU"; 415 Value newIndex; 416 gpu::Processor processor = gpu::getProcessor(annotation); 417 418 if (isMappedToProcessor(processor)) { 419 // Use the corresponding thread/grid index as replacement for the loop iv. 420 Value operand = 421 launchOp.body().getArgument(getLaunchOpArgumentNum(processor)); 422 // Take the indexmap and add the lower bound and step computations in. 423 // This computes operand * step + lowerBound. 424 // Use an affine map here so that it composes nicely with the provided 425 // annotation. 426 AffineMap lowerAndStep = AffineMap::get( 427 1, 2, 428 rewriter.getAffineDimExpr(0) * rewriter.getAffineSymbolExpr(0) + 429 rewriter.getAffineSymbolExpr(1)); 430 newIndex = rewriter.create<AffineApplyOp>( 431 loc, annotation.map().getValue().compose(lowerAndStep), 432 ValueRange{operand, step, lowerBound}); 433 // If there was also a bound, insert that, too. 434 // TODO: Check that we do not assign bounds twice. 435 if (annotation.bound().getValue()) { 436 // We pass as the single operand to the bound-map the number of 437 // iterations, which is (upperBound - lowerBound) ceilDiv step. To 438 // support inner loops with dynamic upper bounds (as generated by e.g. 439 // tiling), try to derive a max for the bounds. If the used bound for 440 // the hardware id is imprecise, wrap the contained code into a 441 // conditional. If the lower-bound is constant or defined before the 442 // launch, we can use it in the launch bounds. Otherwise fail. 443 if (!launchIndependent(lowerBound) && 444 !isa_and_nonnull<ConstantOp>(lowerBound.getDefiningOp())) 445 return failure(); 446 // The step must also be constant or defined outside of the loop nest. 447 if (!launchIndependent(step) && 448 !isa_and_nonnull<ConstantOp>(step.getDefiningOp())) 449 return failure(); 450 // If the upper-bound is constant or defined before the launch, we can 451 // use it in the launch bounds directly. Otherwise try derive a bound. 452 bool boundIsPrecise = 453 launchIndependent(upperBound) || 454 isa_and_nonnull<ConstantOp>(upperBound.getDefiningOp()); 455 { 456 PatternRewriter::InsertionGuard guard(rewriter); 457 rewriter.setInsertionPoint(launchOp); 458 if (!boundIsPrecise) { 459 upperBound = deriveStaticUpperBound(upperBound, rewriter); 460 if (!upperBound) { 461 return rewriter.notifyMatchFailure( 462 parallelOp, 463 "cannot derive loop-invariant upper bound for number of" 464 "iterations"); 465 } 466 } 467 // Compute the number of iterations needed. We compute this as an 468 // affine expression ceilDiv (upperBound - lowerBound) step. We use 469 // affine.apply here so that it composes nicely with the provided map. 470 AffineMap stepMap = AffineMap::get( 471 1, 2, 472 ((rewriter.getAffineDimExpr(0) - rewriter.getAffineSymbolExpr(0)) 473 .ceilDiv(rewriter.getAffineSymbolExpr(1)))); 474 Value launchBound = rewriter.create<AffineApplyOp>( 475 loc, annotation.bound().getValue().compose(stepMap), 476 ValueRange{ 477 ensureLaunchIndependent( 478 cloningMap.lookupOrDefault(upperBound)), 479 ensureLaunchIndependent( 480 cloningMap.lookupOrDefault(lowerBound)), 481 ensureLaunchIndependent(cloningMap.lookupOrDefault(step))}); 482 // todo(herhut,ravishankarm): Update the behavior of setMappingAttr 483 // when this condition is relaxed. 484 if (bounds.find(processor) != bounds.end()) { 485 return rewriter.notifyMatchFailure( 486 parallelOp, "cannot redefine the bound for processor " + 487 Twine(static_cast<int64_t>(processor))); 488 } 489 bounds[processor] = launchBound; 490 } 491 if (!boundIsPrecise) { 492 // We are using an approximation, create a surrounding conditional. 493 Value originalBound = std::get<3>(config); 494 CmpIOp pred = rewriter.create<CmpIOp>( 495 loc, CmpIPredicate::slt, newIndex, 496 cloningMap.lookupOrDefault(originalBound)); 497 scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, pred, false); 498 rewriter.setInsertionPointToStart(&ifOp.thenRegion().front()); 499 // Put a sentinel into the worklist so we know when to pop out of the 500 // if body again. We use the launchOp here, as that cannot be part of 501 // the bodies instruction. 502 worklist.push_back(launchOp.getOperation()); 503 } 504 } 505 } else { 506 // Create a sequential for loop. 507 auto loopOp = rewriter.create<scf::ForOp>( 508 loc, cloningMap.lookupOrDefault(lowerBound), 509 cloningMap.lookupOrDefault(upperBound), 510 cloningMap.lookupOrDefault(step)); 511 newIndex = loopOp.getInductionVar(); 512 rewriter.setInsertionPointToStart(loopOp.getBody()); 513 // Put a sentinel into the worklist so we know when to pop out of the loop 514 // body again. We use the launchOp here, as that cannot be part of the 515 // bodies instruction. 516 worklist.push_back(launchOp.getOperation()); 517 } 518 cloningMap.map(iv, newIndex); 519 } 520 521 // Propagate custom user defined optional attributes, that can be used at 522 // later stage, such as extension data for GPU kernel dispatch 523 for (const auto &namedAttr : parallelOp->getAttrs()) { 524 if (namedAttr.first == gpu::getMappingAttrName() || 525 namedAttr.first == ParallelOp::getOperandSegmentSizeAttr()) 526 continue; 527 launchOp->setAttr(namedAttr.first, namedAttr.second); 528 } 529 530 Block *body = parallelOp.getBody(); 531 worklist.reserve(worklist.size() + body->getOperations().size()); 532 for (Operation &op : llvm::reverse(body->without_terminator())) 533 worklist.push_back(&op); 534 return success(); 535 } 536 537 /// Lower a `scf.parallel` operation into a corresponding `gpu.launch` 538 /// operation. 539 /// 540 /// This essentially transforms a loop nest into a corresponding SIMT function. 541 /// The conversion is driven by mapping annotations on the `scf.parallel` 542 /// operations. The mapping is provided via a `DictionaryAttribute` named 543 /// `mapping`, which has three entries: 544 /// - processor: the hardware id to map to. 0-2 are block dimensions, 3-5 are 545 /// thread dimensions and 6 is sequential. 546 /// - map : An affine map that is used to pre-process hardware ids before 547 /// substitution. 548 /// - bound : An affine map that is used to compute the bound of the hardware 549 /// id based on an upper bound of the number of iterations. 550 /// If the `scf.parallel` contains nested `scf.parallel` operations, those 551 /// need to be annotated, as well. Structurally, the transformation works by 552 /// splicing all operations from nested `scf.parallel` operations into a single 553 /// sequence. Indices mapped to hardware ids are substituted with those ids, 554 /// wheras sequential mappings result in a sequential for-loop. To have more 555 /// flexibility when mapping code to hardware ids, the transform supports two 556 /// affine maps. The first `map` is used to compute the actual index for 557 /// substitution from the hardware id. The second `bound` is used to compute the 558 /// launch dimension for the hardware id from the number of iterations the 559 /// mapped loop is performing. Note that the number of iterations might be 560 /// imprecise if the corresponding loop-bounds are loop-dependent. In such case, 561 /// the hardware id might iterate over additional indices. The transformation 562 /// caters for this by predicating the created sequence of instructions on 563 /// the actual loop bound. This only works if an static upper bound for the 564 /// dynamic loop bound can be derived, currently via analyzing `affine.min` 565 /// operations. 566 LogicalResult 567 ParallelToGpuLaunchLowering::matchAndRewrite(ParallelOp parallelOp, 568 PatternRewriter &rewriter) const { 569 // We can only transform starting at the outer-most loop. Launches inside of 570 // parallel loops are not supported. 571 if (auto parentLoop = parallelOp->getParentOfType<ParallelOp>()) 572 return failure(); 573 // Create a launch operation. We start with bound one for all grid/block 574 // sizes. Those will be refined later as we discover them from mappings. 575 Location loc = parallelOp.getLoc(); 576 Value constantOne = rewriter.create<ConstantIndexOp>(parallelOp.getLoc(), 1); 577 gpu::LaunchOp launchOp = rewriter.create<gpu::LaunchOp>( 578 parallelOp.getLoc(), constantOne, constantOne, constantOne, constantOne, 579 constantOne, constantOne); 580 rewriter.setInsertionPointToEnd(&launchOp.body().front()); 581 rewriter.create<gpu::TerminatorOp>(loc); 582 rewriter.setInsertionPointToStart(&launchOp.body().front()); 583 584 BlockAndValueMapping cloningMap; 585 llvm::DenseMap<gpu::Processor, Value> launchBounds; 586 SmallVector<Operation *, 16> worklist; 587 if (failed(processParallelLoop(parallelOp, launchOp, cloningMap, worklist, 588 launchBounds, rewriter))) 589 return failure(); 590 591 // Whether we have seen any side-effects. Reset when leaving an inner scope. 592 bool seenSideeffects = false; 593 // Whether we have left a nesting scope (and hence are no longer innermost). 594 bool leftNestingScope = false; 595 while (!worklist.empty()) { 596 Operation *op = worklist.pop_back_val(); 597 // Now walk over the body and clone it. 598 // TODO: This is only correct if there either is no further scf.parallel 599 // nested or this code is side-effect free. Otherwise we might need 600 // predication. We are overly conservative for now and only allow 601 // side-effects in the innermost scope. 602 if (auto nestedParallel = dyn_cast<ParallelOp>(op)) { 603 // Before entering a nested scope, make sure there have been no 604 // sideeffects until now. 605 if (seenSideeffects) 606 return failure(); 607 // A nested scf.parallel needs insertion of code to compute indices. 608 // Insert that now. This will also update the worklist with the loops 609 // body. 610 if (failed(processParallelLoop(nestedParallel, launchOp, cloningMap, 611 worklist, launchBounds, rewriter))) 612 return failure(); 613 } else if (op == launchOp.getOperation()) { 614 // Found our sentinel value. We have finished the operations from one 615 // nesting level, pop one level back up. 616 auto parent = rewriter.getInsertionPoint()->getParentOp(); 617 rewriter.setInsertionPointAfter(parent); 618 leftNestingScope = true; 619 seenSideeffects = false; 620 } else { 621 // Otherwise we copy it over. 622 Operation *clone = rewriter.clone(*op, cloningMap); 623 cloningMap.map(op->getResults(), clone->getResults()); 624 // Check for side effects. 625 // TODO: Handle region side effects properly. 626 seenSideeffects |= !MemoryEffectOpInterface::hasNoEffect(clone) || 627 clone->getNumRegions() != 0; 628 // If we are no longer in the innermost scope, sideeffects are disallowed. 629 if (seenSideeffects && leftNestingScope) 630 return failure(); 631 } 632 } 633 634 // Now that we succeeded creating the launch operation, also update the 635 // bounds. 636 for (auto bound : launchBounds) 637 launchOp.setOperand(getLaunchOpArgumentNum(std::get<0>(bound)), 638 std::get<1>(bound)); 639 640 rewriter.eraseOp(parallelOp); 641 return success(); 642 } 643 644 void mlir::populateParallelLoopToGPUPatterns(OwningRewritePatternList &patterns, 645 MLIRContext *ctx) { 646 patterns.insert<ParallelToGpuLaunchLowering>(ctx); 647 } 648 649 void mlir::configureParallelLoopToGPULegality(ConversionTarget &target) { 650 target.addDynamicallyLegalOp<scf::ParallelOp>([](scf::ParallelOp parallelOp) { 651 return !parallelOp->getAttr(gpu::getMappingAttrName()); 652 }); 653 } 654