xref: /llvm-project/mlir/lib/Conversion/PDLToPDLInterp/PredicateTree.cpp (revision dca32a3b594b3c91f9766a9312b5d82534910fa1)
1 //===- PredicateTree.cpp - Predicate tree merging -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "PredicateTree.h"
10 #include "RootOrdering.h"
11 
12 #include "mlir/Dialect/PDL/IR/PDL.h"
13 #include "mlir/Dialect/PDL/IR/PDLTypes.h"
14 #include "mlir/Dialect/PDLInterp/IR/PDLInterp.h"
15 #include "mlir/IR/BuiltinOps.h"
16 #include "mlir/Interfaces/InferTypeOpInterface.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/TypeSwitch.h"
20 #include "llvm/Support/Debug.h"
21 #include <queue>
22 
23 #define DEBUG_TYPE "pdl-predicate-tree"
24 
25 using namespace mlir;
26 using namespace mlir::pdl_to_pdl_interp;
27 
28 //===----------------------------------------------------------------------===//
29 // Predicate List Building
30 //===----------------------------------------------------------------------===//
31 
32 static void getTreePredicates(std::vector<PositionalPredicate> &predList,
33                               Value val, PredicateBuilder &builder,
34                               DenseMap<Value, Position *> &inputs,
35                               Position *pos);
36 
37 /// Compares the depths of two positions.
38 static bool comparePosDepth(Position *lhs, Position *rhs) {
39   return lhs->getOperationDepth() < rhs->getOperationDepth();
40 }
41 
42 /// Returns the number of non-range elements within `values`.
43 static unsigned getNumNonRangeValues(ValueRange values) {
44   return llvm::count_if(values.getTypes(),
45                         [](Type type) { return !isa<pdl::RangeType>(type); });
46 }
47 
48 static void getTreePredicates(std::vector<PositionalPredicate> &predList,
49                               Value val, PredicateBuilder &builder,
50                               DenseMap<Value, Position *> &inputs,
51                               AttributePosition *pos) {
52   assert(isa<pdl::AttributeType>(val.getType()) && "expected attribute type");
53   predList.emplace_back(pos, builder.getIsNotNull());
54 
55   if (auto attr = dyn_cast<pdl::AttributeOp>(val.getDefiningOp())) {
56     // If the attribute has a type or value, add a constraint.
57     if (Value type = attr.getValueType())
58       getTreePredicates(predList, type, builder, inputs, builder.getType(pos));
59     else if (Attribute value = attr.getValueAttr())
60       predList.emplace_back(pos, builder.getAttributeConstraint(value));
61   }
62 }
63 
64 /// Collect all of the predicates for the given operand position.
65 static void getOperandTreePredicates(std::vector<PositionalPredicate> &predList,
66                                      Value val, PredicateBuilder &builder,
67                                      DenseMap<Value, Position *> &inputs,
68                                      Position *pos) {
69   Type valueType = val.getType();
70   bool isVariadic = isa<pdl::RangeType>(valueType);
71 
72   // If this is a typed operand, add a type constraint.
73   TypeSwitch<Operation *>(val.getDefiningOp())
74       .Case<pdl::OperandOp, pdl::OperandsOp>([&](auto op) {
75         // Prevent traversal into a null value if the operand has a proper
76         // index.
77         if (std::is_same<pdl::OperandOp, decltype(op)>::value ||
78             cast<OperandGroupPosition>(pos)->getOperandGroupNumber())
79           predList.emplace_back(pos, builder.getIsNotNull());
80 
81         if (Value type = op.getValueType())
82           getTreePredicates(predList, type, builder, inputs,
83                             builder.getType(pos));
84       })
85       .Case<pdl::ResultOp, pdl::ResultsOp>([&](auto op) {
86         std::optional<unsigned> index = op.getIndex();
87 
88         // Prevent traversal into a null value if the result has a proper index.
89         if (index)
90           predList.emplace_back(pos, builder.getIsNotNull());
91 
92         // Get the parent operation of this operand.
93         OperationPosition *parentPos = builder.getOperandDefiningOp(pos);
94         predList.emplace_back(parentPos, builder.getIsNotNull());
95 
96         // Ensure that the operands match the corresponding results of the
97         // parent operation.
98         Position *resultPos = nullptr;
99         if (std::is_same<pdl::ResultOp, decltype(op)>::value)
100           resultPos = builder.getResult(parentPos, *index);
101         else
102           resultPos = builder.getResultGroup(parentPos, index, isVariadic);
103         predList.emplace_back(resultPos, builder.getEqualTo(pos));
104 
105         // Collect the predicates of the parent operation.
106         getTreePredicates(predList, op.getParent(), builder, inputs,
107                           (Position *)parentPos);
108       });
109 }
110 
111 static void
112 getTreePredicates(std::vector<PositionalPredicate> &predList, Value val,
113                   PredicateBuilder &builder,
114                   DenseMap<Value, Position *> &inputs, OperationPosition *pos,
115                   std::optional<unsigned> ignoreOperand = std::nullopt) {
116   assert(isa<pdl::OperationType>(val.getType()) && "expected operation");
117   pdl::OperationOp op = cast<pdl::OperationOp>(val.getDefiningOp());
118   OperationPosition *opPos = cast<OperationPosition>(pos);
119 
120   // Ensure getDefiningOp returns a non-null operation.
121   if (!opPos->isRoot())
122     predList.emplace_back(pos, builder.getIsNotNull());
123 
124   // Check that this is the correct root operation.
125   if (std::optional<StringRef> opName = op.getOpName())
126     predList.emplace_back(pos, builder.getOperationName(*opName));
127 
128   // Check that the operation has the proper number of operands. If there are
129   // any variable length operands, we check a minimum instead of an exact count.
130   OperandRange operands = op.getOperandValues();
131   unsigned minOperands = getNumNonRangeValues(operands);
132   if (minOperands != operands.size()) {
133     if (minOperands)
134       predList.emplace_back(pos, builder.getOperandCountAtLeast(minOperands));
135   } else {
136     predList.emplace_back(pos, builder.getOperandCount(minOperands));
137   }
138 
139   // Check that the operation has the proper number of results. If there are
140   // any variable length results, we check a minimum instead of an exact count.
141   OperandRange types = op.getTypeValues();
142   unsigned minResults = getNumNonRangeValues(types);
143   if (minResults == types.size())
144     predList.emplace_back(pos, builder.getResultCount(types.size()));
145   else if (minResults)
146     predList.emplace_back(pos, builder.getResultCountAtLeast(minResults));
147 
148   // Recurse into any attributes, operands, or results.
149   for (auto [attrName, attr] :
150        llvm::zip(op.getAttributeValueNames(), op.getAttributeValues())) {
151     getTreePredicates(
152         predList, attr, builder, inputs,
153         builder.getAttribute(opPos, cast<StringAttr>(attrName).getValue()));
154   }
155 
156   // Process the operands and results of the operation. For all values up to
157   // the first variable length value, we use the concrete operand/result
158   // number. After that, we use the "group" given that we can't know the
159   // concrete indices until runtime. If there is only one variadic operand
160   // group, we treat it as all of the operands/results of the operation.
161   /// Operands.
162   if (operands.size() == 1 && isa<pdl::RangeType>(operands[0].getType())) {
163     // Ignore the operands if we are performing an upward traversal (in that
164     // case, they have already been visited).
165     if (opPos->isRoot() || opPos->isOperandDefiningOp())
166       getTreePredicates(predList, operands.front(), builder, inputs,
167                         builder.getAllOperands(opPos));
168   } else {
169     bool foundVariableLength = false;
170     for (const auto &operandIt : llvm::enumerate(operands)) {
171       bool isVariadic = isa<pdl::RangeType>(operandIt.value().getType());
172       foundVariableLength |= isVariadic;
173 
174       // Ignore the specified operand, usually because this position was
175       // visited in an upward traversal via an iterative choice.
176       if (ignoreOperand && *ignoreOperand == operandIt.index())
177         continue;
178 
179       Position *pos =
180           foundVariableLength
181               ? builder.getOperandGroup(opPos, operandIt.index(), isVariadic)
182               : builder.getOperand(opPos, operandIt.index());
183       getTreePredicates(predList, operandIt.value(), builder, inputs, pos);
184     }
185   }
186   /// Results.
187   if (types.size() == 1 && isa<pdl::RangeType>(types[0].getType())) {
188     getTreePredicates(predList, types.front(), builder, inputs,
189                       builder.getType(builder.getAllResults(opPos)));
190     return;
191   }
192 
193   bool foundVariableLength = false;
194   for (auto [idx, typeValue] : llvm::enumerate(types)) {
195     bool isVariadic = isa<pdl::RangeType>(typeValue.getType());
196     foundVariableLength |= isVariadic;
197 
198     auto *resultPos = foundVariableLength
199                           ? builder.getResultGroup(pos, idx, isVariadic)
200                           : builder.getResult(pos, idx);
201     predList.emplace_back(resultPos, builder.getIsNotNull());
202     getTreePredicates(predList, typeValue, builder, inputs,
203                       builder.getType(resultPos));
204   }
205 }
206 
207 static void getTreePredicates(std::vector<PositionalPredicate> &predList,
208                               Value val, PredicateBuilder &builder,
209                               DenseMap<Value, Position *> &inputs,
210                               TypePosition *pos) {
211   // Check for a constraint on a constant type.
212   if (pdl::TypeOp typeOp = val.getDefiningOp<pdl::TypeOp>()) {
213     if (Attribute type = typeOp.getConstantTypeAttr())
214       predList.emplace_back(pos, builder.getTypeConstraint(type));
215   } else if (pdl::TypesOp typeOp = val.getDefiningOp<pdl::TypesOp>()) {
216     if (Attribute typeAttr = typeOp.getConstantTypesAttr())
217       predList.emplace_back(pos, builder.getTypeConstraint(typeAttr));
218   }
219 }
220 
221 /// Collect the tree predicates anchored at the given value.
222 static void getTreePredicates(std::vector<PositionalPredicate> &predList,
223                               Value val, PredicateBuilder &builder,
224                               DenseMap<Value, Position *> &inputs,
225                               Position *pos) {
226   // Make sure this input value is accessible to the rewrite.
227   auto it = inputs.try_emplace(val, pos);
228   if (!it.second) {
229     // If this is an input value that has been visited in the tree, add a
230     // constraint to ensure that both instances refer to the same value.
231     if (isa<pdl::AttributeOp, pdl::OperandOp, pdl::OperandsOp, pdl::OperationOp,
232             pdl::TypeOp>(val.getDefiningOp())) {
233       auto minMaxPositions =
234           std::minmax(pos, it.first->second, comparePosDepth);
235       predList.emplace_back(minMaxPositions.second,
236                             builder.getEqualTo(minMaxPositions.first));
237     }
238     return;
239   }
240 
241   TypeSwitch<Position *>(pos)
242       .Case<AttributePosition, OperationPosition, TypePosition>([&](auto *pos) {
243         getTreePredicates(predList, val, builder, inputs, pos);
244       })
245       .Case<OperandPosition, OperandGroupPosition>([&](auto *pos) {
246         getOperandTreePredicates(predList, val, builder, inputs, pos);
247       })
248       .Default([](auto *) { llvm_unreachable("unexpected position kind"); });
249 }
250 
251 static void getAttributePredicates(pdl::AttributeOp op,
252                                    std::vector<PositionalPredicate> &predList,
253                                    PredicateBuilder &builder,
254                                    DenseMap<Value, Position *> &inputs) {
255   Position *&attrPos = inputs[op];
256   if (attrPos)
257     return;
258   Attribute value = op.getValueAttr();
259   assert(value && "expected non-tree `pdl.attribute` to contain a value");
260   attrPos = builder.getAttributeLiteral(value);
261 }
262 
263 static void getConstraintPredicates(pdl::ApplyNativeConstraintOp op,
264                                     std::vector<PositionalPredicate> &predList,
265                                     PredicateBuilder &builder,
266                                     DenseMap<Value, Position *> &inputs) {
267   OperandRange arguments = op.getArgs();
268 
269   std::vector<Position *> allPositions;
270   allPositions.reserve(arguments.size());
271   for (Value arg : arguments)
272     allPositions.push_back(inputs.lookup(arg));
273 
274   // Push the constraint to the furthest position.
275   Position *pos = *std::max_element(allPositions.begin(), allPositions.end(),
276                                     comparePosDepth);
277   ResultRange results = op.getResults();
278   PredicateBuilder::Predicate pred = builder.getConstraint(
279       op.getName(), allPositions, SmallVector<Type>(results.getTypes()),
280       op.getIsNegated());
281 
282   // For each result register a position so it can be used later
283   for (auto [i, result] : llvm::enumerate(results)) {
284     ConstraintQuestion *q = cast<ConstraintQuestion>(pred.first);
285     ConstraintPosition *pos = builder.getConstraintPosition(q, i);
286     auto [it, inserted] = inputs.insert({result, pos});
287     // If this is an input value that has been visited in the tree, add a
288     // constraint to ensure that both instances refer to the same value.
289     if (!inserted) {
290       auto minMaxPositions =
291           std::minmax<Position *>(pos, it->second, comparePosDepth);
292       predList.emplace_back(minMaxPositions.second,
293                             builder.getEqualTo(minMaxPositions.first));
294     }
295   }
296   predList.emplace_back(pos, pred);
297 }
298 
299 static void getResultPredicates(pdl::ResultOp op,
300                                 std::vector<PositionalPredicate> &predList,
301                                 PredicateBuilder &builder,
302                                 DenseMap<Value, Position *> &inputs) {
303   Position *&resultPos = inputs[op];
304   if (resultPos)
305     return;
306 
307   // Ensure that the result isn't null.
308   auto *parentPos = cast<OperationPosition>(inputs.lookup(op.getParent()));
309   resultPos = builder.getResult(parentPos, op.getIndex());
310   predList.emplace_back(resultPos, builder.getIsNotNull());
311 }
312 
313 static void getResultPredicates(pdl::ResultsOp op,
314                                 std::vector<PositionalPredicate> &predList,
315                                 PredicateBuilder &builder,
316                                 DenseMap<Value, Position *> &inputs) {
317   Position *&resultPos = inputs[op];
318   if (resultPos)
319     return;
320 
321   // Ensure that the result isn't null if the result has an index.
322   auto *parentPos = cast<OperationPosition>(inputs.lookup(op.getParent()));
323   bool isVariadic = isa<pdl::RangeType>(op.getType());
324   std::optional<unsigned> index = op.getIndex();
325   resultPos = builder.getResultGroup(parentPos, index, isVariadic);
326   if (index)
327     predList.emplace_back(resultPos, builder.getIsNotNull());
328 }
329 
330 static void getTypePredicates(Value typeValue,
331                               function_ref<Attribute()> typeAttrFn,
332                               PredicateBuilder &builder,
333                               DenseMap<Value, Position *> &inputs) {
334   Position *&typePos = inputs[typeValue];
335   if (typePos)
336     return;
337   Attribute typeAttr = typeAttrFn();
338   assert(typeAttr &&
339          "expected non-tree `pdl.type`/`pdl.types` to contain a value");
340   typePos = builder.getTypeLiteral(typeAttr);
341 }
342 
343 /// Collect all of the predicates that cannot be determined via walking the
344 /// tree.
345 static void getNonTreePredicates(pdl::PatternOp pattern,
346                                  std::vector<PositionalPredicate> &predList,
347                                  PredicateBuilder &builder,
348                                  DenseMap<Value, Position *> &inputs) {
349   for (Operation &op : pattern.getBodyRegion().getOps()) {
350     TypeSwitch<Operation *>(&op)
351         .Case([&](pdl::AttributeOp attrOp) {
352           getAttributePredicates(attrOp, predList, builder, inputs);
353         })
354         .Case<pdl::ApplyNativeConstraintOp>([&](auto constraintOp) {
355           getConstraintPredicates(constraintOp, predList, builder, inputs);
356         })
357         .Case<pdl::ResultOp, pdl::ResultsOp>([&](auto resultOp) {
358           getResultPredicates(resultOp, predList, builder, inputs);
359         })
360         .Case([&](pdl::TypeOp typeOp) {
361           getTypePredicates(
362               typeOp, [&] { return typeOp.getConstantTypeAttr(); }, builder,
363               inputs);
364         })
365         .Case([&](pdl::TypesOp typeOp) {
366           getTypePredicates(
367               typeOp, [&] { return typeOp.getConstantTypesAttr(); }, builder,
368               inputs);
369         });
370   }
371 }
372 
373 namespace {
374 
375 /// An op accepting a value at an optional index.
376 struct OpIndex {
377   Value parent;
378   std::optional<unsigned> index;
379 };
380 
381 /// The parent and operand index of each operation for each root, stored
382 /// as a nested map [root][operation].
383 using ParentMaps = DenseMap<Value, DenseMap<Value, OpIndex>>;
384 
385 } // namespace
386 
387 /// Given a pattern, determines the set of roots present in this pattern.
388 /// These are the operations whose results are not consumed by other operations.
389 static SmallVector<Value> detectRoots(pdl::PatternOp pattern) {
390   // First, collect all the operations that are used as operands
391   // to other operations. These are not roots by default.
392   DenseSet<Value> used;
393   for (auto operationOp : pattern.getBodyRegion().getOps<pdl::OperationOp>()) {
394     for (Value operand : operationOp.getOperandValues())
395       TypeSwitch<Operation *>(operand.getDefiningOp())
396           .Case<pdl::ResultOp, pdl::ResultsOp>(
397               [&used](auto resultOp) { used.insert(resultOp.getParent()); });
398   }
399 
400   // Remove the specified root from the use set, so that we can
401   // always select it as a root, even if it is used by other operations.
402   if (Value root = pattern.getRewriter().getRoot())
403     used.erase(root);
404 
405   // Finally, collect all the unused operations.
406   SmallVector<Value> roots;
407   for (Value operationOp : pattern.getBodyRegion().getOps<pdl::OperationOp>())
408     if (!used.contains(operationOp))
409       roots.push_back(operationOp);
410 
411   return roots;
412 }
413 
414 /// Given a list of candidate roots, builds the cost graph for connecting them.
415 /// The graph is formed by traversing the DAG of operations starting from each
416 /// root and marking the depth of each connector value (operand). Then we join
417 /// the candidate roots based on the common connector values, taking the one
418 /// with the minimum depth. Along the way, we compute, for each candidate root,
419 /// a mapping from each operation (in the DAG underneath this root) to its
420 /// parent operation and the corresponding operand index.
421 static void buildCostGraph(ArrayRef<Value> roots, RootOrderingGraph &graph,
422                            ParentMaps &parentMaps) {
423 
424   // The entry of a queue. The entry consists of the following items:
425   // * the value in the DAG underneath the root;
426   // * the parent of the value;
427   // * the operand index of the value in its parent;
428   // * the depth of the visited value.
429   struct Entry {
430     Entry(Value value, Value parent, std::optional<unsigned> index,
431           unsigned depth)
432         : value(value), parent(parent), index(index), depth(depth) {}
433 
434     Value value;
435     Value parent;
436     std::optional<unsigned> index;
437     unsigned depth;
438   };
439 
440   // A root of a value and its depth (distance from root to the value).
441   struct RootDepth {
442     Value root;
443     unsigned depth = 0;
444   };
445 
446   // Map from candidate connector values to their roots and depths. Using a
447   // small vector with 1 entry because most values belong to a single root.
448   llvm::MapVector<Value, SmallVector<RootDepth, 1>> connectorsRootsDepths;
449 
450   // Perform a breadth-first traversal of the op DAG rooted at each root.
451   for (Value root : roots) {
452     // The queue of visited values. A value may be present multiple times in
453     // the queue, for multiple parents. We only accept the first occurrence,
454     // which is guaranteed to have the lowest depth.
455     std::queue<Entry> toVisit;
456     toVisit.emplace(root, Value(), 0, 0);
457 
458     // The map from value to its parent for the current root.
459     DenseMap<Value, OpIndex> &parentMap = parentMaps[root];
460 
461     while (!toVisit.empty()) {
462       Entry entry = toVisit.front();
463       toVisit.pop();
464       // Skip if already visited.
465       if (!parentMap.insert({entry.value, {entry.parent, entry.index}}).second)
466         continue;
467 
468       // Mark the root and depth of the value.
469       connectorsRootsDepths[entry.value].push_back({root, entry.depth});
470 
471       // Traverse the operands of an operation and result ops.
472       // We intentionally do not traverse attributes and types, because those
473       // are expensive to join on.
474       TypeSwitch<Operation *>(entry.value.getDefiningOp())
475           .Case<pdl::OperationOp>([&](auto operationOp) {
476             OperandRange operands = operationOp.getOperandValues();
477             // Special case when we pass all the operands in one range.
478             // For those, the index is empty.
479             if (operands.size() == 1 &&
480                 isa<pdl::RangeType>(operands[0].getType())) {
481               toVisit.emplace(operands[0], entry.value, std::nullopt,
482                               entry.depth + 1);
483               return;
484             }
485 
486             // Default case: visit all the operands.
487             for (const auto &p :
488                  llvm::enumerate(operationOp.getOperandValues()))
489               toVisit.emplace(p.value(), entry.value, p.index(),
490                               entry.depth + 1);
491           })
492           .Case<pdl::ResultOp, pdl::ResultsOp>([&](auto resultOp) {
493             toVisit.emplace(resultOp.getParent(), entry.value,
494                             resultOp.getIndex(), entry.depth);
495           });
496     }
497   }
498 
499   // Now build the cost graph.
500   // This is simply a minimum over all depths for the target root.
501   unsigned nextID = 0;
502   for (const auto &connectorRootsDepths : connectorsRootsDepths) {
503     Value value = connectorRootsDepths.first;
504     ArrayRef<RootDepth> rootsDepths = connectorRootsDepths.second;
505     // If there is only one root for this value, this will not trigger
506     // any edges in the cost graph (a perf optimization).
507     if (rootsDepths.size() == 1)
508       continue;
509 
510     for (const RootDepth &p : rootsDepths) {
511       for (const RootDepth &q : rootsDepths) {
512         if (&p == &q)
513           continue;
514         // Insert or retrieve the property of edge from p to q.
515         RootOrderingEntry &entry = graph[q.root][p.root];
516         if (!entry.connector /* new edge */ || entry.cost.first > q.depth) {
517           if (!entry.connector)
518             entry.cost.second = nextID++;
519           entry.cost.first = q.depth;
520           entry.connector = value;
521         }
522       }
523     }
524   }
525 
526   assert((llvm::hasSingleElement(roots) || graph.size() == roots.size()) &&
527          "the pattern contains a candidate root disconnected from the others");
528 }
529 
530 /// Returns true if the operand at the given index needs to be queried using an
531 /// operand group, i.e., if it is variadic itself or follows a variadic operand.
532 static bool useOperandGroup(pdl::OperationOp op, unsigned index) {
533   OperandRange operands = op.getOperandValues();
534   assert(index < operands.size() && "operand index out of range");
535   for (unsigned i = 0; i <= index; ++i)
536     if (isa<pdl::RangeType>(operands[i].getType()))
537       return true;
538   return false;
539 }
540 
541 /// Visit a node during upward traversal.
542 static void visitUpward(std::vector<PositionalPredicate> &predList,
543                         OpIndex opIndex, PredicateBuilder &builder,
544                         DenseMap<Value, Position *> &valueToPosition,
545                         Position *&pos, unsigned rootID) {
546   Value value = opIndex.parent;
547   TypeSwitch<Operation *>(value.getDefiningOp())
548       .Case<pdl::OperationOp>([&](auto operationOp) {
549         LLVM_DEBUG(llvm::dbgs() << "  * Value: " << value << "\n");
550 
551         // Get users and iterate over them.
552         Position *usersPos = builder.getUsers(pos, /*useRepresentative=*/true);
553         Position *foreachPos = builder.getForEach(usersPos, rootID);
554         OperationPosition *opPos = builder.getPassthroughOp(foreachPos);
555 
556         // Compare the operand(s) of the user against the input value(s).
557         Position *operandPos;
558         if (!opIndex.index) {
559           // We are querying all the operands of the operation.
560           operandPos = builder.getAllOperands(opPos);
561         } else if (useOperandGroup(operationOp, *opIndex.index)) {
562           // We are querying an operand group.
563           Type type = operationOp.getOperandValues()[*opIndex.index].getType();
564           bool variadic = isa<pdl::RangeType>(type);
565           operandPos = builder.getOperandGroup(opPos, opIndex.index, variadic);
566         } else {
567           // We are querying an individual operand.
568           operandPos = builder.getOperand(opPos, *opIndex.index);
569         }
570         predList.emplace_back(operandPos, builder.getEqualTo(pos));
571 
572         // Guard against duplicate upward visits. These are not possible,
573         // because if this value was already visited, it would have been
574         // cheaper to start the traversal at this value rather than at the
575         // `connector`, violating the optimality of our spanning tree.
576         bool inserted = valueToPosition.try_emplace(value, opPos).second;
577         (void)inserted;
578         assert(inserted && "duplicate upward visit");
579 
580         // Obtain the tree predicates at the current value.
581         getTreePredicates(predList, value, builder, valueToPosition, opPos,
582                           opIndex.index);
583 
584         // Update the position
585         pos = opPos;
586       })
587       .Case<pdl::ResultOp>([&](auto resultOp) {
588         // Traverse up an individual result.
589         auto *opPos = dyn_cast<OperationPosition>(pos);
590         assert(opPos && "operations and results must be interleaved");
591         pos = builder.getResult(opPos, *opIndex.index);
592 
593         // Insert the result position in case we have not visited it yet.
594         valueToPosition.try_emplace(value, pos);
595       })
596       .Case<pdl::ResultsOp>([&](auto resultOp) {
597         // Traverse up a group of results.
598         auto *opPos = dyn_cast<OperationPosition>(pos);
599         assert(opPos && "operations and results must be interleaved");
600         bool isVariadic = isa<pdl::RangeType>(value.getType());
601         if (opIndex.index)
602           pos = builder.getResultGroup(opPos, opIndex.index, isVariadic);
603         else
604           pos = builder.getAllResults(opPos);
605 
606         // Insert the result position in case we have not visited it yet.
607         valueToPosition.try_emplace(value, pos);
608       });
609 }
610 
611 /// Given a pattern operation, build the set of matcher predicates necessary to
612 /// match this pattern.
613 static Value buildPredicateList(pdl::PatternOp pattern,
614                                 PredicateBuilder &builder,
615                                 std::vector<PositionalPredicate> &predList,
616                                 DenseMap<Value, Position *> &valueToPosition) {
617   SmallVector<Value> roots = detectRoots(pattern);
618 
619   // Build the root ordering graph and compute the parent maps.
620   RootOrderingGraph graph;
621   ParentMaps parentMaps;
622   buildCostGraph(roots, graph, parentMaps);
623   LLVM_DEBUG({
624     llvm::dbgs() << "Graph:\n";
625     for (auto &target : graph) {
626       llvm::dbgs() << "  * " << target.first.getLoc() << " " << target.first
627                    << "\n";
628       for (auto &source : target.second) {
629         RootOrderingEntry &entry = source.second;
630         llvm::dbgs() << "      <- " << source.first << ": " << entry.cost.first
631                      << ":" << entry.cost.second << " via "
632                      << entry.connector.getLoc() << "\n";
633       }
634     }
635   });
636 
637   // Solve the optimal branching problem for each candidate root, or use the
638   // provided one.
639   Value bestRoot = pattern.getRewriter().getRoot();
640   OptimalBranching::EdgeList bestEdges;
641   if (!bestRoot) {
642     unsigned bestCost = 0;
643     LLVM_DEBUG(llvm::dbgs() << "Candidate roots:\n");
644     for (Value root : roots) {
645       OptimalBranching solver(graph, root);
646       unsigned cost = solver.solve();
647       LLVM_DEBUG(llvm::dbgs() << "  * " << root << ": " << cost << "\n");
648       if (!bestRoot || bestCost > cost) {
649         bestCost = cost;
650         bestRoot = root;
651         bestEdges = solver.preOrderTraversal(roots);
652       }
653     }
654   } else {
655     OptimalBranching solver(graph, bestRoot);
656     solver.solve();
657     bestEdges = solver.preOrderTraversal(roots);
658   }
659 
660   // Print the best solution.
661   LLVM_DEBUG({
662     llvm::dbgs() << "Best tree:\n";
663     for (const std::pair<Value, Value> &edge : bestEdges) {
664       llvm::dbgs() << "  * " << edge.first;
665       if (edge.second)
666         llvm::dbgs() << " <- " << edge.second;
667       llvm::dbgs() << "\n";
668     }
669   });
670 
671   LLVM_DEBUG(llvm::dbgs() << "Calling key getTreePredicates:\n");
672   LLVM_DEBUG(llvm::dbgs() << "  * Value: " << bestRoot << "\n");
673 
674   // The best root is the starting point for the traversal. Get the tree
675   // predicates for the DAG rooted at bestRoot.
676   getTreePredicates(predList, bestRoot, builder, valueToPosition,
677                     builder.getRoot());
678 
679   // Traverse the selected optimal branching. For all edges in order, traverse
680   // up starting from the connector, until the candidate root is reached, and
681   // call getTreePredicates at every node along the way.
682   for (const auto &it : llvm::enumerate(bestEdges)) {
683     Value target = it.value().first;
684     Value source = it.value().second;
685 
686     // Check if we already visited the target root. This happens in two cases:
687     // 1) the initial root (bestRoot);
688     // 2) a root that is dominated by (contained in the subtree rooted at) an
689     //    already visited root.
690     if (valueToPosition.count(target))
691       continue;
692 
693     // Determine the connector.
694     Value connector = graph[target][source].connector;
695     assert(connector && "invalid edge");
696     LLVM_DEBUG(llvm::dbgs() << "  * Connector: " << connector.getLoc() << "\n");
697     DenseMap<Value, OpIndex> parentMap = parentMaps.lookup(target);
698     Position *pos = valueToPosition.lookup(connector);
699     assert(pos && "connector has not been traversed yet");
700 
701     // Traverse from the connector upwards towards the target root.
702     for (Value value = connector; value != target;) {
703       OpIndex opIndex = parentMap.lookup(value);
704       assert(opIndex.parent && "missing parent");
705       visitUpward(predList, opIndex, builder, valueToPosition, pos, it.index());
706       value = opIndex.parent;
707     }
708   }
709 
710   getNonTreePredicates(pattern, predList, builder, valueToPosition);
711 
712   return bestRoot;
713 }
714 
715 //===----------------------------------------------------------------------===//
716 // Pattern Predicate Tree Merging
717 //===----------------------------------------------------------------------===//
718 
719 namespace {
720 
721 /// This class represents a specific predicate applied to a position, and
722 /// provides hashing and ordering operators. This class allows for computing a
723 /// frequence sum and ordering predicates based on a cost model.
724 struct OrderedPredicate {
725   OrderedPredicate(const std::pair<Position *, Qualifier *> &ip)
726       : position(ip.first), question(ip.second) {}
727   OrderedPredicate(const PositionalPredicate &ip)
728       : position(ip.position), question(ip.question) {}
729 
730   /// The position this predicate is applied to.
731   Position *position;
732 
733   /// The question that is applied by this predicate onto the position.
734   Qualifier *question;
735 
736   /// The first and second order benefit sums.
737   /// The primary sum is the number of occurrences of this predicate among all
738   /// of the patterns.
739   unsigned primary = 0;
740   /// The secondary sum is a squared summation of the primary sum of all of the
741   /// predicates within each pattern that contains this predicate. This allows
742   /// for favoring predicates that are more commonly shared within a pattern, as
743   /// opposed to those shared across patterns.
744   unsigned secondary = 0;
745 
746   /// The tie breaking ID, used to preserve a deterministic (insertion) order
747   /// among all the predicates with the same priority, depth, and position /
748   /// predicate dependency.
749   unsigned id = 0;
750 
751   /// A map between a pattern operation and the answer to the predicate question
752   /// within that pattern.
753   DenseMap<Operation *, Qualifier *> patternToAnswer;
754 
755   /// Returns true if this predicate is ordered before `rhs`, based on the cost
756   /// model.
757   bool operator<(const OrderedPredicate &rhs) const {
758     // Sort by:
759     // * higher first and secondary order sums
760     // * lower depth
761     // * lower position dependency
762     // * lower predicate dependency
763     // * lower tie breaking ID
764     auto *rhsPos = rhs.position;
765     return std::make_tuple(primary, secondary, rhsPos->getOperationDepth(),
766                            rhsPos->getKind(), rhs.question->getKind(), rhs.id) >
767            std::make_tuple(rhs.primary, rhs.secondary,
768                            position->getOperationDepth(), position->getKind(),
769                            question->getKind(), id);
770   }
771 };
772 
773 /// A DenseMapInfo for OrderedPredicate based solely on the position and
774 /// question.
775 struct OrderedPredicateDenseInfo {
776   using Base = DenseMapInfo<std::pair<Position *, Qualifier *>>;
777 
778   static OrderedPredicate getEmptyKey() { return Base::getEmptyKey(); }
779   static OrderedPredicate getTombstoneKey() { return Base::getTombstoneKey(); }
780   static bool isEqual(const OrderedPredicate &lhs,
781                       const OrderedPredicate &rhs) {
782     return lhs.position == rhs.position && lhs.question == rhs.question;
783   }
784   static unsigned getHashValue(const OrderedPredicate &p) {
785     return llvm::hash_combine(p.position, p.question);
786   }
787 };
788 
789 /// This class wraps a set of ordered predicates that are used within a specific
790 /// pattern operation.
791 struct OrderedPredicateList {
792   OrderedPredicateList(pdl::PatternOp pattern, Value root)
793       : pattern(pattern), root(root) {}
794 
795   pdl::PatternOp pattern;
796   Value root;
797   DenseSet<OrderedPredicate *> predicates;
798 };
799 } // namespace
800 
801 /// Returns true if the given matcher refers to the same predicate as the given
802 /// ordered predicate. This means that the position and questions of the two
803 /// match.
804 static bool isSamePredicate(MatcherNode *node, OrderedPredicate *predicate) {
805   return node->getPosition() == predicate->position &&
806          node->getQuestion() == predicate->question;
807 }
808 
809 /// Get or insert a child matcher for the given parent switch node, given a
810 /// predicate and parent pattern.
811 std::unique_ptr<MatcherNode> &getOrCreateChild(SwitchNode *node,
812                                                OrderedPredicate *predicate,
813                                                pdl::PatternOp pattern) {
814   assert(isSamePredicate(node, predicate) &&
815          "expected matcher to equal the given predicate");
816 
817   auto it = predicate->patternToAnswer.find(pattern);
818   assert(it != predicate->patternToAnswer.end() &&
819          "expected pattern to exist in predicate");
820   return node->getChildren().insert({it->second, nullptr}).first->second;
821 }
822 
823 /// Build the matcher CFG by "pushing" patterns through by sorted predicate
824 /// order. A pattern will traverse as far as possible using common predicates
825 /// and then either diverge from the CFG or reach the end of a branch and start
826 /// creating new nodes.
827 static void propagatePattern(std::unique_ptr<MatcherNode> &node,
828                              OrderedPredicateList &list,
829                              std::vector<OrderedPredicate *>::iterator current,
830                              std::vector<OrderedPredicate *>::iterator end) {
831   if (current == end) {
832     // We've hit the end of a pattern, so create a successful result node.
833     node =
834         std::make_unique<SuccessNode>(list.pattern, list.root, std::move(node));
835 
836     // If the pattern doesn't contain this predicate, ignore it.
837   } else if (!list.predicates.contains(*current)) {
838     propagatePattern(node, list, std::next(current), end);
839 
840     // If the current matcher node is invalid, create a new one for this
841     // position and continue propagation.
842   } else if (!node) {
843     // Create a new node at this position and continue
844     node = std::make_unique<SwitchNode>((*current)->position,
845                                         (*current)->question);
846     propagatePattern(
847         getOrCreateChild(cast<SwitchNode>(&*node), *current, list.pattern),
848         list, std::next(current), end);
849 
850     // If the matcher has already been created, and it is for this predicate we
851     // continue propagation to the child.
852   } else if (isSamePredicate(node.get(), *current)) {
853     propagatePattern(
854         getOrCreateChild(cast<SwitchNode>(&*node), *current, list.pattern),
855         list, std::next(current), end);
856 
857     // If the matcher doesn't match the current predicate, insert a branch as
858     // the common set of matchers has diverged.
859   } else {
860     propagatePattern(node->getFailureNode(), list, current, end);
861   }
862 }
863 
864 /// Fold any switch nodes nested under `node` to boolean nodes when possible.
865 /// `node` is updated in-place if it is a switch.
866 static void foldSwitchToBool(std::unique_ptr<MatcherNode> &node) {
867   if (!node)
868     return;
869 
870   if (SwitchNode *switchNode = dyn_cast<SwitchNode>(&*node)) {
871     SwitchNode::ChildMapT &children = switchNode->getChildren();
872     for (auto &it : children)
873       foldSwitchToBool(it.second);
874 
875     // If the node only contains one child, collapse it into a boolean predicate
876     // node.
877     if (children.size() == 1) {
878       auto *childIt = children.begin();
879       node = std::make_unique<BoolNode>(
880           node->getPosition(), node->getQuestion(), childIt->first,
881           std::move(childIt->second), std::move(node->getFailureNode()));
882     }
883   } else if (BoolNode *boolNode = dyn_cast<BoolNode>(&*node)) {
884     foldSwitchToBool(boolNode->getSuccessNode());
885   }
886 
887   foldSwitchToBool(node->getFailureNode());
888 }
889 
890 /// Insert an exit node at the end of the failure path of the `root`.
891 static void insertExitNode(std::unique_ptr<MatcherNode> *root) {
892   while (*root)
893     root = &(*root)->getFailureNode();
894   *root = std::make_unique<ExitNode>();
895 }
896 
897 /// Sorts the range begin/end with the partial order given by cmp.
898 template <typename Iterator, typename Compare>
899 static void stableTopologicalSort(Iterator begin, Iterator end, Compare cmp) {
900   while (begin != end) {
901     // Cannot compute sortBeforeOthers in the predicate of stable_partition
902     // because stable_partition will not keep the [begin, end) range intact
903     // while it runs.
904     llvm::SmallPtrSet<typename Iterator::value_type, 16> sortBeforeOthers;
905     for (auto i = begin; i != end; ++i) {
906       if (std::none_of(begin, end, [&](auto const &b) { return cmp(b, *i); }))
907         sortBeforeOthers.insert(*i);
908     }
909 
910     auto const next = std::stable_partition(begin, end, [&](auto const &a) {
911       return sortBeforeOthers.contains(a);
912     });
913     assert(next != begin && "not a partial ordering");
914     begin = next;
915   }
916 }
917 
918 /// Returns true if 'b' depends on a result of 'a'.
919 static bool dependsOn(OrderedPredicate *a, OrderedPredicate *b) {
920   auto *cqa = dyn_cast<ConstraintQuestion>(a->question);
921   if (!cqa)
922     return false;
923 
924   auto positionDependsOnA = [&](Position *p) {
925     auto *cp = dyn_cast<ConstraintPosition>(p);
926     return cp && cp->getQuestion() == cqa;
927   };
928 
929   if (auto *cqb = dyn_cast<ConstraintQuestion>(b->question)) {
930     // Does any argument of b use a?
931     return llvm::any_of(cqb->getArgs(), positionDependsOnA);
932   }
933   if (auto *equalTo = dyn_cast<EqualToQuestion>(b->question)) {
934     return positionDependsOnA(b->position) ||
935            positionDependsOnA(equalTo->getValue());
936   }
937   return positionDependsOnA(b->position);
938 }
939 
940 /// Given a module containing PDL pattern operations, generate a matcher tree
941 /// using the patterns within the given module and return the root matcher node.
942 std::unique_ptr<MatcherNode>
943 MatcherNode::generateMatcherTree(ModuleOp module, PredicateBuilder &builder,
944                                  DenseMap<Value, Position *> &valueToPosition) {
945   // The set of predicates contained within the pattern operations of the
946   // module.
947   struct PatternPredicates {
948     PatternPredicates(pdl::PatternOp pattern, Value root,
949                       std::vector<PositionalPredicate> predicates)
950         : pattern(pattern), root(root), predicates(std::move(predicates)) {}
951 
952     /// A pattern.
953     pdl::PatternOp pattern;
954 
955     /// A root of the pattern chosen among the candidate roots in pdl.rewrite.
956     Value root;
957 
958     /// The extracted predicates for this pattern and root.
959     std::vector<PositionalPredicate> predicates;
960   };
961 
962   SmallVector<PatternPredicates, 16> patternsAndPredicates;
963   for (pdl::PatternOp pattern : module.getOps<pdl::PatternOp>()) {
964     std::vector<PositionalPredicate> predicateList;
965     Value root =
966         buildPredicateList(pattern, builder, predicateList, valueToPosition);
967     patternsAndPredicates.emplace_back(pattern, root, std::move(predicateList));
968   }
969 
970   // Associate a pattern result with each unique predicate.
971   DenseSet<OrderedPredicate, OrderedPredicateDenseInfo> uniqued;
972   for (auto &patternAndPredList : patternsAndPredicates) {
973     for (auto &predicate : patternAndPredList.predicates) {
974       auto it = uniqued.insert(predicate);
975       it.first->patternToAnswer.try_emplace(patternAndPredList.pattern,
976                                             predicate.answer);
977       // Mark the insertion order (0-based indexing).
978       if (it.second)
979         it.first->id = uniqued.size() - 1;
980     }
981   }
982 
983   // Associate each pattern to a set of its ordered predicates for later lookup.
984   std::vector<OrderedPredicateList> lists;
985   lists.reserve(patternsAndPredicates.size());
986   for (auto &patternAndPredList : patternsAndPredicates) {
987     OrderedPredicateList list(patternAndPredList.pattern,
988                               patternAndPredList.root);
989     for (auto &predicate : patternAndPredList.predicates) {
990       OrderedPredicate *orderedPredicate = &*uniqued.find(predicate);
991       list.predicates.insert(orderedPredicate);
992 
993       // Increment the primary sum for each reference to a particular predicate.
994       ++orderedPredicate->primary;
995     }
996     lists.push_back(std::move(list));
997   }
998 
999   // For a particular pattern, get the total primary sum and add it to the
1000   // secondary sum of each predicate. Square the primary sums to emphasize
1001   // shared predicates within rather than across patterns.
1002   for (auto &list : lists) {
1003     unsigned total = 0;
1004     for (auto *predicate : list.predicates)
1005       total += predicate->primary * predicate->primary;
1006     for (auto *predicate : list.predicates)
1007       predicate->secondary += total;
1008   }
1009 
1010   // Sort the set of predicates now that the cost primary and secondary sums
1011   // have been computed.
1012   std::vector<OrderedPredicate *> ordered;
1013   ordered.reserve(uniqued.size());
1014   for (auto &ip : uniqued)
1015     ordered.push_back(&ip);
1016   llvm::sort(ordered, [](OrderedPredicate *lhs, OrderedPredicate *rhs) {
1017     return *lhs < *rhs;
1018   });
1019 
1020   // Mostly keep the now established order, but also ensure that
1021   // ConstraintQuestions come after the results they use.
1022   stableTopologicalSort(ordered.begin(), ordered.end(), dependsOn);
1023 
1024   // Build the matchers for each of the pattern predicate lists.
1025   std::unique_ptr<MatcherNode> root;
1026   for (OrderedPredicateList &list : lists)
1027     propagatePattern(root, list, ordered.begin(), ordered.end());
1028 
1029   // Collapse the graph and insert the exit node.
1030   foldSwitchToBool(root);
1031   insertExitNode(&root);
1032   return root;
1033 }
1034 
1035 //===----------------------------------------------------------------------===//
1036 // MatcherNode
1037 //===----------------------------------------------------------------------===//
1038 
1039 MatcherNode::MatcherNode(TypeID matcherTypeID, Position *p, Qualifier *q,
1040                          std::unique_ptr<MatcherNode> failureNode)
1041     : position(p), question(q), failureNode(std::move(failureNode)),
1042       matcherTypeID(matcherTypeID) {}
1043 
1044 //===----------------------------------------------------------------------===//
1045 // BoolNode
1046 //===----------------------------------------------------------------------===//
1047 
1048 BoolNode::BoolNode(Position *position, Qualifier *question, Qualifier *answer,
1049                    std::unique_ptr<MatcherNode> successNode,
1050                    std::unique_ptr<MatcherNode> failureNode)
1051     : MatcherNode(TypeID::get<BoolNode>(), position, question,
1052                   std::move(failureNode)),
1053       answer(answer), successNode(std::move(successNode)) {}
1054 
1055 //===----------------------------------------------------------------------===//
1056 // SuccessNode
1057 //===----------------------------------------------------------------------===//
1058 
1059 SuccessNode::SuccessNode(pdl::PatternOp pattern, Value root,
1060                          std::unique_ptr<MatcherNode> failureNode)
1061     : MatcherNode(TypeID::get<SuccessNode>(), /*position=*/nullptr,
1062                   /*question=*/nullptr, std::move(failureNode)),
1063       pattern(pattern), root(root) {}
1064 
1065 //===----------------------------------------------------------------------===//
1066 // SwitchNode
1067 //===----------------------------------------------------------------------===//
1068 
1069 SwitchNode::SwitchNode(Position *position, Qualifier *question)
1070     : MatcherNode(TypeID::get<SwitchNode>(), position, question) {}
1071