16df7cc7fSStanislav Funiak //===- RootOrdering.h - Optimal root ordering ------------------*- C++ -*-===// 26df7cc7fSStanislav Funiak // 36df7cc7fSStanislav Funiak // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 46df7cc7fSStanislav Funiak // See https://llvm.org/LICENSE.txt for license information. 56df7cc7fSStanislav Funiak // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 66df7cc7fSStanislav Funiak // 76df7cc7fSStanislav Funiak //===----------------------------------------------------------------------===// 86df7cc7fSStanislav Funiak // 96df7cc7fSStanislav Funiak // This file contains definition for a cost graph over candidate roots and 106df7cc7fSStanislav Funiak // an implementation of an algorithm to determine the optimal ordering over 116df7cc7fSStanislav Funiak // these roots. Each edge in this graph indicates that the target root can be 126df7cc7fSStanislav Funiak // connected (via a chain of positions) to the source root, and their cost 136df7cc7fSStanislav Funiak // indicates the estimated cost of such traversal. The optimal root ordering 146df7cc7fSStanislav Funiak // is then formulated as that of finding a spanning arborescence (i.e., a 156df7cc7fSStanislav Funiak // directed spanning tree) of minimal weight. 166df7cc7fSStanislav Funiak // 176df7cc7fSStanislav Funiak //===----------------------------------------------------------------------===// 186df7cc7fSStanislav Funiak 196df7cc7fSStanislav Funiak #ifndef MLIR_LIB_CONVERSION_PDLTOPDLINTERP_ROOTORDERING_H_ 206df7cc7fSStanislav Funiak #define MLIR_LIB_CONVERSION_PDLTOPDLINTERP_ROOTORDERING_H_ 216df7cc7fSStanislav Funiak 226df7cc7fSStanislav Funiak #include "mlir/IR/Value.h" 236df7cc7fSStanislav Funiak #include "llvm/ADT/DenseMap.h" 246df7cc7fSStanislav Funiak #include "llvm/ADT/SmallVector.h" 256df7cc7fSStanislav Funiak #include <functional> 266df7cc7fSStanislav Funiak #include <vector> 276df7cc7fSStanislav Funiak 286df7cc7fSStanislav Funiak namespace mlir { 296df7cc7fSStanislav Funiak namespace pdl_to_pdl_interp { 306df7cc7fSStanislav Funiak 316df7cc7fSStanislav Funiak /// The information associated with an edge in the cost graph. Each node in 326df7cc7fSStanislav Funiak /// the cost graph corresponds to a candidate root detected in the pdl.pattern, 336df7cc7fSStanislav Funiak /// and each edge in the cost graph corresponds to connecting the two candidate 346df7cc7fSStanislav Funiak /// roots via a chain of operations. The cost of an edge is the smallest number 356df7cc7fSStanislav Funiak /// of upward traversals required to go from the source to the target root, and 366df7cc7fSStanislav Funiak /// the connector is a `Value` in the intersection of the two subtrees rooted at 376df7cc7fSStanislav Funiak /// the source and target root that results in that smallest number of upward 386df7cc7fSStanislav Funiak /// traversals. Consider the following pattern with 3 roots op3, op4, and op5: 396df7cc7fSStanislav Funiak /// 406df7cc7fSStanislav Funiak /// argA ---> op1 ---> op2 ---> op3 ---> res3 416df7cc7fSStanislav Funiak /// ^ ^ 426df7cc7fSStanislav Funiak /// | | 436df7cc7fSStanislav Funiak /// argB argC 446df7cc7fSStanislav Funiak /// | | 456df7cc7fSStanislav Funiak /// v v 466df7cc7fSStanislav Funiak /// res4 <--- op4 op5 ---> res5 476df7cc7fSStanislav Funiak /// ^ ^ 486df7cc7fSStanislav Funiak /// | | 496df7cc7fSStanislav Funiak /// op6 op7 506df7cc7fSStanislav Funiak /// 516df7cc7fSStanislav Funiak /// The cost of the edge op3 -> op4 is 1 (the upward traversal argB -> op4), 526df7cc7fSStanislav Funiak /// with argB being the connector `Value` and similarly for op3 -> op5 (cost 1, 536df7cc7fSStanislav Funiak /// connector argC). The cost of the edge op4 -> op3 is 3 (upward traversals 546df7cc7fSStanislav Funiak /// argB -> op1 -> op2 -> op3, connector argB), while the cost of edge op5 -> 556df7cc7fSStanislav Funiak /// op3 is 2 (uwpard traversals argC -> op2 -> op3). There are no edges between 566df7cc7fSStanislav Funiak /// op4 and op5 in the cost graph, because the subtrees rooted at these two 576df7cc7fSStanislav Funiak /// roots do not intersect. It is easy to see that the optimal root for this 586df7cc7fSStanislav Funiak /// pattern is op3, resulting in the spanning arborescence op3 -> {op4, op5}. 59*9eb8e7b1SStanislav Funiak struct RootOrderingEntry { 606df7cc7fSStanislav Funiak /// The depth of the connector `Value` w.r.t. the target root. 616df7cc7fSStanislav Funiak /// 62*9eb8e7b1SStanislav Funiak /// This is a pair where the first value is the additive cost (the depth of 63*9eb8e7b1SStanislav Funiak /// the connector), and the second value is a priority for breaking ties 64*9eb8e7b1SStanislav Funiak /// (with 0 being the highest). Typically, the priority is a unique edge ID. 656df7cc7fSStanislav Funiak std::pair<unsigned, unsigned> cost; 666df7cc7fSStanislav Funiak 676df7cc7fSStanislav Funiak /// The connector value in the intersection of the two subtrees rooted at 686df7cc7fSStanislav Funiak /// the source and target root that results in that smallest depth w.r.t. 696df7cc7fSStanislav Funiak /// the target root. 706df7cc7fSStanislav Funiak Value connector; 716df7cc7fSStanislav Funiak }; 726df7cc7fSStanislav Funiak 736df7cc7fSStanislav Funiak /// A directed graph representing the cost of ordering the roots in the 746df7cc7fSStanislav Funiak /// predicate tree. It is represented as an adjacency map, where the outer map 756df7cc7fSStanislav Funiak /// is indexed by the target node, and the inner map is indexed by the source 766df7cc7fSStanislav Funiak /// node. Each edge is associated with a cost and the underlying connector 776df7cc7fSStanislav Funiak /// value. 78*9eb8e7b1SStanislav Funiak using RootOrderingGraph = DenseMap<Value, DenseMap<Value, RootOrderingEntry>>; 796df7cc7fSStanislav Funiak 806df7cc7fSStanislav Funiak /// The optimal branching algorithm solver. This solver accepts a graph and the 816df7cc7fSStanislav Funiak /// root in its constructor, and is invoked via the solve() member function. 826df7cc7fSStanislav Funiak /// This is a direct implementation of the Edmonds' algorithm, see 836df7cc7fSStanislav Funiak /// https://en.wikipedia.org/wiki/Edmonds%27_algorithm. The worst-case 846df7cc7fSStanislav Funiak /// computational complexity of this algorithm is O(N^3), for a single root. 856df7cc7fSStanislav Funiak /// The PDL-to-PDLInterp lowering calls this N times (once for each candidate 866df7cc7fSStanislav Funiak /// root), so the overall complexity root ordering is O(N^4). If needed, this 876df7cc7fSStanislav Funiak /// could be reduced to O(N^3) with a more efficient algorithm. However, note 886df7cc7fSStanislav Funiak /// that the underlying implementation is very efficient, and N in our 896df7cc7fSStanislav Funiak /// instances tends to be very small (<10). 906df7cc7fSStanislav Funiak class OptimalBranching { 916df7cc7fSStanislav Funiak public: 926df7cc7fSStanislav Funiak /// A list of edges (child, parent). 936df7cc7fSStanislav Funiak using EdgeList = std::vector<std::pair<Value, Value>>; 946df7cc7fSStanislav Funiak 956df7cc7fSStanislav Funiak /// Constructs the solver for the given graph and root value. 966df7cc7fSStanislav Funiak OptimalBranching(RootOrderingGraph graph, Value root); 976df7cc7fSStanislav Funiak 986df7cc7fSStanislav Funiak /// Runs the Edmonds' algorithm for the current `graph`, returning the total 996df7cc7fSStanislav Funiak /// cost of the minimum-weight spanning arborescence (sum of the edge costs). 1006df7cc7fSStanislav Funiak /// This function first determines the optimal local choice of the parents 1016df7cc7fSStanislav Funiak /// and stores this choice in the `parents` mapping. If this choice results 1026df7cc7fSStanislav Funiak /// in an acyclic graph, the function returns immediately. Otherwise, it 1036df7cc7fSStanislav Funiak /// takes an arbitrary cycle, contracts it, and recurses on the new graph 1046df7cc7fSStanislav Funiak /// (which is guaranteed to have fewer nodes than we began with). After we 1056df7cc7fSStanislav Funiak /// return from recursion, we redirect the edges to/from the contracted node, 1066df7cc7fSStanislav Funiak /// so the `parents` map contains a valid solution for the current graph. 1076df7cc7fSStanislav Funiak unsigned solve(); 1086df7cc7fSStanislav Funiak 1096df7cc7fSStanislav Funiak /// Returns the computed parent map. This is the unique predecessor for each 1106df7cc7fSStanislav Funiak /// node (root) in the optimal branching. getRootOrderingParents()1116df7cc7fSStanislav Funiak const DenseMap<Value, Value> &getRootOrderingParents() const { 1126df7cc7fSStanislav Funiak return parents; 1136df7cc7fSStanislav Funiak } 1146df7cc7fSStanislav Funiak 1156df7cc7fSStanislav Funiak /// Returns the computed edges as visited in the preorder traversal. 1166df7cc7fSStanislav Funiak /// The specified array determines the order for breaking any ties. 1176df7cc7fSStanislav Funiak EdgeList preOrderTraversal(ArrayRef<Value> nodes) const; 1186df7cc7fSStanislav Funiak 1196df7cc7fSStanislav Funiak private: 1206df7cc7fSStanislav Funiak /// The graph whose optimal branching we wish to determine. 1216df7cc7fSStanislav Funiak RootOrderingGraph graph; 1226df7cc7fSStanislav Funiak 1236df7cc7fSStanislav Funiak /// The root of the optimal branching. 1246df7cc7fSStanislav Funiak Value root; 1256df7cc7fSStanislav Funiak 1266df7cc7fSStanislav Funiak /// The computed parent mapping. This is the unique predecessor for each node 1276df7cc7fSStanislav Funiak /// in the optimal branching. The keys of this map correspond to the keys of 1286df7cc7fSStanislav Funiak /// the outer map of the input graph, and each value is one of the keys of 1296df7cc7fSStanislav Funiak /// the inner map for this node. Also used as an intermediate (possibly 1306df7cc7fSStanislav Funiak /// cyclical) result in the optimal branching algorithm. 1316df7cc7fSStanislav Funiak DenseMap<Value, Value> parents; 1326df7cc7fSStanislav Funiak }; 1336df7cc7fSStanislav Funiak 134be0a7e9fSMehdi Amini } // namespace pdl_to_pdl_interp 135be0a7e9fSMehdi Amini } // namespace mlir 1366df7cc7fSStanislav Funiak 1376df7cc7fSStanislav Funiak #endif // MLIR_CONVERSION_PDLTOPDLINTERP_ROOTORDERING_H_ 138